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Abstract: A cascade discrete-continuous state estimator design is presented for a class of monotone systems
with both continuous and discrete state evolution. The proposed estimator exploits the partial order preserved by
the system dynamics in order to satisfy two properties. First, its computation complexity scales with the number
of variables to be estimated instead of scaling with the size of the discrete state space. Second, a separation
principle holds: the continuous state estimation error is bounded by a monotonically decreasing function of the
discrete state estimation error, the latter one converging to zero. A multi-robot example is proposed.
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1. INTRODUCTION

The number of systems of interest with “hybrid” dy-
namics has been increasing. Internet systems, biolog-
ical systems, multi-agent systems, dynamic resource
allocation systems and many others are all examples
of such a hybrid behavior. The problem of estimat-
ing the state becomes relevant when asking to control
these systems or to verify the correctness of their be-
havior, as is in the case of air-traffic control systems.
Several of these systems have a partial order naturally
associated with the space of discrete and continuous
variables that is preserved by the dynamics. Dynamic
resource allocation problems involving moving re-
sources (agents) as in air-traffic controlled systems
((Tomlin et al., 2001)) or weapon-target assignment
problems, are examples where the tasks are usually
associated with position in Euclidean space, where the
usual cone partial order, defined later, induces a partial
order on the tasks. There is plenty of systems where
partial order among events is naturally established by
causal order relations, as for example in message-
passing distributed systems ((Zeng et al., 2004)), or
in the case of human motion models ((DelVecchio
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et al., 2003)). Most of these examples are also dis-
tributed, meaning that the size of the discrete state is so
large as to render the estimation problem prohibitive if
the partial order is not explicitly taken into account in
the estimator design.

As pointed out also by (Bemporad et al., 1999), one
of the biggest issues in the estimator design for hy-
brid systems is complexity. In (DelVecchio and Mur-
ray, 2004a), it was shown that when the system dy-
namics preserves a partial order on the discrete vari-
able space, complexity of the estimator can be re-
duced. The proposed estimator updates at each step
the lower and upper bound of the set of discrete vari-
able values compatible with the output sequence. In
(DelVecchio and Murray, 2004b), it was pointed out
that the complexity of the estimator is related also to
the complexity of computing the order relation be-
tween elements in the partial order. This paper builds
on such results, and the continuous variables are esti-
mated using the updates of the lower and upper bound
of the set of continuous variables compatible with the
output sequence and with the discrete state estimate.
As a consequence, a class of systems is considered
for which the computation of the order relation be-
tween elements in the continuous variable space can
be performed efficiently, and the continuous system
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dynamics preserves the ordering. Such a class is the
class of monotone systems.

There is a wealth of research on hybrid observer
design and discrete event observer design. In the
purely discrete domain, there is the pioneering work of
(Caines, 1991) who proposes the observer tree method
for the estimation of the discrete state of a finite state
machine. The observer tree method is used also in
(Balluchi et al., 2002) for the estimation of the dis-
crete state. However, if the dimension of the discrete
variables set is large, the estimation problem using this
method becomes intractable. If the system has some
order preserving properties with respect to a suitable
partial order, the method proposed here generates an
estimator whose computation scales with the number
of variables to be estimated. The estimator of this
paper is similar to the decoupled estimator design
proposed by (Balluchi et al., 2002), except that the
continuous and the discrete state are estimated simul-
taneously in order to achieve a faster convergence of
the continuous state estimate, and asymptotic conver-
gence is achieved. As opposed to (Vidal et al., 2002),
which proposes to detect the discrete state change a
posteriori, here the state of the system is tracked.

This paper is organized as follows. In Section 2, no-
tions from partial order theory and observability re-
lated definitions are reviewed. In Section 3, the model
is introduced. In Section 4, the problem is formulated,
and a solution is proposed in Section 5. Section 6
presents a multi-robot example.

2. BASIC CONCEPTS

In this section, some basic definitions on deterministic
transition systems and on partial order theory are re-
viewed (see (Davey and Priesteley, 2002) for details).

