
Discrete State Estimators for Systems on a Lattice
D. Del Vecchio∗, R. M. Murray∗, and E. Klavins+

(∗) Control and Dynamical Systems
California Institute of Technology

Pasadena
(+) Electrical Engineering
University of Washington

Seattle

Abstract. We address the problem of estimating discrete variables in a class of determin-
istic transition systems where the continuous variables are available for measurement. This
simplified scenario has practical interest, for example, in the case of decentralized multi-robot
systems. In these systems, the continuous variables represent physical quantities such as the
position and velocity of a robot, while discrete variables may represent the state of the log-
ical system that is used for control and coordination. We propose a novel approach to the
estimation of discrete variables using basic lattice theory that overcomes some of the severe
complexity issues encountered in previous work. We show how to construct the proposed
estimator for a multi-robot system performing a cooperative assignment task.

Keywords: discrete state estimation, lattice, multi-agent systems.

1 Introduction
In the last decade, hybrid system models have become very popular in the control com-

munity. The need for understanding the behavior of systems whose evolution is determined
by the interplay of continuous dynamics and logic is compelling. In several applications,
the coupling of continuous dynamics and decision protocols renders the system under study
interesting and complicated enough that new mathematical tools are needed for the sake of
analysis and control. Examples include the Internet, continuous plants controlled by digital
controllers, multi-agent systems, biological systems and many others. Issues such as control-
lability and observability arise naturally when trying to analyze the properties of these systems
for control.

The problem of estimating and tracking the values of non-measurable variables in hybrid
systems with reasonable computational effort is a challenging one. Bemporad et al. [5] show
that observability properties are hard to check for hybrid systems and an observer is proposed
that requires large amounts of computation. As a starting point, we consider the problem of
estimating the discrete variable values when the continuous variables are available for mea-
surement. This simplified scenario is already of practical interest as it is in the case of multi-
robot systems. The continuous variables are quantities that we can measure directly, such
as position and velocity, the discrete variables can represent the internal state of the decision
and communication protocol that is used for coordination and control. We seek to construct a

1

Richard Murray
Text Box
Submitted, Automatica
http://www.cds.caltech.edu/~murray/papers/2004l_dmk04-automatica.html

discrete state estimator with computational requirements comparable to that needed for simu-
lating the system itself.

There is a wealth of research on observability and observer design for hybrid and dis-
crete event systems. Bemporad et al. [5] propose the notion of incremental observability
for piecewise affine systems and propose a deadbeat observer that requires large amounts of
computation. Balluchi et al. [3] combine a location observer with a Luenberger observer to
design hybrid observers that identify the location in a finite number of steps and converges
exponentially to the continuous state. However, if the number of locations is large, as in the
systems that we consider, such an approach is impracticable. In Balluchi et al., sufficient con-
ditions for a linear hybrid system to be final state determinable are given [4]. In Alessandri et
al., Luenberger-like observers are proposed for hybrid systems where the system location is
known [1], [2]. Vidal et al. [21] derive sufficient and necessary conditions for observability of
discrete time jump-linear systems, based on a simple rank test on the parameters of the model.
In later work [22], these notions are generalized to the case of continuous time jump linear
systems. For jump Markov linear systems, Costa and do Val derive test for observability [8],
and Cassandra et al. propose an approach to optimal control for partially observable Markov
decision processes [7]. For continuous time hybrid systems, De Santis et al. proposes a defi-
nition of observability based on the possibility of reconstructing the system state and testable
conditions for observability are provided [18].

In the discrete event literature, observability has been defined by Ramadge [17], for exam-
ple, which derives conditions for current state observability. Oishi et al. [16] derive conditions
for immediate observability in which the state of the system can be unambiguously recon-
structed from the output associated with the current state and last and next events. Özveren
et al. [11] and Caines [6] propose discrete event observers based on the construction of the
current-location observation tree that, as explored also in Del Vecchio and Klavins [20], is
impracticable when the number of locations is large, which is our case.

The main contribution of this paper is our approach to the estimation of the discrete variable
values of a system (discrete state) that allow us to overcome some of the complexity issues
encountered in previous work. In particular, given a system Σ whose discrete state needs to be
estimated, we extend it to a lattice (χ,≤), so that if the extended system Σ̃ and the lattice are
interval compatible, an estimator Σ̂ can be constructed that updates only two variables instead
of an entire list of possible discrete states. These two variables are the lower and upper bounds
of the set of possible discrete states compatible with the output sequence. In Section 2, we
propose a multi-robot example to illustrate this idea.

This paper is organized as follows. In Section 3, we review some basics on partial order
theory and on observability. In Section 4, we formulate the problem that we seek to solve and
a solution is proposed. Section 5 illustrates in detail the RoboFlag Drill system, its estimator
is constructed, and complexity considerations are included. Section 6 proposes extensions to
basic results that include the existence result for the estimator as well as the generalization of
our arguments to nondeterministic systems.

2

2 Motivating Example
As motivating example, we consider a task that represents a defensive maneuver for a

robotic “capture the flag” game [9]. We do not propose to devise a strategy that addresses
the full complexity of the game. Instead, we examine the following very simple drill or ex-
ercise that we call “RoboFlag Drill”. Some number of blue robots with positions (zi, 0) ∈ R2

(denoted by open circles) must defend their zone {(x, y) ∈ R2 | y ≤ 0} from an equal number of
incoming red robots (denoted by fill circles). The positions of the red robots are (xi, yi) ∈ R2.
An example for 8 robots is illustrated in Figure 1. The red robots move straight toward the
blue defensive zone. The blue robots are assigned each to a red robot and they coordinate
to intercept the red robots. Let N represent the number of robots in each team. The robots
start with an arbitrary (bijective) assignment α : {1, ...,N} → {1, ...,N}, where αi is the red
robot that blue robot i is required to intercept. At each step, each blue robot communicates
with its neighbors and decides to either switch assignments with its left or right neighbor or
keep its assignment. It is possible to show that the α assignment reaches the equilibrium value
(1, ...,N) (see [14] or [13] for details). We consider the problem of estimating the current
assignment α given the motions of the blue robots, which might be of interest to, for example,
the red robots in that they may use such information to determine a better strategy of attack.
We do not consider the problem of how they would change their strategy in this paper.

The RoboFlag Drill system can be specified by the following rules

yi(k + 1) = yi(k) − δ if yi(k) ≥ δ (1)
zi(k + 1) = zi(k) + δ if zi(k) < xαi(k) (2)
zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (3)

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if xαi(k) ≥ zi+1(k) ∧ xαi+1(k) ≤ zi+1(k), (4)

where we assume zi ≤ zi+1 and xi < zi < xi+1 for all k. Also, if none of the “if” statements
above are verified for a given variable, the new value of the variable is equal to the old one.
This system is a slight simplification of the original system described in [13].

Equation (4) establishes that two robots trade their assignments if the current assignments
cause them to go toward each other. The question we are interested in is the following: Given
the evolution of the measurable quantities z, x, y, can we build an estimator that tracks on-line
the value of the assignment α(k)? The value of α ∈ perm(N) determines what has been called
in previous work the location of the system (see [3]). The number of possible locations is
N!, which, for N ≥ 8, renders prohibitive the application of location observers based on the
current-location observation tree as described in [6] and used in [3], [11], or discrete state
observers based on similar concepts as the one in [20]. At each step, the set of possible α
values compatible with the current output and with the previously seen outputs can be so large
to render impractical its computation. As an example, we consider the situation depicted
in Figure 1 (left) where N = 8. We see the blue robots 1, 3, 5 going right and the others
going left. From equations (2)-(3) with xi < zi < xi+1 we deduce that the set of all possible
α ∈ perm(N) compatible with this observation is such that αi ≥ i+ 1 for i ∈ {1, 2, 3} and αi ≤ i
for i ∈ {2, 4, 6, 7, 8}. The size of this set is of the order of 40320. According to the current-
location observation tree method, this set needs to be mapped forward through the dynamics

3

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

(x8, y8)

α(k) = (2, 1, 5, 3, 7, 4, 6, 8)
z1 z2 z3 z4 z5 z6 z7 z8

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

(x7, y7)

(x8, y8)

(x1, y1)

(x2, y2)

α(k + 1) = (1, 2, 3, 5, 4, 7, 8, 6)
z1 z2 z3 z4 z5 z6 z7 z8

Figure 1: Example of the RoboFlag Drill with 8 robots per team.

of the system to see what are the values of α at the next step that correspond to this output.
Such a set is then intersected with the set of α values compatible with the new observation. To
overcome the complexity issue that comes from the need of listing order of 40320 elements
for performing such operations, we propose to represent a set by a lower L and an upper U
elements according to some partial order. Then, we can perform the previously described
operations only on L and U, two elements instead of 40320. This idea is developed in the
following paragraph.

For this example, we can view α ∈ NN . The set of possible assignments compatible with
the observation of the z motion deduced from the equations (2)-(3), denoted Oy(k), can be
represented as an interval with the order established component-wise, see the diagram in
Figure 2. The function f̃ that maps such a set forward, specified by the equations (4) with the
assumption that xi < zi < xi+1, simply swaps two adjacent robot assignments if these cause the
two robots to move toward each other. Thus, it maps the set Oy(k) to the set f̃ (Oy(k)) shown
in Figure 2, which can still be represented as an interval. When the new output measurement
becomes available (Figure 1, right) we obtain the new set Oy(k + 1) reported in Figure 2. The
sets f̃ (Oy(k)) and Oy(k + 1) can be intersected by simply computing the maximum of their
lower bounds and the infimum of their upper bounds. This way, we obtain the system that
updates L and U, being L and U the lower and upper bounds of the set of all possible α
compatible with the output sequence:

L(k + 1) = f̃ (max(L(k), inf Oy(k)))
U(k + 1) = f̃ (min(U(k), sup Oy(k))). (5)

As it will be shown in detail in the paper, the update laws in equations (5) have, among others,
the property that [L(k),U(k)]∩perm(N) tends to α(k). Letting V(k) = |[L(k),U(k)]∩perm(N)|,

4

step k
z motion at
observation of

[







































































2
1
4
1
6
1
1
1







































































,







































































8
2
8
4
8
6
7
8







































































]

Oy(k)

f̃
[







































































1
2
1
4
1
6
1
1







































































,







































































2
8
4
8
6
8
7
8







































































]

f̃ (Oy(k))

[







































































1
1
1
5
1
7
1
1







































































,







































































1
2
3
8
5
8
7
8







































































]

Oy(k + 1)

∩ = [







































































1
2
1
5
1
7
1
1







































































,







































































1
2
3
8
5
8
7
8







































































]

Figure 2: The observation of the z motion at step k gives the set of possible α, Oy(k). At
each step, the set is described by the lower and upper bounds of a sublattice interval in an
appropriately defined lattice. Such set is then mapped through the system dynamics (f̃) to
obtain at step k + 1 the set of α that are compatible also with the observation at step k. Such
a set is then intersected with Oy(k + 1), which is the set of α compatible with the z motion
observed at step k + 1.

