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Abstract— System identification tools are useful for devel-
oping mathematical models of dynamical systems based on
experimental observations, but many standard techniques are
not applicable to biological problems where nonlinear effects
are the norm and output measurements are limited. We focus
on parameter identification in genetic regulatory networks as an
example of a class of interesting biological system identification
problems. We compare the performance of two methods, the
extended Kalman filter and a nonlinear least squares fit, as
they estimate the parameters in a model of a bistable genetic
circuit. The extended Kalman filter does dramatically better
than the nonlinear fit in predicting parameters when sensor
noise is high. The settling time of the parameter estimate is also
measured and it is shown that by choosing inputs appropriately,
the convergence time of the parameter estimates can be reduced.
We present a method for choosing an approximation of the
optimal input for parameter estimation. Some challenges that
are unique to biological system identification problems are
discussed.

I. INTRODUCTION
Biological circuit design, also referred to as synthetic bi-

ology, is an emerging field of research in which one “builds”
a system by inserting synthesized DNA into a biological
host (usually a bacterium or yeast) where the inserted DNA
encodes a desired genetic “circuit” [1], [2]. Simple circuits
make use of the modularity of biology to construct feedback
circuits that implement binary switches [3], inverters [4] and
simple oscillators [5]. Building these circuits provides two
clear mechanisms for understanding biological processes: by
building a circuit that exploits biological principles we can
better explore our understanding of biological function and
(longer term) by building biological devices, we can develop
new “instrumentation” for measuring biological signals that
yield more information about biological processes.

In analyzing and eventually designing these systems one
would like to make use of models that capture the behavior of
the circuit and allow an analysis of the trade-offs in stability,
performance, and robustness. This is particularly challenging
in biological systems because the underlying physics of the
system is very complicated and in many cases is not yet well
understood. Furthermore, while there is good understanding
of how some genetic regulatory mechanisms function, there
is still large variability in the parameters that govern the
underlying processes. Rate constants, binding affinities, and
environmental factors are only known approximately and
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models for these systems are often very simple and may
miss important features that become relevant as we seek to
move beyond demonstrations of synthetic circuits to the use
of these circuits for scientific and engineering purposes.

One path toward providing more useful models is to
develop techniques for biological system identification. Ex-
isting techniques in system identification provide a rigorous
framework for constructing models from input/output data
in the presence of both noise and uncertainty (see, eg, [6]).
However, it is not clear that these techniques will be directly
applicable to biological systems, where strong nonlinearities
are present and the effects of noise are particularly severe.

The existing literature on nonlinear system identification
is substantial, although little is available that appears to
address the specific types of features that we see in biological
systems. Traditional nonlinear system identification makes
use of linear relationships between the parameters of the
system and nonlinear functions of the state or by separating
out nonlinear elements which can be explicitly mapped [7],
[6], [8]. Additional techniques have been developed using
integral representations, such as Volterra expansions [9].
From a practical perspective, a common technique is to add
parameters as states and perform system identification using
an extended Kalman filter.

In this paper, we explore the applications of some existing
techniques for nonlinear system identification as well as
propose some new approaches that are tuned for use in
biological circuit design. A central theme in our approach is
how to choose the forcing function that is used to generate
the data for the system identification process. While there
is a substantial literature in design of experiments, there
appears to be relatively little work available in choosing
inputs for nonlinear systems that provide the best data for
system identification. The main contribution of this paper
is to provide some insights into how such inputs might
be chosen and to assess several different choices in the
system identification process in terms of their applicability
to biological circuits.

II. BISTABLE SWITCH

We focus our analysis on one genetic circuit, the bistable
switch. Simple models show that the switch can have two sta-
ble equilibrium points, a promising characteristic for building
genetic circuits with “logic” since the switch can encode both
high and low states like an electronic circuit. A synthetic
bistable switch was successfully constructed and shown to
work experimentally in E. coli in [3].
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Cells make use of these genetic toggle switches in remark-
ably diverse situations because switching between states is
relatively robust, even in noisy environments. Recently, it has
been shown that bistable switches can be used in combination
to further decrease sensitivity to noise [10].