2.1 Partial Orders

A partial order is a set χ with a partial order relation
“≤”, and it is denoted by the pair (χ,≤). Define the
join “g” and the meet ”f” of two elements x and w in
χ as x g w = sup{x,w} and x f w = inf{x,w}, where
by sup{x,w} is the smallest element in χ that is bigger
than both x and w, and inf{x,w} is the biggest element
in χ that is smaller than both x and w. Let S ⊆ χ,
its supremum is denoted

∨

S and its infimum
∧

S .
If x < w and there is no other element in between x
and w, then x � w. Let (χ,≤) be a partial order. If
x f w ∈ χ and x g w ∈ χ for any x,w ∈ χ, then (χ,≤)
is a lattice. Let (χ,≤) be a lattice and let S ⊆ χ be a
non-empty subset of χ. Then (S ,≤) is a sublattice of χ
if a, b ∈ S implies that a g b ∈ S and a f b ∈ S . If any
sublattice of χ contains its least and greatest elements,
then (χ,≤) is called complete. Given a complete lattice
(χ,≤), this work is concerned with a special kind of
a sublattice called an interval sublattice defined as

follows. Any interval sublattice of (χ,≤) is given by
[L,U] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ. That
is, this special sublattice can be represented by only
two elements. The cardinality of an interval sublattice
[L,U] is denoted |[L,U]|.

Let (P,≤) and (Q,≤) be partially ordered sets. A map
f : P → Q is (i) an order preserving map if x ≤
w =⇒ f (x) ≤ f (w); (ii) an order embedding if
x ≤ w ⇐⇒ f (x) ≤ f (w); (iii) an order isomorphism if
it is order embedding and it maps P onto Q. A partial
order induces a notion of distance between elements
in the space. Define the distance function on a partial
order in the following way.

Definition 1. (Distance on a partial order) Let (P,≤)
be a partial order. A distance d on (P,≤) is a function
d : P × P → R such that the following properties
are verified: (i) d(x, y) ≥ 0 for any x, y ∈ P and
d(x, y) = 0 if and only if x = y; (ii) d(x, y) = d(y, x);
(iii) if x ≤ y ≤ z then d(x, y) ≤ d(x, z).

Since this paper deals with a partial order on the space
of the discrete variables and with a partial order on
the space of the continuous variables, it is useful to
introduce the Cartesian product of two partial orders
as it can be found in (S. Abramsky, 1994).

Definition 2. (Cartesian product of partial orders) Let
(P1,≤) and (P2,≤) be two partial orders. Their Carte-
sian product is given by (P1 × P2,≤), where P1 ×

P2 = {(x, y) | x ∈ P1 and y ∈ P2}, and (x, y) ≤
(x′, y′) iff x ≤ x′ and y ≤ y′.

2.2 Deterministic Transition Systems and Observability

The class of systems dealt with in this work are
deterministic, infinite state systems with output. A
deterministic transition system (DTS) is the tuple Σ =
(S ,Y, F, g), where S is a set of states with s ∈ S ; Y
is a set of outputs with y ∈ Y; F : S → S is the state
transition function; g : S → Y is the output function.
An execution of Σ is any sequence σ = {s(k)}k∈N such
that s(0) ∈ S and s(k + 1) = F(s(k)) for all k ∈ N. The
set of all executions of Σ is denoted E(Σ).

Definition 3. (Observability) The deterministic transi-
tion system Σ = (S ,Y, F, g) is said to be observable if
any two different executions σ1, σ2 ∈ E(Σ) are such
that there is a k > 0 such that g(σ1(k)) , g(σ2(k)).

This class of systems is general. In the next section,
the continuous state evolution and the discrete state
evolution of the system are explicitly modeled, and the
class of monotone DTSs is introduced.

3. THE MODEL

For a system Σ = (S ,Y, F, g) suppose that S = U×Z
with U a finite set, and Z a possibly infinite dense



set; F = ( f , h), where f : U × Y → U and h : U ×
Z → Z; g : U × Z → Y is the output map. These
systems have the form

α(k + 1) = f (α(k), y(k)) (1)

z(k + 1) = h(α(k), z(k)) (2)

y(k) = g(α(k), z(k)),

and they are referred to as the tuple Σ = (U ×
Z,Y, ( f , h), g). For such systems, an additional no-
tion, called discrete state observability, is defined.