Figure 3 shows convergence plots V(k) for the estimator compared to the convergence plots
E(k) = 1/N

∑N
i=1 |αi(k) − i| of the assignment protocol to its equilibrium (1, ...,N).

1 2 3 4 5 6 7 8 9 10
0

10

20

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1 2 3 4 5 6 7 8 9 10
0

10

20

time

dashed line = E(k)
solid line = log of V(k)

N=8: results for different initial conditions

Figure 3: Convergence plots for the estimator (V(k)) compared to the convergence plot of the
assignment protocol to its equilibrium (E(k)).

This example gives an idea of how complexity issues can be overcome with the aid of some
partial order structure. In particular, the function f̃ has the property of preserving the interval
structure of the sets of interest: this is a key property that allows to use only upper bounds and
lower bounds for computation purposes. In a more general setting, one would like to know
what are the properties of a system that allow such simplifications. By using partial order
theory, which is introduced in the next section, we address this question.

5

3 Basic Concepts
To construct the estimator introduced in the previous section, which updates lower and

upper bounds of the set of all possible discrete variable values compatible with the output
sequence, we make use of tools from partial order (or lattice) theory [10]. The theory of
partial orders, while standard in computer science, may be less well known to the intended
audience of the paper. Therefore, we briefly review the basic definitions and notation we will
use before proceeding to the main body of the paper.

3.1 Partial Order Theory
A partial order is a set χwith a partial order relation “≤”, and we denote it by the pair (χ,≤).

We define the join “g” and the meet ”f” of two elements x and w in χ as

1. x g w = sup{x,w} and x f w = inf{x,w};

2. if S ⊆ χ,
∨

S = sup S and S ⊆ χ,
∧

S = inf S ;

where by sup{x,w} we mean the smallest element in χ that is bigger than both x and w, and
we denote by inf{x,w} the biggest element in χ that is smaller than both x and w.

Let (χ,≤) be a partial order. If x f w ∈ χ and x g w ∈ χ for any x,w ∈ χ, then (χ;≤) is
a lattice. In Figure 5 (left) we illustrate Hasse diagrams [10] showing partially ordered sets.
From the diagram it is easy to tell when one element is less than another: x < w if and only if
there is a sequence of connected line segments moving upward from x to w.

Let (χ,≤) be a partial order. Then (χ,≤) is a chain if for all x,w ∈ χ, either x ≤ w or w ≤ x,
that is any two elements are comparable. At the opposite extreme of a chain is an anti-chain.
The partial order (χ,≤) is an anti-chain if x ≤ y if and only if x = y.

Let (χ;≤) be a lattice and let S ⊆ χ be a non-empty subset of χ. Then (S ,≤) is a sublattice
of χ if a, b ∈ S implies that agb ∈ S and afb ∈ S . If any sublattice of χ contains its least and
greatest elements, then (χ;≤) is called complete. Given a complete lattice (χ;≤), we will be
concerned with a special kind of a sublattice called an interval sublattice defined as follows.
Any interval sublattice of (χ,≤) is given by [L,U] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ. That
is, this special sublattice can be represented by only two elements. For example, the intervals
of (R,≤) are just the familiar closed intervals on the real line.

Let (χ,≤) be a lattice with least element ⊥. Then a ∈ χ is called an atom if a > ⊥ and there
is no element b such that ⊥ < b < a. The set of atoms of (χ,≤) is denotedA(χ,≤).

The power lattice of a set U, denoted (P(U),⊆), is given by the power set of U, P(U)
(the set of all subsets of U), ordered according to the set inclusion ⊆. The meet and join of
the power lattice is given by intersection and union. The bottom element is the empty set, that
is ⊥ = ∅, and the top element is U itself, that is > = U. Note that A(P(U),⊆) = U. An
example is illustrated in Figure 4. Given a set P, we denote by |P| its cardinality.

Definition 3.1. Let (P,≤) and (Q,≤) be partially ordered sets. A map f : P→ Q is

(i) An order preserving map if x ≤ w =⇒ f (x) ≤ f (w);

6

α1 α2 α3

U = {α1, α2, α3}

> = α1 g α2 g α3 = U
α1 g α2 = {α1, α2}

α1 g α3 = {α1, α3}

α2 g α3 = {α2, α3}

(χ,≤) = (P(U),⊆)

⊥ = ∅

Figure 4: Power lattice (χ,≤) of a setU composed by three elements.

(ii) An order embedding if x ≤ w ⇐⇒ f (x) ≤ f (w);

(iii) An order isomorphism if it is order embedding and it maps P onto Q.

Definition 3.2. If (P,≤) and (Q,≤) are lattices, then a map f : P → Q is said to be a homo-
morphism if f is join-preserving and meet-preserving, that is for all x,w ∈ P we have that
f (x g w) = f (x) g f (w) and f (x f w) = f (x) f f (w).

Proposition 3.1. (see [10]) If f : P → Q is a bijective homomorphism, then it is an order
isomorphism.

Every order isomorphic map faithfully mirrors the structure of P onto Q. In Figure 5 (right)
we show some examples. The notion of order preserving map can be generalized to the case
in which the map is non deterministic, that is it maps an element to a set of possible elements.
With a slight abuse of the term “order preserving” we also make the following non-standard
definition.

Definition 3.3. Let x,w ∈ χ, with (χ,≤) a lattice, x ≤ w, and f : χ → P(χ). We say that f is
order preserving if

∨

f (x) ≤
∨

f (w) and
∧

f (x) ≤
∧

f (w).

3.2 Deterministic Transition Systems
The class of systems we are concerned with are deterministic, infinite state systems with

output. The following definition introduces such a class.

Definition 3.4. (Deterministic transition systems) A deterministic transition system (DTS) is
the tuple Σ = (S ,Y, F, g), where

(i) S is a set of states with s ∈ S ;

7

x g w

x w

x w

x f w

w

x f wx f w

x g w

x

a) b)

d)c)

wx

z

x w

y

z

x w

y

f

f

e)
f (z) = f (w)

f (x) = f (y)

f (z)

f (x)

f (y)

f (w)

f)

Figure 5: (Left) In diagram a) and b), x and w are not related, but they have a join and a meet
respectively. In diagram c), we show a complete lattice. In diagram d), we show a partially
ordered set that is not a lattice, since the elements x and w have a meet, but not a join. In
diagram e), we show a map that is order preserving but not order embedding. In diagram f),
we show an order embedding that is not an order isomorphism: any two elements maintain
the same order relation, but in between z and w there is nothing, while in between f (z) and
f (w) some other elements appear (it is not onto).

(ii) Y is a set of outputs with y ∈ Y;

(iii) F : S → S is the state transition function;

(iv) g : S → Y is the output function.

An execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ S and s(k + 1) = F(s(k))
for all k ∈ N. The set of all executions of Σ is denoted E(Σ).

Definition 3.5. Let Σ = (S ,Y, F, g) be a deterministic transition system. The set Ω ⊂ S is the
ω+-limit set of Σ, denoted ω(Σ), if it is the smallest subset of S such that for all σ = {s(k)}k∈N

(i) if s(k) ∈ Ω and s(k + 1) = F(s(k)), then s(k + 1) ∈ Ω;

(ii) for each σ ∈ E(Σ), there exists kσ such that σ(k) ∈ Ω for all k ≥ kσ.

Definition 3.6. Given a deterministic transition system Σ = (S ,Y, F, g), two executions
σ1, σ2 ∈ E(Σ) are distinguishable if there exists a k such that g(σ1(k)) , g(σ2(k)).

Definition 3.7. (Observability) The deterministic transition system Σ = (S ,Y, F, g) is said to
be observable if any two different executions σ1, σ2 ∈ E(Σ) are distinguishable.

8

σ1 σ2 σ3

ω(Σ)

Figure 6: Executions σ2 and σ3 are weakly equivalent according to Definition 3.8 while σ3 is
not weakly equivalent to either σ1 or σ2.

From this definition, we deduce that if a system Σ is observable, any two different initial
states will give rise to two executions σ1 and σ2 with different output sequences. Thus, the
initial states can be distinguished by looking at the output sequence. However, there are
systems for which two different initial states cannot be distinguished, but the states at some
later step can. We introduce a weaker notion of observability analogous to detectability [19]
that accounts for this distinction.

Definition 3.8. Given a deterministic transition system Σ = (S ,Y, F, g), two executions
σ1, σ2 ∈ E(Σ) are weakly equivalent, denoted σ1 ∼ σ2, if there exists k∗ such that σ1(k∗) <
ω(Σ) and σ1(k) = σ2(k) for all k ≥ k∗.

In Figure 6, we show examples of equivalent and not equivalent system executions.

Definition 3.9. (Weak Observability) A deterministic transition system Σ = (S ,Y, F, g) is
weakly observable if whenever σ1 / σ2 then there is k such that g(σ1(k)) , g(σ2(k)).

In the next section, we propose the estimator construction for observable systems, and in
Section 6 we generalize the results obtained for observable systems to the case the system is
weakly observable.

4 Estimator Construction
In this section, we restrict the class of systems we consider to those in which the continuous

variables are measurable. The discrete state estimation problem is then stated as the problem
of finding suitable update laws for the upper and lower bounds of the set of all possible discrete
variable values compatible with the output sequence. A solution to this problem is proposed
in Theorem 4.1.

9

4.1 Problem Formulation
The deterministic transition systems Σ we defined in the previous section are quite general.

In this section, we restrict our attention to systems with a specific structure. In particular, for
a system Σ = (S ,Y, F, g) we suppose that

(i) S = U ×Z withU a finite set andZ a finite dimensional space;

(ii) F = (f , h), where f : U ×Z → U and h : U ×Z → Z;

(iii) g(α, z) := z, where α ∈ U, z ∈ Z, and Y = Z.

The set U is a set of logic states and Z is a set of measured states or physical states, as one
might find in a robot system. In the case of the example given in Section 2,U = perm(N) and
Z = RN , the function f is represented by equations (4) and the function h is represented by
equations (2-3). In the sequel, we will denote this class of DTS by Σ = S(U,Z, f , h) where
we associate to the tuple (U,Z, f , h), the equations:

α(k + 1) = f (α(k), z(k))
z(k + 1) = h(α(k), z(k)) (6)

y(k) = z(k),

where α ∈ U and z ∈ Z. An execution of the system Σ in equations (6) is a sequence
σ = {α(k), z(k)}k∈N. The output sequence is {y(k)}k∈N = {z(k)}k∈N. Given an execution σ of the
system Σ, we denote the α and z sequences corresponding to such an execution by {σ(k)(α)}k∈N
and {σ(k)(z)}k∈N respectively.