Fig. 1a shows the “wiring” diagram for the bistable switch.
Protein A represses the production of protein B and protein
B represses production of protein A. Addition of an inducer
molecule, I , can change the activity of protein B, making it
less likely to block production of protein A.

As in [3], the bistable switch can be approximately de-
scribed by the dimensionless model

ṗA =
α

1 + (u pB)n
− pA (1)

ṗB =
α

1 + (pA)n
− pB, (2)

where pA and pB are the concentrations of proteins A and
B, u is the input (a function of I , described below), α is
the effective protein production rate, and n is the coopera-
tivity. The production rate describes how quickly a protein
accumulates compared to the rate at which it degrades. The
cooperativity is a measure of how many protein molecules
must act cooperatively before gene expression can be turned
off.

Fig. 1b shows the effect of the parameters α and n in a
single switch. The nonlinear term

α

1 + (pA)n
(3)

is known as the Hill function. The production rate α is the
steady state concentration of protein B when there is no
protein A present. As the concentration of A increases, it re-
presses the production of B. The cooperativity n determines
how step-like B’s switch from high to low concentrations is.

The bistable switch can be controlled by adding an in-
ducer, I , which represses the activity of protein B. This is
modeled using the function

u =
β

1 +
(

I
K

)m . (4)

The parameters β, K , and m are specific to the type of
inducer added and are assumed to be known in advance.

These equations make several important assumptions.
First, for simplicity we consider the symmetric case where
the production rate and cooperativity associated with A
repressing B (Eqn. 2) are identical to B repressing A (Eqn.
1). This model also assumes that concentrations of chemical
species are large enough that they can be expressed with
continuous dynamics. Other limitations associated with bio-
logical system identification are addressed in Section VII.

III. PARAMETER IDENTIFICATION WITH THE
EXTENDED KALMAN FILTER

One standard technique for system identification is the use
of an extended Kalman filter. Here we apply the extended
Kalman filter to the bistable switch system and use it to
estimate the model parameters α and n.
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Fig. 1. a) The bistable switch design. T-shaped arrows indicate repression.
Protein A represses the production of protein B and visa versa. Forcing is
introduced through the inducer I, which represses the activity of protein B.
b) Parameters α and n in the Hill function (the nonlinear term in Eqns. 1
and 2). The effects of α and n are shown for a single switch (A represses
B).

We design an observer for the following system:

d

dt

⎡
⎢⎢⎣

pA

pB

α

n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

α
1+(u pB)n − pA

α
1+(pA)n − pB

0
0

⎤
⎥⎥⎦ (5)

ẋ = f(x, u), (6)

where the state x = (pA, pB, α, n) includes the two param-
eters we wish to identify.

For the purposes of this paper we ignore process noise, but
include sensor noise. Biologists are only beginning to quan-
tify how process noise affects genetic regulatory mechanisms
[11], [12]. Cellular process noise is particularly relevant in
studying biological systems and is worth further exploration,
but is omitted here for simplicity.

In order to observe all states we first verify that the system
is linearly observable. Eqn. 6 is linearized to find

A =
∂f

∂x

∣∣∣∣
xeq,ueq

.

The system is linearly observable if both protein concentra-
tions pA and pB are measured, but is not linearly observable
if only one is measured. This result assumes biologically
realistic parameter values, namely α > 0, n > 0. We
consider the case where pA and pB can be measured directly
and define

C =

[
1 0 0 0
0 1 0 0

]
.

The output is given by the equation

y = Cx + w, (7)

where w is the sensor noise. Since pA and pB will be mea-
sured using the same experimental methods, it is expected



that the sensor noise associated with both states will have
the same statistical properties. Thus, we define

R = ρ

[
1 0
0 1

]

as the covariance matrix E{wwT }.
Simulation data are generated by integrating Eqn. 6 to find

x, which is then used to find the output

y = Cx +
√

ρ ν, (8)

where ν is a vector of normally distributed random numbers
with mean 0 and standard deviation 1. The dimension of ν

is the same as the dimension of the y (2× 1 for the bistable
switch example).