Definition 4. (Discrete state observability) The sys-
tem Σ = (U×Z,Y, ( f , h), g) is said to be discrete state
observable if for any execution with output sequence
{y(k)}k∈N, the following are verified

(i) {α ∈ U | y(k) = g(α, z(k)) and y(k + 1) =
g( f (α, y(k)), h(α, z(k)))} := S(k) does not depend
on z(k);

(ii) if two executionsσ1 = {α1(k), z1(k)}k∈N andσ2 =

{α2(k), z2(k)}k∈N are such that if {α1(k)}k∈N ,
{α2(k)}k∈N, then there is k > 0 such that α1(k) ∈
S(k) and α2(k) < S(k).

A discrete state observable system admits a discrete
state estimator that does not involve the continuous
state estimate. This property will allow us to construct
a cascade discrete-continuous state estimator.

Now, Σ is restricted to the case in whichZ is partially
ordered and the continuous dynamics of the system
preserves the ordering. Monotone dynamical systems
are usually defined on ordered Banach spaces. An
ordered Banach space is a real Banach spaceZ with a
nonempty closed subset K known as the positive cone
with the following properties: (i) αK ⊆ K for any
α ∈ R+; (ii) K +K ⊆ K; (iii) K ∩ (−K) = {∅}. A partial
ordering is then defined by x ≥ y for any x, y ∈ Z if
and only if x − y ∈ K, with x > y if and only if x ≥ y
and x , y. The space and the partial order is denoted
(Z,≤) (for details see (Smith, 1995)). A monotone
dynamical system on Z is one whose flow preserves
the ordering on initial data. To extend this property to
DTSs the notion of extended system is introduced.

Definition 5. (System extension) Consider the system
Σ = (U × Z,Y, ( f , h), g). Let (χ,≤) be a lattice with
U ⊆ χ. An extension of Σ on the lattice (χ × Z,≤)
is given by Σ̃ = (χ × Z,Y, ( f̃ , h̃), g̃) such that f̃ :
χ × Y → χ and f̃ |U×Y = f ; h̃ : χ × Z → Z with
h̃|U×Z = h; g̃ : χ ×Z → Y and g̃|U×Z = g.

Definition 6. (Monotone deterministic transition sys-
tems) A system Σ = (U ×Z,Y, ( f , h), g), with (Z,≤)
an ordered Banach space, and (χ,≤) a lattice with
U ⊆ χ, is said to be monotone on the partial order (χ×
Z,≤) if there is an extension Σ̃ = (χ × Z,Y, ( f̃ , h̃), g̃)
on (χ × Z,≤) with the property that h̃ : χ × Z → Z
is order preserving. The extension Σ̃ is termed the
monotone extension of Σ on (χ ×Z,≤).

For a monotone system, the partial order (Z,≤) can be
used in the estimator design to bring the computational
burden down, as the elements of Z are points, and
their partial order relation can be computed efficiently
using the definition of (Z,≤).

4. PROBLEM STATEMENT

Given a monotone deterministic transition system Σ =
(U×Z,Y, ( f , h), g) and an output sequence {y(k)}k∈N,
determine and track the current state (α(k), z(k)). This
is defined in the following problem.

Problem 7. (Cascade continuous-discrete state esti-
mator) Given the monotone deterministic transition
system Σ = (U×Z,Y, ( f , h), g), find functions f1, f2,
f3, f4, with f1 : χ × Y ×Y → χ, f2 : χ ×Y ×Y → χ,
f3 : Z × χ × Y × Y → Z, f4 : Z × χ × Y ×Y → Z,
withU ⊆ χ, (χ,≤) a lattice, such that the update laws

L(k + 1) = f1(L(k), y(k), y(k + 1))

U(k + 1) = f2(U(k), y(k), y(k + 1))

zL(k + 1) = f3(zL(k), L(k), y(k), y(k + 1))

zU(k + 1) = f4(zU(k),U(k), y(k), y(k + 1)) (3)

with L(k),U(k) ∈ χ, L(0) :=
∧

χ, U(0) :=
∨

χ,
zL(k), zU(k) ∈ Z, zL(0) =

∧

Z, and zU (0) =
∨

Z,
have the following properties

(i) L(k) ≤ α(k) ≤ U(k) (correctness);
(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-

increasing error);
(iii) There exists k0 > 0 such that for any k ≥ k0,

[L(k),U(k)] ∩U = α(k) (convergence).
(i’) zL(k) ≤ z(k) ≤ zU(k);