From the measurement of the output sequence, which in our case coincides with the evo-
lution of the continuous variables, we want to construct a discrete state estimator: a system Σ̂
that takes as input the values of the measurable variables and asymptotically tracks the value
of the variable α. We thus define in the following definition a deterministic transition system
with input.

Definition 4.1. (deterministic transition system with input) A deterministic transition system
with input is a tuple (S ,I,Y, F, g) in which

(i) S is a set of states;

(ii) I is a set of inputs;

(iii) Y is a set of outputs;

(iv) F : S × I → S is a transition function;

(v) g : S → Y is an output function.

10

In Problem 1 below, we specify what the elements of this tuple are when the DTS with
input is a discrete state estimator of a DTS Σ = S(U,Z, f , h). First, note that the setU does
not have a natural metric associated with it. As a consequence, a way to track the value of α is
to list, at each step k, the set of all possible α values that are compatible with the observation
and with the system dynamics given in (6). This has been done already in [20], for example,
where the estimate is a list of possible values that the estimator has to update when a new
measurement becomes available. This method leads to computational issues when the set to
be listed is large.

In this paper, we propose an alternative to simply maintaining a list of all possible values
for α. We propose to find a representation of the set so that the estimator updates the repre-
sentation of the set rather than the whole set itself. In particular, if the setU can be immersed
in a larger set χ whose elements can be related by an order relation ≤, we could represent a
subset of (χ,≤) as an interval sublattice [L,U] (see Section 3.1). Let “id” denote the identity
operator. We formulate the discrete state estimation problem on a lattice as follows.

Problem 1. (Discrete state estimator on a lattice).Given the deterministic transition system
Σ = S(U,Z, f , h), find a deterministic transition system with input Σ̂ = (χ × χ,Z × Z, χ ×
χ, (f1, f2), id), with f1 : χ × Z × Z → χ, f2 : χ × Z × Z → χ, U ⊆ χ, with (χ,≤) a lattice,
represented by the equations

L(k + 1) = f1(L(k), y(k), y(k + 1))
U(k + 1) = f2(U(k), y(k), y(k + 1))

with L(k) ∈ χ, U(k) ∈ χ, L(0) :=
∧

χ, U(0) :=
∨

χ, such that

(i) L(k) ≤ α(k) ≤ U(k) (correctness);

(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);

(iii) There exists k0 > 0 such that for any k ≥ k0 we have [L(k),U(k)] ∩ U = α(k) (conver-
gence).

In the example shown in Section 2, we had that

f1(L(k), y(k), y(k + 1)) = f̃ (max(L(k), inf Oy(k)))

and
f2(U(k), y(k), y(k + 1)) = f̃ (min(U(k), sup Oy(k))),

where Oy(k) is the set of possible α compatible with the output measurement at step k. Thus, in
the following section we define the output sets Oy and we explain what are desirable properties
of such sets, which will turn out to be interval sublattices. Also, in the example proposed we
have U = perm(N), and χ the set of vectors in NN with components xi ∈ [1,N]. The order
is established componentwise, so that (χ,≤) is a complete lattice. The function f̃ is defined
on (χ,≤), it coincides with f onU, and it preserves the structure of the interval sublattices in
(χ,≤). With f̃ , we extend the system defined on U to a system defined on χ. This extended
system is going to be formally defined in the following section, and its desirable properties on
the lattice (χ,≤) will be introduced as well.

11

4.2 Problem Solution
For finding a solution to Problem 1, we need to find the functions f1 and f2 defined on a

lattice (χ,≤) such that U ⊆ χ for some lattice χ. We propose in the following definitions a
way of extending a system Σ defined onU to a system Σ̃ defined on χ withU ⊆ χ. Moreover,
as we have seen in the motivating example, we want to represent the set of possible α values
compatible with an output measurement as an interval sublattice in (χ,≤). We thus define the
Σ̃ transition classes, with each transition class corresponding to a set of values in χ compatible
with an output measurement. We define the partial order (χ,≤) and the system Σ̃ to be interval
compatible if such equivalence classes are interval sublattices and Σ̃ preserves their structure.
On the basis of such notions, Theorem 4.1 below gives a possible solution to Problem 1.

Definition 4.2. (Extended system) Given the deterministic transition system Σ = S(U,Z, f , h),
an extension of Σ on χ, with U ⊆ χ and (χ,≤) a complete lattice, is any system Σ̃ =
S(χ,Z, f̃ , h̃), such that

(i) f̃ : χ ×Z → χ and f̃ |U×Z = f ;

(ii) h̃ : χ × Z → Z and h̃|U×Z = h.

Definition 4.3. (Transition sets) Let Σ̃ = S(χ,Z, f̃ , h̃) be a deterministic transition system.
The non empty sets T(z1,z2)(Σ̃) = {w ∈ χ | z2

= h̃(w, z1)}, for z1, z2 ∈ Z, are named the
Σ̃-transition sets.

Each Σ̃-transition set contains all of w ∈ χ values that allow the transition from z1 to z2

through h̃.

Definition 4.4. (Transition classes) The set T (Σ̃) = {T1(Σ̃), ...,TM(Σ̃)}, with Ti(Σ̃) such that

(i) For any Ti(Σ̃) ∈ T (Σ̃) there are z1, z2 ∈ Z such that Ti(Σ̃) = T(z1,z2)(Σ̃);

(ii) For any T(z1,z2)(Σ̃) there is j ∈ {1, ...,M} such that T(z1,z2)(Σ̃) = T j(Σ̃);

is the set of Σ̃-transition classes.

Note that T(z1,z2) and T(z3,z4) might be the same set even if (z1, z2) , (z3, z4): in the RoboFlag
Drill example introduced in Section 2, if robot j is moving right, the set of possible values of
α j is [j + 1,N] independently of the values of z j(k). Thus, T(z1,z2) and T(z3,z4) can define the
same set that we call Ti(Σ̃) for some i. Also, the transition classes Ti(Σ̃) are not necessarily
equivalence classes as they might not be pairwise disjoint. However, for the RoboFlag Drill
it is the case that the transition classes are pairwise disjoint and thus they partition the lattice
(χ,≤) in equivalence classes.

Definition 4.5. (Output set) Given the extension Σ̃ = S(χ,Z, f̃ , h̃) of the deterministic transi-
tion system Σ = S(U,Z, f , h) on the lattice (χ,≤), and given an output sequence {y(k)}k∈N of
Σ, the set

Oy(k) := {w ∈ χ | h̃(w, y(k)) = y(k + 1)}

is the output set at step k.

12

Note that by definition, for any k, Oy(k) = T(y(k),y(k+1))(Σ̃), and thus it is equal to Ti(Σ̃)
for some i ∈ {1, ...,M}. The output set at step k is the set of all possible w values that are
compatible with the pair (y(k), y(k + 1)). By definition of the extended functions (h̃|U×Z = h),
this output set contains also all of the values of α compatible with the same output pair.

Definition 4.6. (Interval compatibility) Given the extension Σ̃ = S(χ,Z, f̃ , h̃) of the system
Σ = S(U,Z, f , h) on the lattice (χ,≤), the pair (Σ̃, (χ,≤)) is said to be interval compatible if

(i) Each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)]

(ii) f̃ : (Ti(Σ̃), z) → [f̃ (
∧

Ti(Σ̃), z), f̃ (
∨

Ti(Σ̃), z)] is an order isomorphism for any i ∈
{1, ...,M} and for any z ∈ Z .

The following theorem gives the main result, which proposes a solution for Problem 1.

Theorem 4.1. Assume that the deterministic transition system Σ = S(U,Z, f , h) is observ-
able. If there is a lattice (χ,≤), such that the pair (Σ̃, (χ,≤)) is interval compatible, then the
deterministic transition system with input Σ̂ = (χ × χ,Z×Z, χ × χ, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) = f̃
(

L(k) g
∧

Oy(k), y(k)
)

f2(U(k), y(k), y(k + 1)) = f̃
(

U(k) f
∨

Oy(k), y(k)
)

solves Problem 1.

Proof. In order to prove the statement of the theorem, we need to prove that the system

L(k + 1) = f̃ (L(k) g
∧

Oy(k), y(k))
U(k + 1) = f̃ (U(k) f

∨

Oy(k), y(k)) (7)

with L(0) =
∧

χ, U(0) =
∨

χ is such that properties (i)–(iii) of Problem 1 are satisfied. For
simplicity of notation, we omit the dependence of f̃ on its second argument.

Proof of (i): This is proved by induction on k. Base case: for k = 0 we have that L(0) =
∧

χ

and that U(0) =
∨

χ, so that L(0) ≤ α(0) ≤ U(0). Induction step: we assume that L(k) ≤
α(k) ≤ U(k) and we show that L(k + 1) ≤ α(k + 1) ≤ U(k + 1). Note that α(k) ∈ Oy(k). This,
along with the assumption of the induction step, implies that

L(k) g
∧

Oy(k) ≤ α(k) ≤ U(k) f
∨

Oy(k).

Because we have that L(k) g
∧

Oy(k) ∈ Oy(k), and U(k) f
∨

Oy(k) ∈ Oy(k), and the pair
(Σ̃, (χ,≤)) is interval compatible, we can use the isomorphic property of f̃ (property (ii) of
Definition 4.6), which leads to

f̃ (L(k) g
∧

Oy(k)) ≤ α(k + 1) ≤ f̃ (U(k) f
∨

Oy(k)).

13

This relationship combined with equation (7) proves (i).
Proof of (ii): This can be shown by proving that for any w ∈ [L(k + 1),U(k + 1)] there is

z ∈ [L(k),U(k)] such that w = f̃ (z), and hence the number of elements in [L(k + 1),U(k + 1)]
is almost the same as the number of elements in [L(k),U(k)]. By equation (7), w ∈ [L(k +
1),U(k + 1)] implies that

f̃ (L(k) g
∧

Oy(k)) ≤ w ≤ f̃ (U(k) f
∨

Oy(k)). (8)

In addition, we have that
∧

Oy(k) ≤ L(k) g
∧

Oy(k)

and
U(k) f

∨

Oy(k) ≤
∨

Oy(k).

Because the pair (Σ̃, (χ,≤)) is interval compatible, by virtue of the isomorphic property of f̃
(property (ii) of Definition 4.6), we have that

f̃ (
∧

Oy(k)) ≤ f̃ (L(k) g
∧

Oy(k))

and
f̃ (U(k) f

∨

Oy(k)) ≤ f̃ (
∨

Oy(k)).

This, along with relations (8) implies that

w ∈ [f̃ (
∧

Oy(k)), f̃ (
∨

Oy(k))].

From this, using again the order isomorphic property of f̃ , we deduce that there is z ∈ Oy(k)
such that w = f̃ (z). This with relation (8) implies that

L(k) g
∧

Oy(k) ≤ z ≤ U(k) f
∨

Oy(k),

which in turn implies that x ∈ [L(k),U(k)].
Proof of (iii): We proceed by contradiction. Thus, assume that for any k0 there exists a

k ≥ k0 such that {α(k), βk} ⊆ [L(k),U(k)]∩U for some βk , α(k) and βk ∈ U. By the proof of
part (ii) we also have that βk is such that βk = f̃ (βk−1) for some βk−1 ∈ [L(k − 1),U(k − 1)].