The extended Kalman filter is run about a nominal trajec-
tory, so we define the following transformations:

q = x − xn

r = y − yn

s = u − un,

where xn, yn, un are the state, output, and input for a
nominal system that is simulated using the dynamics in Eqn.
6. Note that xn and yn are functions of time. The nominal
input is chosen to be un = 1 and parameter values and
initial conditions of the nominal system are selected from
probability distributions, as described below.

Since

q̇ = ẋ − ẋn

= f(x, u) − f(xn, un)

= f(q + xn, s + un) − f(xn, un),

the nonlinear observer is

˙̂q = f(q̂ + xn, s + un) − f(xn, un) + L(r − Cq̂), (9)

where L is the matrix of observer gains given by

L = PCT R−1

and P is found by integrating the Riccati ODE

Ṗ = ÃP + PÃT − PCT R−1CP

P (0) = E{q(t0)q(t0)T }.
The matrix Ã is

Ã =
∂f

∂q

∣∣∣∣
q̂,xn,s,un

.

Parameter values α and n and initial conditions x(0) and
xn(0) are selected randomly from normal distributions with
the mean and standard deviations given in Table I. Initial
state estimates q̂(0) are set to 0. Since negative parameter
and state values are not realistic, any randomly generated
value that is less than 0 is discarded and regenerated.

Fig. 2 shows the performance of the extended Kalman
filter in one test run. In this example both state and parameter
estimates converge to the actual values.

TABLE I
MEAN AND STANDARD DEVIATION USED FOR SIMULATIONS

Mean Standard Deviation
pA(0) 0.5 0.5
pB(0) 0.5 0.5

α 150 100
n 2 1
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Fig. 2. Extended Kalman filter performance. a) Estimated state p̂A (red
line) compared with measured state pA (blue line). b) Estimated state p̂B

(red) and measured state pB (blue). c) Parameter estimate α̂ (red) and true
parameter value α (blue). d) Parameter estimate n̂ (red) and true parameter
value n (blue). The following values were used to generate this plot: u = 1,
ρ = 10.

IV. PARAMETER IDENTIFICATION WITH
NONLINEAR LEAST SQUARES REGRESSION

A straightforward alternative to the extended Kalman filter
is a nonlinear least squares regression to estimate parameters.
This approach is prone to problems when the data are noisy.

If ṗB + pB is plotted as a function of pA, as in Fig. 1a,
the nonlinear term is isolated and parameters α and n can
be found by fitting the Hill function (Eqn. 3) to the data.

Simulation data are generated by integrating Eqns. 1–
2 and the output is found as in Eqn. 8. The simulation
parameters are picked randomly from normal distributions
with mean and standard deviations given in Table I. Initial
parameter guesses for the nonlinear fit are selected from the
same probability distributions used to pick the parameters.
The Matlab function nlinfit is used to do the nonlinear
regression.

Fig. 3 shows that this technique works well for low
noise, but the quality of the parameter estimates decreases
as noise levels increase. Fig. 3a shows an example of the
isolated nonlinear function. There are two sources of noise
in this plot: the sensor noise and noise from numerically
calculating the derivative of pB. These problems compound
as sensor noise increases. Figs. 3b and c show the error in the
parameter estimate as a function of noise ρ. The nonlinear
least squares fit estimates α with low error for most levels
of noise. In contrast, the error in the estimate of n is quite
sensitive to noise. Estimates are off by a factor of 5 at
ρ = 103.

Molecular biology experiments, particularly at the single



10 10
2

10
1

10
0

10
1

10
2

10
3

5

0

5

10

10
3

10
2

10
1

10
0

10
1

10
2

10
3

5

0

5

10

5 0 0.5 1 1.5 2 2.5 3 3.5 4

0

50

100

150

p
A

p
B 

+ p
B

.