(ii’) there is a nonnegative function V : N → R such
that d(zL(k), zU(k)) ≤ V(k), with V(k+1) ≤ V(k);

(iii’) There exists k′0 ≥ k0 such that for any k ≥ k′0,
d(zL′ (k), zU′ (k)) = 0 where L′ =

∧

([L,U] ∩
U) and U ′ =

∨

([L,U] ∩ U), with zL′ (k +
1) = f3(zL′ (k), L′(k), y(k), y(k + 1)), and zU′ (k +
1) = f4(zU′ (k),U ′(k), y(k), y(k+1)), with zL′ (0) =
zL(0) and zU′ (0) = zU (0),

for some distance function “d”.

The update laws (3) are in cascade form as the vari-
ables L and U are not updated on the basis of the
variables zL and zU . The lattice intervals [L(k),U(k)]
and [zL(k), zU(k)] define the sets that contain the values
of α(k) and z(k) respectively. Properties (iii) and (iii’)
roughly establish that such sets shrink to α(k) and z(k)
respectively. The distance function “d” has been left
unspecified for the moment, as its form depends on the
particular partial order chosen (Z,≤). The following
section proposes a solution to the Problem 7.



5. MAIN RESULT

Given the monotone DTS Σ = (U × Z,Y, ( f , h), g),
a set of sufficient conditions that allow a solution to
Problem 7 is given. First, some definitions involving
the monotone extension Σ̃ are given.

Definition 8. (Order compatibility) The pair (Σ̃, (χ,≤
)) is said to be order compatible if

(i) {w ∈ χ | y(k+1) = g̃( f̃ (w, y(k)), h̃(w, z(k)) and y(k)
= g̃(w, z(k))} = [lw(k), uw(k)];

(ii) the extension f̃ : χ × Z → χ is such that
f̃ : ([lw(k), uw(k)], y(k))→ [ f̃ (lw(k), y(k)),
f̃ (uw(k), y(k))] is order isomorphic.

Item (i) establishes that the set of w ∈ χ compatible
with the pair (y(k), y(k + 1)) is a sublattice interval
(see Figure 1). Note that S(k) ⊆ [lw(k), uw(k)]. For
the construction of a cascade estimator, it is interesting
the case in which the partial order (Z,≤) is related to
(χ,≤) by means of the system dynamics. Thus, a new
notion of order compatibility is introduced.

Definition 9. (Induced order compatibility) The pair
(Σ̃, (Z,≤)) is said to be induced order compatible if

(i) for any w ∈ χ, {z ∈ Z | y(k + 1) =
g̃( f̃ (w, y(k)), h̃(w, z)) and y(k) = g̃(w, z)} =
[lz(k,w), uz(k,w)], and if w1 ≤ w2 then lz(k,w1) ≤
lz(k,w2) and uz(k,w1) ≤ uz(k,w2) (see Figure 1);

(ii) h̃ : α × [lz(k, α), uz(k, α)]→ [h̃(α, lz(k, α)),
h̃(α, uz(k, α))] is order isomorphic for any α ∈ U;

(iii) d(h̃(L, lz(k, L)), h̃(U, uz(k,U))) ≤ γ(|[L,U]|), with
γ : N→ R a monotonic function of its argument.

Theorem 10. Consider the monotone DTS Σ = (U ×
Z,Y, ( f , h), g). Assume that there is a lattice (χ,≤)
with U ⊆ χ such that Σ̃ is a monotone extension of
Σ with the properties that (Σ̃, (χ,≤)) and (Σ̃, (Z,≤))
are order compatible and induced order compatible
respectively. A solution to Problem 7 is provided by

L(k + 1) = f̃ (lw(k) g L(k), y(k))

U(k + 1) = f̃ (uw(k) f U(k), y(k)) (4)

zL(k + 1) = h̃(lw(k) g L(k), zL(k) g lz(k, lw(k) g L(k)))

zU(k + 1) = h̃(uw(k) f U(k), zU(k) f uz(k, uw(k) f U(k))).