We want to show that in fact βk−1 ∈ [L(k − 1),U(k − 1)] ∩U. If this is not the case, we can
construct an infinite sequence {ki}i∈N+ such that βki ∈ [L(ki),U(ki)]∩U with βki = f̃ (βki−1) and
βki−1 ∈ [L(ki − 1),U(ki − 1)]∩ (χ−U). Notice that |[L(k1 − 1),U(k1 − 1)]∩ (χ−U)| = M < ∞.
Also, we have

|[L(k1),U(k1)] ∩ (χ − U)| < |[L(k1 − 1),U(k1 − 1)] ∩ (χ −U)|.

This is due to the fact that f̃ (βk1−1) < [L(k1),U(k1)]∩ (χ−U), and to the fact that each element
in [L(k1),U(k1)]∩ (χ−U) comes from one element in [L(k1 − 1),U(k1 − 1)]∩ (χ −U) (proof
of (ii) and because U is invariant under f̃). Thus we have a strictly decreasing sequence of
natural numbers {|[L(ki − 1),U(ki − 1)] ∩ (χ − U)|} with initial value M. Since M is finite,
we reach the contradiction that |[L(ki − 1),U(ki − 1)] ∩ (χ − U)| < 0 for some i. Therefore,
βk−1 ∈ [L(k − 1),U(k − 1)] ∩U.

14

Thus for any k0 there is k ≥ k0 such that {α(k), βk} ⊆ [L(k),U(k)] ∩ U, with βk = f (βk−1)
for some βk−1 ∈ [L(k − 1),U(k − 1)] ∩ U. Also, from the proof of part (ii) we have that
βk−1 ∈ Oy(k − 1). As a consequence, there exists k̄ > 0 such that {βk−1, z(k − 1)}k≥k̄ = σ1 and
{α(k − 1), z(k − 1)}k≥k̄ = σ2 are two executions of Σ sharing the same output. This contradicts
the observability assumption. �

The following corollary is a consequence of 4.1 in the case in which the extended system Σ̃
is observable.

Corollary 4.1. If the extended system Σ̃ of an observable system Σ is observable, then the
estimator Σ̂ given in Theorem 4.1 solves Problem 1 with L(k) −→ α(k) and U(k) −→ α(k) as
k −→ ∞.

Proof. The proof proceeds by contradiction. Assume that for any k0 ≥ 0 there is k ≥ k0 such
that {α(k), βk} ⊆ [L(k),U(k)] for some βk. By the proof of (ii) of Theorem 4.1, we have that
βk = f̃ (βk−1) for βk−1 ∈ [L(k − 1),U(k− 1)] and βk−1 ∈ Oy(k− 1). Thus, σ1 = {βk−1, z(k− 1)}k∈N
and σ2 = {α(k − 1), z(k − 1)}k∈N are two executions of Σ̃ = S(χ,Z, f̃ , h̃) that share the same
output sequence. This contradicts the observability of the system Σ̃. �

5 Example: The RoboFlag Drill
The RoboFlag Drill has been described in Section 2. In this section, we revisit the example

by showing first that it is observable with measurable variables z, and then by finding a lattice
and a system extension that can be used for constructing the estimator proposed in Theorem
4.1.

5.1 System specification
For completeness, we report here the system specification. The red robot dynamics are

described by the N rules

yi(k + 1) = yi(k) − δ if yi(k) ≥ δ (9)

for i ∈ {1, ...,N}. These state simply that the red robots move a distance δ toward the defensive
zone at each step. The blue robot dynamics are described by the 2N rules

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k)

zi(k + 1) = zi(k) − δ if zi(k) > xαi(k) (10)

for i ∈ {1, ...,N}. For the blue robots we assume that initially zi ∈ [zmin, zmax] and zi < zi+1 and
that xi < zi < xi+1 for all time. The assignment protocol dynamics is defined by

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if xαi(k) ≥ zi+1(k) ∧ xαi+1(k) ≤ zi+1(k), (11)

which is a modification of the protocol presented in [13], since two adjacent robots switch
assignments only if they are moving one toward the other. We define x = (x1, ..., xN), z =

15

(z1, ..., zN), α = (α1, ..., αN). The complete RoboFlag specification is then given by the program
given in rules (9)-(10)-(11). In particular the rules in (10) model the function h : U×Z → Z
that updates the continuous variables, and the rules in (11) model the function f : U ×Z →
U that updates the discrete variables. In this example, we have U = perm(N) the set of
permutations of N elements, and Z = RN . Thus, the RoboFlag system is given by Σ =
S(perm(N),RN , f , h), and the variables z ∈ RN are measured.

Problem 2. RoboFlag Drill Observation Problem.Given initial values for x and y and the
values of z corresponding to an execution of Σ = S(perm(N),RN , f , h), determine the value of
α during that execution.

Before constructing the estimator for the system Σ = S(perm(N),RN , f , h), we show in the
following proposition that such a system is observable.

Proposition 5.1. The system Σ = S(perm(N),RN , f , h) represented by the rules (10) and (11)
with measurable variables z is observable.

Proof. Given any two executions σ1 and σ2 of Σ, for proving observability, it is enough to
show that if {σ1(k)(α)}k∈N , {σ2(k)(α)}k∈N, then {σ1(k)(z)}k∈N , {σ2(k)(z)}k∈N. Since the
measurable variables are the zi’s, also their direction of motion is measurable. Thus, we
consider the vector of directions of motion of the zi as output. Let g(σ(k)) denote such
a vector at step k for the execution σ. It is enough to show that there is a k such that
g(σ1(k)) , g(σ2(k)). Note that, in any execution of Σ, the α trajectory reaches the equi-
librium value [1, ...,N], and therefore there is a step k̄ at which f (σ1(k̄)) = f (σ2(k̄)) and
σ1(k̄)(α) , σ2(k̄)(α). Here we have denoted by {σ(k)(α)}k∈N the α sequence corresponding
to the execution σ as introduced in Section 4. As a consequence the system is observable
if g(σ1(k̄)) , g(σ2(k̄)). Therefore it is enough to prove that for any α , β, for α, β ∈ U,
we have g(α, z) = g(β, v) =⇒ f (α, z) , f (β, v), where z, v ∈ RN . g(α) = g(β) by (10)
implies that (1) zi < xαi ⇐⇒ vi < xβi and (2) zi ≥ xαi ⇔ vi ≥ xβi . This implies that
xαi ≥ zi+1 ∧ xαi+1 ≤ zi+1 ⇔ xβi ≥ vi+1 ∧ xβi+1 ≤ vi+1. By denoting α′ = f (α, z) and β′ = f (β, v) ,
we have that (α′i , α

′
i+1) = (αi+1, αi) ⇔ (β′i , β

′
i+1) = (βi+1, βi). Hence if there exists an i such that

αi , βi, then there exists a j such that α′j , β
′
j, and therefore f (α, z) , f (β, v). �

5.2 RoboFlag Drill Estimator
In the previous section, we have shown that the RoboFlag system Σ = S(perm(N),RN , f , h)

represented by the rules (10) and (11) with measurable variables z is observable. In this
section, we construct the estimator proposed in Theorem 4.1 in order to estimate and track
the value of the assignment α in any execution. To accomplish this, we need to find a lattice
(χ,≤) in which to immerse the setU and an extension Σ̃ of the system Σ to χ, so that the pair
(Σ̃, (χ,≤)) is interval compatible.

We first construct a lattice (χ,≤) and the extended system Σ̃ = S(χ,Z, f̃ , h̃) such that
(Σ̃, (χ,≤)) is interval compatible. We choose as χ the set of vectors in NN with coordinates
xi ∈ [1,N], that is

χ = {x ∈ NN : xi ∈ [1,N]} . (12)

16

For the elements in χ, we use the vector notation, that is x = (x1, ..., xN). The partial order that
we choose on such a set is given by

∀x,w ∈ χ, x ≤ w if xi ≤ wi ∀i . (13)

As a consequence, the join and the meet between any two elements in χ are given by

∀ x,w ∈ χ, v = x g w if vi = max{xi,wi},

∀ x,w ∈ χ, v = x f w if vi = min{xi,wi} .

With this choice,we have
∨

χ = (N, ...,N) and
∧

χ = (1, ..., 1). The pair (χ,≤) with the order
defined by (13) is clearly a lattice. The setU is the set of all permutations of N elements and
it is a subset of χ. All of the elements in U form an anti-chain of the lattice, that is any two
elements of U are not related by the order in (χ,≤). In the sequel, we will denote by w the
variables in χ not specifying if it is inU, and we will denote by α the variables inU.

The function h : perm(N) × RN → RN can be naturally extended to χ as

zi(k + 1) = zi(k) + δ if zi(k) < xwi(k)

zi(k + 1) = zi(k) − δ if zi(k) > xwi(k) (14)

for w ∈ χ. The rules (14) specify h̃ : χ × RN → RN , and one can check that h̃|U×Z = h. In
analogous way f : perm(N) × RN → perm(N) is extended to χ as

(wi(k + 1),wi+1(k + 1)) = (wi+1(k),wi(k)) if xwi(k) ≥ zi+1(k) ∧ xwi+1(k) ≤ zi+1(k), (15)

for w ∈ χ. The rules (15) model the function f̃ : χ×RN → χ, and one can check that f̃ |U×Z =
f . Therefore, the system Σ̃ = (f̃ , h̃, χ,RN) is the extended system of Σ = (f , h, perm(N),RN)
(see Definition 4.2).

The following proposition shows that the pair (Σ̃, (χ,≤)) is interval compatible.

Proposition 5.2. The pair (Σ̃, (χ,≤)), where Σ = S(perm(N),RN , f , h) is represented by the
rules (10-11), and (χ,≤) is given by (12-13), is interval compatible.

Proof. According to Definition 4.6, we need to show the following two properties

(i) Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)],

(ii) f̃ : ([
∧

Ti(Σ̃),
∨

Ti(Σ̃)])→ [f̃ (
∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))] is an order isomorphism.

To simplify notation, we neglected the dependence of f̃ on its second argument.
Proof of (i): By (14) we have that T(z1,z2)(Σ̃) is not empty if for any i we have z2

i = z1
i + δ,

z2
i = z1

i − δ, or z2
i = z1

i . Thus

T(z1,z2)(Σ̃) =



























{w | xwi > z1
i , }, if z2

i = z1
i + δ

{w | xwi < z1
i , }, if z2

i = z1
i − δ

{w | xwi = z1
i , }, if z2

i = z1
i .

(16)

17

Because we assumed that xi < zi < xi+1, we have that

xwi > zi if and only if wi > i
xwi < zi if and only if wi < i.