^

|n - n |
^

n

a

b

c

Fig. 3. Nonlinear least squares regression to find parameter estimates. a)
Simulation data plotted to isolate the nonlinear function. ρ = 0.02 for these
data. b) Normalized error in the estimate of α as a function of noise. α̂ is
the estimate returned by nlinfit, α is the actual value used to generate
the data, ᾱ is the mean value used in the probability distribution given in
Table I. c) Normalized error in the estimate of n as a function of noise.
Notation is the same as in b). In b) and c) the figures show the mean data,
averaged over 100 runs. The error bars are one standard deviation above
and below the mean. The constant input u = 1 is used to generate all the
data in these plots.

cell level, must deal with very high levels of measurement
noise, so decreasing estimation error when the signal to noise
ratio is low is particularly important.

V. OPTIMAL INPUT FOR PARAMETER
IDENTIFICATION

A smart choice of input to the bistable switch can help
in the process of parameter identification. We aim to find
the optimal input for parameter estimation – the input that
causes the parameter estimate to converge to the actual state
quickly and accurately.

Consider two systems, a nominal system that satisfies
dynamics

ẋ = F (x, u, λ), (10)

where x is the state, u is the input, and λ is a vector of
parameters, and a slightly perturbed system

ẋ′ = F (x′, u, λ′), (11)

where λ′ is a slightly perturbed version of λ. The forcing
function, u, used to drive the perturbed system is the same
as is used in the nominal system.

The input u that drives the two systems furthest apart is
hypothesized to be a good choice for parameter estimation.
Thus, the general optimization problem is:

max
u(t)

∫ tf

0

(x − x′)2 dt (12)

subject to constraints on the states, parameters, and input.
To apply this optimization technique to the bistable switch

system, we first establish the constraints that the optimization
problem must satisfy. To be biologically realistic, protein
concentrations must be positive. They must also satisfy the
dynamics given in Eqns. 1-2. Inducer concentrations must
also be positive (and real). By rearranging Eqn. 4, we obtain

I = K(
β

u
− 1)

1

m ,

and thus we require

0 < u ≤ β.

Therefore, the optimization problem that we aim to solve
to find optimal inputs for the parameter identification prob-
lem in the bistable switch is:

max
u(t)

∫ tf

0

(pA − pA
′)2 + (pB − pB

′)2 dt (13)

subject to

ṗA =
α

1 + (u pB)n
− pA

ṗB =
α

1 + (pA)n
− pB

˙pA
′ =

α′

1 + (u pB
′)n′

− pA
′

˙pB
′ =

α′

1 + (pA
′)n′

− pB
′

and

pA, pB, pA
′, pB

′ ≥ 0

0 < u ≤ β.

Define the error at time t as

e(t) = (pA(t) − pA
′(t))2 + (pB(t) − pB

′(t))2. (14)

We approximate the solution to the full optimization problem
by taking small time steps, and at each step choosing the
constant u that maximizes the error. Since experimental
measurements can only be taken at discrete times, the error
should be maximized at the end of each interval. The solution
is a piecewise constant u(t).

For t = Δt to tf find

max
u∈R,0<u≤β

e(t). (15)

The result of this optimization approximation is shown in
Fig. 4.

We can also constrain the input to be constant over the
entire time period and solve for the constant input that
maximizes the final error

max
u∈R,0<u≤β

e(tf ). (16)
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Fig. 4. a) u vs. time for piecewise constant optimization approximation
(blue), u = 0 (green), the u = 3.2 (red) line is the constant input that
maximizes the final error, u = 10 (cyan). Optimization approximations
are found using the parameters λ = [α, n] = [200, 2], λ′ = [α′, n′] =
[200, 3]. b) e vs. time for each of the 4 inputs. Color coding is the same
as in a). The green line falls underneath the cyan line in this plot. c) I
vs. time for each input, same color coding as a). The u = 0 trace is
omitted because it corresponds to infinite levels of inducer. In practice,
any inducer concentration that saturates the system will achieve this effect.
Inducer specific parameters (Eqn. 4) used to generate this figure are β = 10,
K = 1, m = 2.