This, along with relations (16) and Definition 4.4, imply (i).
Proof of (ii): To show that f̃ : Ti(Σ̃) → [f̃ (

∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))] is an order isomorphism
we show: a) that it is onto; b) that it is order embedding. a) To show that it is onto, we
show directly that f (Ti(Σ̃)) = [f̃ (

∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))]. We omit the dependence on Σ̃ to
simplify notation. From the proof of (i), we deduce that the sets Ti are of the form Ti =

(Ti,1, ...,Ti,N), with Ti, j ∈ {[1, j], [j + 1,N], [j, j]}. Denote by f̃ (Ti) j the jth coordinate set of
f̃ (Ti). By equations (15) we derive that f̃ (Ti) j ∈ {Ti, j,Ti, j−1,Ti, j−1}. We consider the case
where f̃ (Ti) j = Ti, j−1, the other cases can be treated in analogous way. If f̃ (Ti) j = Ti, j−1 then
f̃ (Ti) j−1 = Ti, j. Denoting

∧

Ti = l and
∨

Ti = u, with l = (l1, ..., lN) and u = (u1, ..., uN), we
have also that f̃ (l) j = l j−1, f̃ (l) j−1 = l j, f̃ (u) j = u j−1, f̃ (u) j−1 = u j. Thus, f̃ (Ti) j = [f̃ (l) j, f̃ (u) j]
for all j. This in turn implies that f̃ (Ti) = [f̃ (l), f̃ (u)], which is what we wanted to show. b)
To show that f̃ : Ti → [f̃ (

∧

Ti), f̃ (
∨

Ti)] is order embedding, it is enough to note again that
f̃ (Ti) is obtained by switching Ti, j with Ti, j+1, Ti, j−1, or leaving it to Ti, j . Therefore if w ≤ v
for w, v ∈ Ti then f̃ (w) ≤ f̃ (v) since coordinate-wise we will compare the same numbers. By
the same reasoning the reverse is also true, that is if f̃ (w) ≤ f̃ (v) then w ≤ v. �

The estimator Σ̂ = (χ × χ,Z × Z, χ × χ, (f1, f2), id) given in Theorem 4.1 can be con-
structed because the hypotheses of the theorem are satisfied by virtue of Proposition 5.1 and
Proposition 5.2. The estimator Σ̂ can be specified by the following rules

li(k + 1) = i + 1 if zi(k + 1) = zi(k) + δ (17)
li(k + 1) = 1 if zi(k + 1) = zi(k) − δ (18)

Li,y(k + 1) = max{Li(k), li(k + 1)} (19)

(Li(k + 1), Li+1(k + 1)) = (Li+1,y(k + 1), Li,y(k + 1))
if xLi,y(k+1) ≥ zi+1(k) ∧ xLi+1,y(k+1) ≤ zi+1(k) (20)

ui(k + 1) = N if zi(k + 1) = zi(k) + δ (21)
ui(k + 1) = i if zi(k + 1) = zi(k) − δ (22)

Ui,y(k + 1) = min{Ui(k),Ui(k + 1)} (23)

(Ui(k + 1),Ui+1(k + 1)) = (Ui+1,y(k + 1),Ui,y(k + 1))
if xUi,y(k+1) ≥ zi+1(k) ∧ xUi+1,y(k+1) ≤ zi+1(k) (24)

initialized with L(0) =
∧

χ and U(0) =
∨

χ. Rules (17-18) and (21-22) take the output in-
formation z and set the lower and upper bound of Oy(k) respectively. Rules (19) and (23)
compute the lower and upper bound of the intersection [L(k),U(k)] ∩ Oy(k) respectively. Fi-
nally, rules (20) and (24) compute the lower and upper bound of the set f̃ ([L(k),U(k)]∩Oy(k))
respectively.

18

5.3 Complexity of the RoboFlag Drill Estimator
The amount of computation required for updating L and U according to (17-24)) is pro-

portional to the amount of computation required for updating the variables α in system Σ. In
fact we have 2N rules, 2N variables, and 2N computations of “max” and “min” of values
in N. Therefore we can roughly say that the complexity of the algorithm that generates the
sequences L(k) and U(k) is about the same as the complexity of the algorithm that generates
the α trajectories. Also note that the rules in (17-24) are obtained by “copying” the rules in
(15) and correcting them by means of the output information, according to how the Kalman
filter or the Luenberger observer are constructed for dynamical systems (see [12], [15]).

As established by property (iii) of Problem 1, the function of k given by |[L(k),U(k)]∩U −
α(k)| tends to zero. This function is useful for analysis purposes, but it is not necessary to
compute it at any point in the algorithm proposed in equation (17-24). However, since L(k)
does not converge to U(k), once the algorithm has converged, i.e. when |[L(k),U(k)] ∩ U| =
1, we cannot find the value of α(k) from the values of U(k) and L(k) directly. Instead of
computing directly [L(k),U(k)] ∩ U, we carry out a simple algorithm, that in the case of the
RoboFlag Drill example takes at most (N2

+ N)/2 steps and takes as inputs L(k) and U(k)
and gives as output α(k) if the algorithm has converged. This is formally explained in the
following paragraph.

Algorithm 1. (Refinement Algorithm) Let ci = [Li,Ui]. Then the algorithm

(m1, ...,mN) = Refine(c1, ..., cN),

which takes assignment sets c1, ..., cN and produces assignment sets m1, ...,mN, is such that if
mi = {k} then k < m j for any j , i.

This algorithm takes as input the sets mi and removes singletons occurring at one coordinate
set from all of the other coordinate sets. It does this iteratively: if in the process of removing
one singleton, a new one is created in some other coordinate set, then such a singleton is
also removed from all of the other coordinate sets. The refinement algorithm has two useful
properties. First, the sets mi are equal to the αi when [L,U] ∩U = α. Second, the cardinality
of the sets mi(k) is non-increasing with the time step k. These properties are proved formally
in the following propositions.

Proposition 5.3. If [L,U] ∩U = α with L,U ∈ χ, and ci = [Li,Ui], then Re f ine(c1, ..., cN) =
α.

Proof. Let ci denote the sets [Li,Ui]. Also, letUi denote the set of permutation of i elements.
If [L,U] ∩ U = α, we note that among the sets [Li,Ui] there is at least one i for which
Li = Ui, and therefore we have at least one singleton to take out from all of the other coordinate
sets. Without loss in generality we assume that i = N (if not we can reduce to this case by
performing a permutation of the coordinate sets and keeping track of the used permutation).
We are left to show that the process of taking out one singleton always creates a new singleton
that then needs to be removed from the other coordinate sets. Then, we remove that singleton
from all of the other sets c j for j < N to obtain new sets c1

j whose elements take values in a set

19

of possible N−1 natural numbers. Still, there is only one β ∈ UN−1 such that β ∈ (c1
1, ..., c

1
N−1).

Again, for this to be true there must exist j such that c1
j , for j ∈ [1,N − 1], is a singleton.

Assume j = N − 1. We thus remove this singleton from all of the other sets c1
j for j < N − 1

to obtain new sets c2
j whose elements take values in a set of possible N − 2 natural numbers.

Proceeding iteratively, we finally obtain m1 = cN−1
1 ,...,mN−1 = c1

N−1, mN = cN , which implies
that the mi are singletons. Since αi ∈ mi by construction, we have proved what we wanted. �

Proposition 5.4. Let ci(k) = [Li(k),Ui(k)], and denote by mi(k) the sets obtained with the
refinement algorithm. Then

N
∑

i=1

|mi(k + 1)| ≤
N

∑

i=1

|mi(k)|

Proof. Let us denote the variables at step k + 1 with primed variables and the variables at step
k with unprimed variables. The proof proceeds by showing that for each j there exist a k such
that m′j ⊆ mk. By equations(17-24) we deduce that we can have one of the following cases for
each i: (a) c′i ⊆ ci+1 ∧ c′i+1 ⊆ ci, (b) c′i ⊆ ci, (c) c′i ⊆ ci−1 ∧ c′i−1 ⊆ ci. Let us consider case
(a), the other cases can be treated in analogous way. Let c j be a singleton. In the refinement
process it is deleted from any other set, so that we have ci = mi+c j for all i. Assume that in the
first singleton removal process no new singletons are created. We have one of the following
situations: c′j ⊆ c j+1 ∧ c j+1 ⊆ c j, c′j ⊆ c j, c′j ⊆ c j−1 ∧ c′j−1 ⊆ c j. This implies that one of
the c′k is equal to the singleton c j. The sets m′i are created removing such singleton for all the
other sets, so that we obtain m′i + c j = c′i ⊆ ci+1 = mi+1 + c j and m′i+1 + c j = c′i+1 ⊆ ci = mi + c j.
This in turn implies that m′i ⊆ mi+1 and m′i+1 ⊆ mi. Because this holds for any i, we have that
∑N

i=1 |m
′
i | ≤

∑N
i=1 |mi|. This reasoning can be generalized to the case where a singleton removal

process creates new singletons. �

5.4 Simulation Results
The RoboFlag Drill system represented in the rules (10) and (11) has been implemented in

MATLAB together with the estimator reported in the rules (17-24). Figure 7 (left) shows the
behavior of the quantity

V(k) = |[L(k),U(k)] ∩U|

and

E(k) =
1
N

N
∑

i=1

|αi(k) − i|.

V(k) represents the cardinality of the set of all possible assignments at each step. This quantity
gives an idea of the convergence rate of the estimator. E(k) is a function of α, and it is not
increasing along the executions of the system Σ = S(perm(N),RN , f , h). This quantity is
showing the rate of convergence of the α assignment to its equilibrium (1, ...,N). In Figure 7
(right) we show the results for N = 30 robots per team. In particular, we report the log of E(k)
and the log of W(k) defined as

W(k) =
1
N

N
∑

i=1

|mi(k)|,

20

1 2 3 4 5 6 7 8 9 10
0

10

20

1 2 3 4 5 6 7 8 9 10
0

5

10

15

1 2 3 4 5 6 7 8 9 10
0

10

20

time

dashed line = E(k)
solid line = log of V(k)

N=8: results for different initial conditions

10 20 30 40 50 60 70 80
0

2

4

6

10 20 30 40 50 60 70 80
0

2

4

6

dashed line = log of E(k)
solid line = lof of W(k)

time

N=30: results for different initial conditions

Figure 7: (Left) Example with N=8: note that the function V(k) is always non-increasing
because the set χ−U is invariant under f̃ . (Right) Example with N=30: note that the function
W(k) is always non-increasing and its logarithm is converging to zero.

which by virtue of Proposition 5.3 and Proposition 5.4 is non increasing and converging to
one, that is the sets (m1(k), ...,mN(k)) converge to α(k) = (α1(k), ..., αN(k)). In the same figure,
we notice that when W(k) converges to one, E(k) has not converged to zero yet. This suggests
that the estimator is faster than the dynamics of the system under study. We cannot explain
such a good performance formally yet, and the estimator speed issue will be addressed in
future work.

In the previous sections, we proposed an estimator Σ̂ = (χ×χ,Z×Z, χ×χ, (f1 , f2), id) on a
lattice (χ,≤) for a DTS Σ = S(U,Z, f , h) withU ⊆ χ. Such an estimator can be constructed
if the system Σ is observable and if the extended system Σ̃ = S(χ,Z, f̃ , h̃) is such that the pair
(Σ̃, (χ,≤)) is interval compatible. In the next section, we investigate when the pair (Σ̃, (χ,≤))
is interval compatible, and what are possible causes of the estimator complexity.

6 Extensions to Basic Results
In this section, we give a characterization of what observable means in terms of extensibility

of a system into an extended system that is interval compatible with a lattice (χ,≤). We show
that if the system Σ = S(U,Z, f , h) is observable, there always exists a lattice (χ,≤) such
that the pair (Σ̃, (χ,≤)) is interval compatible. The size of the set χ is singled out as a possible
cause of complexity, and a worst case size is computed. For systems whereU can be naturally
immersed in a space equipped with algebraic properties, as is the case for the RoboFlag Drill,
a preferred lattice structure (χ,≤) exists where joins and meets can be efficiently computed and
represented by exploiting the algebra. However, the pair (Σ̃, (χ,≤)) is not necessarily interval
compatible for any (χ,≤). We propose a way of constructing the estimator on a chosen lattice
by constructing a nondeterministic extension of Σ on χ. The previous section results are thus

21

generalized for non-deterministic systems.

6.1 Estimator Existence
For the deterministic transition system Σ = S(U,Z, f , h), the Σ-transition sets and the Σ-

transition classes are defined as for the extended system Σ̃ = S(U,Z, f̃ , h̃) in Definition 4.3
and Definition 4.4 respectively, by replacing Σ̃ = S(χ,Z, f̃ , h̃) with Σ = S(U,Z, f , h). Each
Σ-transition set T(z1,z2)(Σ) contains all of α values in U that allow the transition from z1 to
z2 through the function h. Note also that for any z1, z2 ∈ Z we have T(z1,z2)(Σ) ⊆ T(z1,z2)(Σ̃)
because h̃|U×Z = h andU ⊆ χ. This in turn implies that Ti(Σ) ⊆ Ti(Σ̃).

We also assume that all of the executions contained in the ω+-limit set of Σ, ω(Σ), are
distinguishable. More formally we have:

Assumption 6.1. The ω+-limit set of Σ = S(U,Z, f , h), ω(Σ), is such that for any two differ-
ent executions σ1, σ2 with σ1(0), σ2(0) ∈ ω(Σ) there is k ∈ N such that σ1(k)(z) , σ2(k)(z).

In the case where ω+-limit set is just one fixed point, this assumption is always trivially
verified. In case where ω+-limit set is made up by fixed points and limit cycles, the assump-
tion requires that any two different fixed points have different output values, otherwise two
different executions starting in the two fixed points will not be distinguishable.

Lemma 6.1. Consider the deterministic transition system Σ = S(U,Z, f , h). Let ω(Σ) verify
Assumption 6.1. Then Σ is observable if and only if f : (T j(Σ), z) → f (T j(Σ), z) is one to one
for any j ∈ {1, ..,M} and for any z ∈ Z.

This lemma shows that observability can be determined by checking if the function f is
one to one on the Σ-transition classes T j(Σ), provided that the executions evolving in ω(Σ)
are distinguishable. This lemma is used in the following theorem, which gives an alternative
characterization of what observable means in terms of extensibility of the system Σ into a
system Σ̃ that is interval compatible with a lattice (χ,≤).

Theorem 6.1. (Observability on bounded lattices) Consider the deterministic transition sys-
tem Σ = S(U,Z, f , h). Let ω(Σ) verify Assumption 6.1. Then the following are equivalent:

(i) System Σ is observable;

(ii) There exist a complete lattice (χ,≤) withU ⊆ χ, such that the extension Σ̃ = (f̃ , h̃, χ,Z)
of Σ on χ is such that (Σ̃, (χ,≤)) is interval compatible.

Proof. ((i) ⇒ (ii))We show the existence of a lattice (χ,≤) and of an extended system Σ̃ =
S(χ,Z, f̃ , h̃) with (Σ̃, (χ,≤)) an interval compatible pair by construction. Define χ := P(U),
and (χ,≤) := (P(U),⊆).

To define h̃, we define the sublattices (Ti(Σ̃),≤) of (χ,≤) for i ∈ {1, ...,M}, by (Ti(Σ̃),≤) :=
(P(Ti(Σ)),⊆) as shown in Figure 8. As a consequence, for any given z1, z2 ∈ Z such that
z2
= h(α, z1) for α ∈ Ti(Σ) for some i, we define z2

= h̃(w, z1) for any w ∈ Ti(Σ̃). Clearly,
h̃|U×Z = h, and Ti(Σ̃) for any i is an interval sublattice of the form Ti(Σ̃) = [⊥,

∨

Ti(Σ̃)].

22

⊥ = ∅

(χ,≤) = (P(U),⊆)

Ti(Σ̃)

U

Ti(Σ)

Figure 8: Example of the Σ and Σ̃ transition classes with U (dark elements) composed by
three elements.

The function f̃ is defined in the following way. For any x,w ∈ χ and α ∈ U we have






































f̃ (x g w) = f̃ (x) g f̃ (w)
f̃ (x f w) = f̃ (x) f f̃ (w)
f̃ (⊥) = ⊥

f̃ (α) = f (α),

(25)

where we have omitted the dependency on the z variables for simplifying notation. We prove
first that f̃ : Ti(Σ̃) → [⊥, f̃ (

∨

Ti(Σ̃))] is onto. We have to show that for any w , ⊥ ∈
[⊥, f̃ (

∨

Ti(Σ̃))] there is x ∈ [⊥,
∨

Ti(Σ̃)] such hat w = f̃ (x). Since
∨

Ti(Σ̃) = α1 g ... g αp for
{α1, ..., αp} = Ti(Σ), we have also that f̃ (

∨

Ti(Σ̃)) = f (α1) g g f (αp) by virtue of equations
(25). Because w ≤ f̃ (

∨

Ti(Σ̃)), we have that w = f (α j1) g ... g f (α jm) for jk ∈ {1, ..., p}
and m < p. This in turn implies, by equations (25), that w = f̃ (α j1 g ... g α jm). Since
x := α j1 g ... g α jm <

∨

Ti(Σ̃), we have proved that w = f̃ (x) for x ∈ Ti(Σ̃). Second, we
notice that f̃ : Ti(Σ̃) → [⊥, f̃ (

∨

Ti(Σ̃))] is one to one because of Lemma 6.1. Thus, we have
proved that f̃ : Ti(Σ̃) → [⊥, f̃ (

∨

Ti(Σ̃))] is a bijection, and by equations (25) it is also an
homomorphism. We then apply Proposition 3.1 to obtain the result.

((ii) (⇒ (i)). To show that (ii) implies that Σ = S(U,Z, f , h) is observable, we apply
Lemma 6.1. In particular, (Σ̃, (χ,≤)) being interval compatible implies that f̃ : Ti(Σ̃) →
[f̃ (

∧

Ti(Σ̃)), f̃ (
∨

Ti(Σ̃))] is one to one for any i. This, along with Assumption 6.1, by Lemma
6.1 imply that the system is observable. �

This result links the property of a pair (Σ̃, (χ,≤)) being interval compatible with the observ-
ability properties of the original system Σ.

6.2 Complexity Considerations
Theorem 6.1 shows that an observable system admits a lattice and a system extension that

satisfy interval compatibility by constructing them, in a similar way as one shows that a stable

23

dynamical system has a Lyapunov function. However, the constructed lattice is impractical
for the implementation of the estimator of Theorem 4.1 when the size of U is large because
the size of the representation of the elements of χ is large as well. In such a case, one needs to
find a better lattice, if it exists, considering its size, the representation of its elements, and the
complexity of computing joins and meets. In the RoboFlag Drill, for example, such a better
lattice exists. Even if the size ofU is N! (which is huge if N is large) the lattice (χ,≤) is such
that its elements can be represented by a set of N natural numbers plus joins and meets, and f̃
can be computed by using the algebra naturally associated withNN . Thus, some systems have
a preferred lattice structure that drastically reduces complexity. For these systems however,
the extended system and such a preferred lattice structure are not always interval compatible.
In such a case, we propose a way in Proposition 6.4 to construct an estimator on the desired
lattice even if the interval compatibility condition is not satisfied. The counter part is that the
convergence speed of the estimator can be lower.

Instead, in the case a system does not have a preferred lattice structure, a lattice (χ,≤) for
which there is an extension Σ̃ such that (Σ̃, (χ,≤)) is interval compatible is the power lattice
of U proposed in the proof of Theorem 6.1 or a lattice isomorphic to it. Thus, the size of
χ is the primary source of complexity. However, one does not need to have χ = P(U), but
it is enough to have in χ the elements that the estimator needs, that is, the elements in the
Σ̃-transition classes. With this consideration, the following proposition computes the worst
case size of χ.

Definition 6.1. Consider the deterministic transition system Σ = S(U,Z, f , h). We define the
Σ-overlap factor by

mi := max
j∈{1,...,M}, z∈RN

(

| f (Ti(Σ), z) ∩ T j(Σ)|, | f (T j(Σ), z) ∩ Ti(Σ)|
)

. (26)

Basically, the Σ-overlap factor gives an idea of how many values of α are such that α is in
Oy(k) and f (α, y(k)) is in Oy(k + 1) for any k. Ideally, we would like this number to be the
smallest as possible, so that with few output measurement we would single out the value of α.

Proposition 6.2. Consider the deterministic transition system Σ = S(U,Z, f , h). There exists
a lattice (χ,≤) such that (Σ̃, (χ,≤)) is interval compatible, with

|χ| ≤

M
∑

i=1

















mi
∑

j=1

(

Ki

j

)

+ 1

















+ 2 (27)

where Ki = |T j(Σ)| for i ∈ {1, ...,M}.

The size of χ gives an idea of how many values of joins and meets need to be stored. In
the case of the RoboFlag example with N = 4 robots per team, the size of P(U) is 16778238,
while the worst case size given in Proposition 6.2 is 16370, and the size of the lattice χ
proposed in Section 5.2 is 44

= 256. Thus the estimate given by Proposition 6.2 significantly
reduces the size of χ given byP(U). Note that the size of the lattice proposed in Section 5.2 is
smaller than 16370, because there are pairs of elements that have the same join, for example
the pairs (3, 1, 4, 2), (4, 2, 1, 3) and (4, 2, 1, 3), (2, 1, 4, 3) have the same join that is (4, 2, 4, 3).