Fig. 4 compares the inputs found with both approxima-
tions. Fig. 4a shows the inputs, Fig. 4b shows the errors that
result from the inputs, and Fig. 4c shows the inducer input
required to produce the input signal. The inducer signal is
particularly important because most experimental setups do
not currently allow for arbitrary input signals. This limitation
is discussed in further detail in Section VII.

We also consider two extreme input cases: no input
(u = β) and saturating input (u = 0) and compare their
performance to the inputs calculated with the optimization
procedure.

VI. COMPARISON OF INPUTS FOR PARAMETER
IDENTIFICATION

For each of the four inputs, we use the extended Kalman
filter to find estimates for both α and n for a broad range
of noise values. Fig. 5 summarizes how estimate errors
depend upon noise. The error in α is small, even when the
measurements are very noisy. This is consistent with the
nonlinear fit results in Fig. 3a. The error in the estimate
of n is significantly smaller for the extended Kalman filter
than the nonlinear fitting method. Even in the high noise case
(ρ = 103), the average estimation error is only off by a factor
of 0.5, in contrast to the factor of 5 in the least squares case.
For clarity, selected data points from Fig. 5 are summarized
in Table II.
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Fig. 5. Parameter identification with the extended Kalman filter for inputs
u = piecewise constant optimal approximation (blue), u = 0 (green), u =
3.2 (red), and u = 10 (cyan). a) Normalized error in the estimate of α as a
function of noise. α̂ is the estimate returned by the extended Kalman filter,
α is the actual value used to generate the data, ᾱ is the mean value used
in the probability distribution given in Table I. b) Normalized error in the
estimate of n as a function of noise. Notation is the same as in a). Both
figures show the mean data, averaged over 100 runs. The error bars are
one standard deviation above and below the mean. Parameter estimates are
the final values α̂(tf ) and n̂(tf ) returned by the extended Kalman filter.
tf = 250 for data in these figures. Table II lists data from these plots at
three values of ρ.

TABLE II
SUMMARY OF NORMALIZED ESTIMATE ERRORS

normalized α ρ = 10−3 ρ = 100 ρ = 103

error mean ± std mean ± std mean ± std
piecewise const. 0.019 ± 0.138 0.052 ± 0.277 0.585 ± 1.421

u = 0 0.000 ± 0.000 0.000 ± 0.000 0.009 ± 0.006
u = 3.2 0.076 ± 0.365 0.091 ± 0.423 0.146 ± 0.300
u = 10 0.057 ± 0.193 0.071 ± 0.223 0.117 ± 0.272

normalized n ρ = 10−3 ρ = 100 ρ = 103

error mean ± std mean ± std mean ± std
piecewise const. 0.027 ± 0.082 0.254 ± 0.418 0.584 ± 0.528

u = 0 0.085 ± 0.167 0.264 ± 0.272 0.492 ± 0.403
u = 3.2 0.054 ± 0.124 0.342 ± 0.477 0.406 ± 0.369
u = 10 0.145 ± 0.314 0.395 ± 0.621 0.463 ± 0.399

Estimation errors in Fig. 5 are calculated with the final
values of the parameter estimates, α̂(tf ) and n̂(tf ). The
results are consistent for each of the four inputs.

In biological experiments, each measurement that is taken
will slightly degrade the signal that is being measured.
Thus, parameter estimation methods that converge quickly
are better than those that require many measurements. In Fig.
6, the settling time for parameter estimation is compared for
the four inputs as a function of noise.

The settling times for n̂ are particularly sensitive to the
choice of input. The inputs produced with the two optimiza-
tion procedures described in Section V converge quickly.
It is worth exploring other optimization methods and cost
functions since there are obvious benefits for choosing inputs
well.
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VII. CHALLENGES UNIQUE TO BIOLOGICAL
SYSTEM IDENTIFICATION

We have explored parameter identification techniques for
one biological circuit, but system identification for genetic
circuits remains a rich area for study. Challenges specific
to biological system identification include indirect and in-
frequent measurements, noise and variability in the cellular
environment, and a very constrained set of allowable input
signals.