24

We next consider the case in which there is a preferred lattice structure (χ,≤), but there is
no system extension Σ̃ such that the pair (Σ̃, (χ,≤)) is interval compatible. We thus look for an
over-approximation of the system Σ that might be interval compatible with the desired lattice
(χ,≤). Such an over-approximation is called a weakly equivalent generalization and is defined
the following way.

Definition 6.2. Consider the deterministic transition system Σ = S(U,Z, f , h). We define
Σ≥ = S(U≥,Z, f≥, h) to be a Σ-weakly equivalent generalization of Σ onU≥ withU ⊆ U≥ if

(i) E(Σ) ⊆ E(Σ≥);

(ii) Any σΣ≥ ∈ E(Σ≥) such that {σΣ≥(k)(z)}k∈N = {σΣ(k)(z)}k∈N, for some execution σΣ ∈
E(Σ), is such that σΣ≥ ∼ σΣ.

Item (i) establishes that Σ≥ is a generalization of Σ, denoted Σ ⊆ Σ≥. Moreover, (ii) estab-
lishes that those executions of Σ≥ that have the same output sequence as one of the executions,
σΣ, of Σ are equivalent to σΣ. As a consequence, if the system Σ is observable (or weakly
observable), its Σ-weakly equivalent generalization Σ≥ is weakly observable on the set of exe-
cutions of Σ. For weakly observable systems, Theorem 4.1 can be applied by substituting the
assumption of the pair (Σ̃, (χ,≤)) being interval compatible with a weaker assumption that we
call weak interval compatibility defined as follows.

Definition 6.3. (Weak interval compatibility) Consider the extended system Σ̃ = S(χ,Z, f̃ , h̃)
of Σ = S(U,Z, f , h) on (χ,≤). The pair (Σ̃, (χ,≤)) is said to be weakly interval compatible if

(i) Each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)];

(ii) f̃ : ([L,U], z) −→ [f̃ (L, z), f̃ (U, z)] is order preserving for any [L,U] ⊆ Ti(Σ̃), and any
z ∈ Z and for any i ∈ {1, ...,M};

(iii) f̃ : ([L,U], z) −→ [f̃ (L, z), f̃ (U, z)] is onto for any [L,U] ⊆ Ti(Σ̃) for any z ∈ Z and for
any i ∈ {1, ...,M};

We have this difference between observable systems and weakly observable systems be-
cause in a weakly observable system, two executions sharing the same output can collapse
one onto the other, thus there cannot be any extension f̃ that is a bijection between the output
lattice and the set it is mapped to. Thus we can restate Theorem 4.1 for weakly observable
systems in the following way.

Theorem 6.3. Assume that the deterministic transition system Σ = S(U,Z, f , h) is weakly
observable. If there is a lattice (χ,≤), such that the pair (Σ̃, (χ,≤)) is weakly interval compat-
ible, then the deterministic transition system with input Σ̂ = (χ × χ,Z ×Z, χ × χ, (f1, f2), id)
with

f1(L(k), y(k), y(k + 1)) = f̃ (L(k) g
∧

Oy(k), y(k))
f2(U(k), y(k), y(k + 1)) = f̃ (U(k) f

∨

Oy(k), y(k))

solves Problem 1.

25

If we can find a Σ-weakly equivalent generalization Σ≥ for Σ that is weakly interval com-
patible with the desired lattice χ, we can construct the estimator for the system Σ by using Σ≥.
This is formally stated in the following proposition.

Proposition 6.4. If the system Σ = S(U,Z, f , h) is observable (or weakly observable) and its
Σ-weakly equivalent generalization Σ≥ = S(U≥,Z, f≥, h) is such that the pair (Σ̃≥, (χ,≤)) is
weakly interval compatible for a given (χ,≤) and U≥ ⊆ χ, then Theorem 6.3 can be applied
to Σ≥ with α(k) = σΣ(k)(α) and z(k) = σΣ(k)(z).

This way, we construct the estimator using f≥, but we estimate the value of α corresponding
to the execution of Σ whose output z we are measuring. The proof of this proposition can be
carried out easily by using directly (i) and (ii) of Definition 6.2. The counterpart is that if the
Σ-weakly equivalent generalization is a too rough over-approximation of Σ, the convergence
speed can be low.

A way for constructing a Σ-weakly equivalent generalization of Σ is to find a nondetermin-
istic function f≥ : U × Z → P(U) such that if α(k) = σΣ(k)(α) and z(k) = σΣ(k)(z), then
α(k + 1) ∈ f≥(α(k), z(k)). f≥ maps an element to a set of possible values in U, and U≥ = U.
We show in the following section how the notion of interval compatible pair generalizes to
nondeterministic systems, and how the result given in Theorem 4.1 modifies.

6.3 Nondeterministic Transition Systems
In this section, we outline the basic ideas that allow us to generalize the results of Section

4 to nondeterministic transition systems.

Definition 6.4. (Nondeterministic transition systems) A nondeterministic transition system
(NTS) is the tuple Σ = (S ,Y, F, g), where

(i) S is a set of states with s ∈ S ;

(ii) Y is a set of outputs with y ∈ Y;

(iii) F : S → P(S) is the state transition set-valued function;

(iv) g : S → Y is the output function.

An execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ S and s(k + 1) ∈ F(s(k))
for all k ∈ N. As opposed to a DTS, in an NTS F maps an element to a set, and thus it
is a set-valued function. The Definitions 3.5, 3.8, and 3.9, which are related with the weak
observability property, can be rewritten the same way for NTSs by replacing “deterministic tr-
asition system” with “nondeterministic transition system”, and by taking that F is a set-valued
map into account. As done for deterministic transition systems, we consider nondeterministic
transition systems with the special structure

(i) S = U ×Z withU a finite set andZ a finite dimensional space;

(ii) F = (f , h), where f : U ×Z → P(U) and h : U ×Z → Z;

26

(iii) g(α, z) := z, where α ∈ U, z ∈ Z, and Y = Z.

We denote this class of nondeterministic transition systems by Σ = S(U,Z, f , h), and we
associate to the tuple (U,Z, f , h) the equations

α(k + 1) ∈ f (α(k), z(k))
z(k + 1) = h(α(k), z(k)) (28)

y(k) = z(k),

if f is a set-valued map. Given a lattice (χ,≤) with U ⊂ χ, the extension Σ̃ = S(χ,Z, f̃ , h̃)
of Σ is defined in a way similar to the way it is defined for deterministic transition systems
(see Definition 4.2), but in this case Σ̃ is nondeterministic itself and U is allowed to be not
invariant under f̃ .

Definition 6.5. Given the nondeterministic transition system Σ = S(U,Z, f , h), a N-extension
of Σ on χ, withU ⊆ χ and (χ,≤) a complete lattice, is any system Σ̃ = S(χ,Z, f̃ , h̃), such that

(i) f̃ : χ ×Z → P(χ) and f̃ |U×Z ∩ P(U) = f ;

(ii) h̃ : χ × Z → Z and h̃|U×Z = h.

The definition of interval compatible pair changes to the following definition.

Definition 6.6. Consider the N-extension Σ̃ = S(χ,Z, f̃ , h̃) of the nondeterministic transition
system Σ = S(U,Z, f , h) on (χ,≤). The pair (Σ̃, (χ,≤)) is said to be N-interval compatible if

(i) Each Σ̃-transition class, Ti(Σ̃) ∈ T (Σ̃), is an interval sublattice of (χ,≤):

Ti(Σ̃) = [
∧

Ti(Σ̃),
∨

Ti(Σ̃)];

(ii) f̃ : ([L,U], z) −→ [
∧

f̃ (L, z),
∨

f̃ (U, z)] is order preserving for any [L,U] ⊆ Ti(Σ̃), and
any z ∈ Z and for any i ∈ {1, ...,M};

(iii) f̃ : ([L,U]∩U, z) −→ [
∧

f̃ (L, z),
∨

f̃ (U, z))]∩U is onto for any [L,U] ⊆ Ti(Σ̃) for any
z ∈ Z and for any i ∈ {1, ...,M};

Note that for a set-valued function f , we have that f : A → B is onto if for any element
b ∈ B there is an element a ∈ A such that b ∈ f (a). Theorem 4.1 transforms to the following.

Theorem 6.5. Assume that the nondeterministic transition system Σ = S(U,Z, f , h) is weakly
observable. If there is a lattice (χ,≤), such that the pair (Σ̃, (χ,≤)) is N-interval compatible,
then the deterministic transition system with input Σ̂ = (χ × χ,Z×Z, χ × χ, (f1, f2), id) with

f1(L(k), y(k), y(k + 1)) =
∧

f̃ (L(k) g
∧

Oy(k), y(k))
f2(U(k), y(k), y(k + 1)) =

∨

f̃ (U(k) f
∧

Oy(k), y(k))

solves (i) and (iii) of Problem 1.

27

In Theorem 6.5, we assume that the system is weakly observable as opposed to observable
as assumed in Theorem 4.1, and the functions f1 and f2 are modified by taking that f (·) is a
set into account. Also, (ii) of Problem 1 cannot be guaranteed because f̃ maps an element to
a set. The proof of this theorem proceeds the same way as the proof of Theorem 4.1.

Note that an equivalent of Proposition 6.4 holds if Σ is nondeterministic and weakly ob-
servable. For completeness we reformulate such proposition.

Proposition 6.6. If the nondeterministic transition system Σ = S(U,Z, f , h) is weakly ob-
servable and its Σ-weakly equivalent generalization Σ≥ = S(U≥,Z, f≥, h) is such that the
pair (Σ̃≥, (χ,≤)) is N-interval compatible for a given (χ,≤), then Theorem 6.5 can be applied
to Σ≥ with α(k) = σΣ(k)(α) and z(k) = σΣ(k)(z).

In the following example we show how to apply this proposition to a nondeterministic
version of the RoboFlag system in order to construct an estimator.