Measuring the “outputs” of a biological process can be
difficult and one is usually limited to indirect measurements
of the concentration of a small number of proteins. In this
paper we have assumed that protein concentration measure-
ments are directly available (pA and pB are known), but it
is more common to have proteins either repress or activate
the production of a “reporter”, typically one that is easy
to measure, such as a fluorescent protein. In addition, the
amount of data that can be taken in a single experiment is
limited. Each time they are measured, fluorescent proteins
break down slightly. Thus, experimentalists limit the number
of times they make measurements to avoid degradation of
their output signal. This paper assumes that output signals
can be measured continuously, but in reality data taking is
sparse. One might take a data point every 10 minutes in an
E. coli experiment, where each cell takes roughly 1 hour to
divide.

The cellular environment makes system identification tasks
particularly challenging. Single cells experience both intrin-
sic noise, noise within the cell due to the non-homogenous
environment, and extrinsic noise, noise from the external
environment. The relative size of these noise sources were
quantified in [11] and are very important in the understanding
of biological systems. Organisms behave predictably despite

the stochastic nature of the environment under which they
operate, so models for these processes must begin to in-
corporate these phenomenon. Another cellular environment
specific challenge is that the process we wish to measure
can sometimes have longer time constants than the cell di-
vision period, in which case our “circuit” is being replicated
during its operation (this occurs in the repressilator [5], for
example). Finally, the genetic circuit that we wish to study is
typically not functioning independently from the rest of the
cellular environment. We cannot measure a genetic circuit’s
behavior in isolation, so it is hard to definitively predict how
it will behave in a different environment. In vitro experiments
conducted outside the cell can help with isolation, but lack
the biological realism of in vivo experiments.

A final challenge that must be dealt with as we work
towards developing system identification techniques for bio-
logical systems is that we have only very limited ability to
add inputs to the system. In this paper we have used inducer
molecules as the input to the genetic circuit. Inducer addition
is typically limited to constant or step-like inputs. It is not
currently possible to add a smoothly varying input signal,
though microchemostat work may eventually lead to break-
throughs in this area [13], [14]. It is also significantly easier
to add inducer than it is to take it away. The reduction of
inducer relies upon washing the cells to remove the chemical
from the environment. Thus up-steps in inducer are much
easier to achieve than down-steps. Simple inducer pulses
were used in [4] to show low-pass filtering characteristics in
transcriptional cascades, but this is one of the first examples
of a non-constant input signal.

There are also a few advantages that biological systems
provide, particularly at the cellular level. The first is that
we can sometimes run large numbers of experiments in a
relatively short period of time, by making use of the fact
that cells are constantly dividing and providing new instances
of a given circuit. While the cells are genetically identical,
the operation of the circuit will vary based on the specific
environmental conditions of that cell. This gives a natural
way to do parallel experiments to explore variability in
the dynamics that describe the circuit’s operation. Another
advantage of biological systems is that our models may
not need to be as precise as in some other disciplines.
Biology appears to work with large variability in individual
components and hence the level of detail we need in our
models may be very different than what we see in other
domains.

VIII. CONCLUSION

We have considered parameter identification on a bistable
genetic circuit model as an example of an interesting biolog-
ical system identification problem.

Two methods of parameter identification were discussed:
a nonlinear least squares fit and the extended Kalman filter.
Both methods were able to accurately predict the protein
production rate α for large ranges of sensor noise. The
cooperativity n only affects the transient dynamics and is
therefore harder to predict, especially when measurements



are noisy. The extended Kalman filter performed better than
the nonlinear fit and showed significantly smaller estimation
errors when sensor noises were high.

The extended Kalman filter method was also used to
explore the settling time of the parameter estimate. Although
all inputs that were considered ultimately caused the Kalman
filter to converge to an estimate, the amount of time it took
to reach this estimate depended upon the input that was used
to drive the system.

We have discussed one method for choosing an input for
parameter identification where the error between a nominal
and perturbed system is maximized. Other cost functions and
optimization strategies are worth further exploration.
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