6.4 Nondeterministic example
In this section, we propose a non-deterministic version of the RoboFlag system and we

show how to construct an estimator. The system is analogous to the one introduced in Section
2 and analyzed in Section 5 except for the way the assignment is updated. In fact, we assume
that at each step only one pair of robots among the pairs with conflicting assignments swap
the assignment, the pair that switches being randomly chosen. The blue robot dynamics are
described by the rules

zi(k + 1) = zi(k) + δ if zi(k) < xαi(k), (29)
zi(k + 1) = zi(k) − δ if zi(k) > xαi(k), (30)

(αi(k + 1), αi+1(k + 1)) = (αi+1(k), αi(k)) if switch(i,i+1)(k), (31)

for i ∈ {1, ...,N}, where switch(i, j)(k) is such that

switch(i,i+1)(k)⇒ xαi(k) ≥ xαi+1(k) (32)
switch(i,i+1)(k) ∧ switch(j, j+1)(k) = f alse, i , j (33)
(

(xα1(k) ≥ xα2(k)) ∨ ∨ (xαN−1(k) ≥ xαN (k))
)

⇒

(switch(1,2)(k) ∨ ... ∨ switch(N−1,N)(k) = true. (34)

Rules (31) establish that two close robots will exchange their assignments if switch is true.
In particular, (32) implies that switch can be true only for two robots with conflicting as-
signments, (34) establishes that one pair of close robots will exchange assignments provided
there is at least one pair of robots with conflicting assignments, (33) implies that only one
pair of robots will exchange assignments. Therefore (32), (33), (34), along with (31), guar-
antee that, if there are some close robots with conflicting assignments, there is one and only
one pair of robots among them that will switch the assignments. This renders the assignment
protocol in commands (31) nondeterministic, as at each step we do not know which pair of
robots switches assignments. It is possible to show that the assignment protocol converges to

28

the equilibrium value (1, ...,N). For this we defer the reader to [14]. For the blue robots we
assume that initially zi ∈ [zmin, zmax], zi < zi+1, and that xi < zi < xi+1 for all time. With this
assumption, one can check that system Σ is weakly observable. The proof is similar the one
given in Proposition 5.1. We define x = (x1, ..., xN), z = (z1, ..., zN), α = (α1, ..., αN).

The rules reported in (31) determine the function f : U × RN → P(U) that updates the
discrete variables α, while the rules in (30) and (29) determine the function h : U×RN → RN .
Therefore the blue robot system is defined by Σ = S(perm(N),RN , f , h).

For the purpose of constructing the estimator, we consider the order (χ,≤) described in
Section 5.2. One can verify that there is no extension of Σ on χ that is N-interval compatible
with (χ,≤). As a consequence, we apply Proposition 6.6. We look for a Σ-weakly equivalent
generalization of the NTS Σ that admits an extension Σ̃≥ on χ that is N-interval compatible
with (χ,≤). We define the system Σ≥ = S(U,Z, f≥, h) by defining f≥ in the following way.
Let v(k) = z(k + 1) − z(k) denote the velocity, then at step k we have for β ∈ U

f≥(β, z) := f (β, z) if v(k) , v(k − 1) (35)
f≥(β, z) := [

∧

Oy(k),
∨

Oy(k)] ∩U otherwise. (36)

It is easy to verify (i)-(ii) of Definition 6.2, so that Σ≥ = S(U,Z, f≥, h) is a Σ-weakly equiv-
alent generalization of Σ = S(perm(N),RN , f , h). Property (i) is trivially verified. To verify
(ii) it is enough to notice that the switch before the stabilization time kσ of the sequence
{σΣ(k)(α)}k∈N is observable. Let σΣ≥ denote an execution of Σ≥ and {σΣ≥(k)(α)}k∈N the corre-
sponding α sequence, we have that f≥(σΣ≥(kσ−1)(α), z(kσ−1)) = f (σΣ≥(kσ−1)(α), z(kσ−1)) =
(1, ...,N). This in turn implies that σΣ≥(kσ − 1)(α) = σΣ(kσ − 1)(α) for some execution σΣ of
Σ.

To find an extension Σ̃≥ that is N-interval compatible with (χ,≤), consider the following
extension of f≥ on χ at step k for any q ∈ χ

f̃≥(q, z) = w, (wi,wi+1) := (qi+1, qi), if vi(k) , vi(k − 1) (37)
f̃≥(q, z) := [

∧

Oy(k),
∨

Oy(k)] otherwise. (38)

Expression (37) defines an order isomorphism between [L,U] and [f̃≥(L, z), f̃≥(U, z)] for any
L,U ∈ χ. From expression (38), we deduce that f̃≥ is trivially order preserving according to
the Definition 3.3. Moreover f̃≥ : ([L,U]∩U, z) → [

∧

f̃≥(L, z),
∨

f̃≥(U, z)]∩U is clearly onto
by construction for any [L,U] ⊆ Oy(k), and f̃≥|U ∩P(U) coincides with f≥ by construction as
well. As a consequence the system Σ̃≥ = S(P(χ),Z, f̃≥, h̃) with h̃ as defined in Section 5.2 is
N-interval compatible with (χ,≤).

We then apply Proposition 6.6 for constructing the estimator. Such an estimator can be
written as a set of rules as already done for the example in Section 5.2. In Figure 9 we report

W(k) =
1
N

N
∑

i=1

|mi(k)|,

which converges to 1 when the value of α has been locked, and

E(k) =
1
N

N
∑

i=1

|αi(k) − i|,

29

which gives an idea of the speed of convergence of the assignment to the equilibrium value
(1, ...,N). |[L(k),U(k)] ∩U| converges to 1, but |[L(k),U(k)]| is not a monotonic function of k
as it was in the deterministic case. This is due to the nondeterministic nature of the transition
functions, as one element can be mapped to many. The choice of f≥ has a considerable impact
on the convergence speed of the estimator. The map f≥ we chose is rough and does not take
other information that we have on the system into account. For example it does not model
the fact that even if there is an unobservable switch, a subset of the robots, depending on their
assignment estimates, undergoes particular switches. The most information we can model
with f≥ the fastest is the convergence rate.

0 10 20 30 40 50 60
0

10

20

30

40

E

0 10 20 30 40 50 60
0

2

4

6

8

W

N = 10 robots

time

0 20 40 60 80 100 120 140 160 180
0

100

200

300

E

N = 30 robots

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

W

time

Figure 9: Example with N=10(left) and N=30(right): upper plot shows the stabilization func-
tion of the α assignment (E), while lower plot shows the function W for the estimator.

7 Conclusions and Future Work
In this paper, we have presented a novel approach to the estimation of discrete variables in

systems where the continuous variables are available for measurement. Using lattice theory,
we developed a discrete state estimator that updates two variables at each step, the upper and
the lower bound of the set of all possible discrete states compatible with the output sequence.
This way, we were able to overcome some of the severe complexity issues that arise in discrete
state estimation methods based on the current observation three such as is found in Caines [6],
Balluchi et al. [3], and Özveren et al. [11], or in similar methods such as in Del Vecchio and
Klavins [20]. In fact, these methods update the set of all possible discrete states compatible
with the output sequence by updating each of the elements of the set; therefore, the computa-
tion need is prohibitive for systems in which the set of discrete states is large. We were able
to overcome this problem by representing a set by its lower and upper bounds in some lattice,
and by determining the updated set by the updates of its lower and upper bounds.

30

This drastic complexity reduction can be allowed if the system under consideration can be
extended to a lattice in such a way that the extension is interval compatible with the lattice
itself. The proposed methodology has revealed to be a powerful tool to construct scalable
estimators. This was confirmed by the simulation results obtained for a multi-robot system
composed by 30 robots and with a number of discrete states equal to 30!. Some extensions to
the basic results have been provided as well.

Many aspects need to be still improved upon. The complexity considerations carried out in
Section 6 are not formal enough. They just give a rough idea of what causes of complexity
might be when designing a discrete state estimator. More work needs to be done in this
direction in order to formally identify the types of lattices that allow efficient computation
and representation of joins and meets. An other major challenge for our future work is to
extend these results to the case in which also the continuous variables need to be estimated.
The possibility of constructing a joint continuous-discrete variable lattice will be explored.
Another future research direction will consider the possibility of finding an automated way to
look for a system extension that is interval compatible with a given lattice, if it exists.

8 Acknowledgments
This work was supported in part by the NSF Center for Neuromorphic Systems Engineering

at Caltech, and partially by AFOSR under grants F49620-01-1-0460 and FA9550-04-1-0169.

References
[1] A. Alessandri and P Coletta. Design of luenberger observer for a class of hybrid lin-

ear systems. In Lecture Notes in Computer Science 2034, M. D. Di Benedetto, A.
Sangiovanni-Vincentelli Eds. Springer Verlag, pages 7–18, 2001.

[2] A. Alessandri and P Coletta. Design of observer for switched discrete-time linear sys-
tems. In American Control Conference, pages 2785–2790, 2003.

[3] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. Design
of observers for hybrid systems. In Lecture Notes in Computer Science 2289,C. J. Tomlin
and M. R. Greensreet Eds. Springer Verlag, pages 76–89, 2002.

[4] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. Ob-
servability of hybrid systems. In Conf. on Decision and Control, pages 1159–1164,
2003.

[5] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability of
piecewise affine and hybrid systems. IEEE Transactions on Automatic Control, 45:1864–
1876, 1999.

[6] P. E. Caines. Classical and logic-based dynamic observers for finite automata. IMA J. of
Mathematical Control and Information, pages 45–80, 1991.

31

[7] A. R. Cassandra, L. P. Kaelbling, and M. L Littman. Acting optimally in partially ob-
servable stochastic domains. In Proc. 12th Conference on Artificial Intelligence, pages
1023–1028, Seattle, WA, 1994.

[8] E. F. Costa and J. B. R. do Val. On the observability and detectability of continuous-time
jump linear systems. SIAM Journal on Control and Optimization, 41:1295–1314, 2002.

[9] R. D’Andrea, R. M. Murray, J. A. Adams, A. T. Hayes, M. Campbell, and A. Chaudry.
The RoboFlag Game. In American Control Conference, pages 661–666, 2003.

[10] B. A. Davey and H. A. Priesteley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

[11] C. M. ¨Ozveren and A. S. Willsky. Observability of discrete event dynamic systems.
IEEE Transactions on Automatic Control, 35(7):797–806, 1990.

[12] R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[13] E. Klavins. A formal model of a multi-robot control and communication task. In Conf.
on Decision and Control, pages 4133–4139, Hawaii, 2003.

[14] E. Klavins and R. M. Murray. Distributed algorithms for cooperative control. Pervasive
Computing, 3:56–65, 2004.

[15] David G. Luenberger. An introduction to observers. IEEE Transactions on Automatic
Control, AC-16:6:596–602, 1971.

[16] M. Oishi, I. Hwang, and C. Tomlin. Immediate observability of discrete event systems
with application to user-interface design. In Conf. on Decision and Control, pages 2665
– 2672, Hawaii, 2003.

[17] P. J. Ramadge. Observability of discrete event systems. In Conf. on Decision and Con-
trol, pages 1108–1112, Athens, Greece, 1986.

[18] E. De Santis, M. D. Di Benedetto, and G. Pola. On observability and detectability of
continuous-time linear switching systems. In Conf. on Decision and Control, pages
5777–5782, 2003.

[19] E. D. Sontag. Mathematical Control Theory. Springer, 1998.

[20] D. Del Vecchio and E. Klavins. Observation of guarded command programs. In Conf.
on Decision and Control, pages 3353–3359, Hawaii, 2003.

[21] R. Vidal, A. Chiuso, and S. Soatto. Observability and identifiability of jump linear
systems. In Conf. on Decision and Control, pages 3614 – 3619, Las Vegas, 2002.

32

[22] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear hybrid systems. In
Lecture Notes in Computer Science 2623, O. Maler and A. Pnueli Eds. Springer Verlag,
pages 526–539, 2003.

33