Proof. For the proof of (i)-(ii)-(iii) the reader is de-
ferred to (DelVecchio and Murray, 2004a). Define
U∗ = uw(k) f U(k), L∗ = lw(k) g L(k), z∗U = zU(k) f
uz(k,U∗), and z∗L = zL(k) g lz(k, L∗). The dependence
of uz and lz on their arguments is omitted.

Proof of (i’). This is proved by induction on k. Since
zL(0) =

∧

Z, and zU(0) =
∨

Z, then at the first
step zL(0) ≤ z(k) ≤ zU(0) (base case). Assume that
zL(k) ≤ z(k) ≤ zU(k) (induction assumption), show
that zL(k + 1) ≤ z(k + 1) ≤ zU(k + 1). Consider the
third equation of (4). By the order preserving property
of h̃, it follows that h̃(L∗, z∗L) ≤ h̃(z(k), α(k)). Thus,

L(k)lw(k)

U(k + 1)

U∗

y(k)

α(k + 1)

L(k + 1)

y(k + 1)

f̃

uw(k)
U(k)

L∗

α(k)

zU (k + 1)

y(k)
zU (k) h̃

zL(k + 1)

z(k)
z∗U

lz
zL(k)

z∗L

uz

y(k + 1)

z(k + 1)

Fig. 1. Hasse diagrams representing the updates of the estimator
in Theorem 10. x < y if and only if there is a sequence of
connected line segments moving upward from x to y.

zL(k + 1) ≤ z(k + 1). Similar arguments can be used
to prove that z(k + 1) ≤ zU(k + 1) (see Figure 1).

Proof of (ii’). By the order preserving property of
h̃, it follows that h̃(L∗, z∗L) ≥ h̃(L∗, lz), as z∗L ≥ lz
(see the Figure 1). By similar reasonings, it is also
true that h̃(U∗, z∗U) ≥ h̃(U∗, uz). The property (iii)
of Definition 1 yields to d(zL(k + 1), zU(k + 1)) ≤
d(h̃(L∗, lz), h̃(U∗, uz)). This along with (iii) of Defini-
tion 9, yields to d(zL(k + 1), zU(k + 1)) ≤ γ(|[L∗,U∗]|).
Since f̃ is order isomorphic, it follows that |[L∗,U∗]| =
|[ f̃ (L∗, y), f̃ (U∗, y)]|. By the first two equations of (4),
it follows that (ii’) of Problem 7 is satisfied with
V(k) = γ(|[L(k),U(k)]|).

Proof of (iii’). The proof proceeds by contradiction.
Assume that d(zL′ (k + 1), zU′ (k + 1)) is never zero.
Then, there are at least two elements z′′1 , z

′′
2 ∈ [zL′ (k +

1), zU′ (k+1)]. Because of Property (ii) in Definition 9,
and because (a) zL′ (k+1) = h̃(α(k), zL′ (k)g lz(k, α(k))),
and (b) zU′ (k + 1) = h̃(α(k), zU′ (k) f uz(k, α(k)))
for k > k0, there are z′1, z

′
2 ∈ [zL′ (k), zU′ (k)] such

that z′′1 = h(α(k), z′1), z′′2 = h(α(k), z′2), and z′1, z
′
2 ∈

[lz(k, α(k)), uz(k, α(k))] (see Figure 1). In analogous
way, there are z1, z2 ∈ [zL′ (k − 1), zU′ (k − 1)] such that
z′1 = h(α(k − 1), z1), z′2 = h(α(k − 1)z2), and z1, z2 ∈

[lz(k−1, α(k−1)), uz(k−1, α(k−1))]. This implies that
there are two executions of Σ, σ1 = {α(k), z1(k)}k∈N
and σ2 = {α(k), z2(k)}k∈N that share the same output
sequence {y(k)} for all k. This contradicts the observ-
ability of Σ. �

Corollary 11. If in addition to the assumptions of
Theorem 10, Σ̃ is observable and discrete state observ-



able , then (iv) there exists k′0 > 0 such that for any
k ≥ k′0 d(zL(k), zU(k)) = 0; (v) there exist a k0 > 0
such that for any k > k0 L(k) = U(k) = α(k).
For the proof of (v), see (DelVecchio and Murray,
2004a). The proof of (iv) can be carried out by con-
tradiction in a way analogous to how (iii’) of Theorem
10 was proved. In order to verify the properties of Def-
inition 9, an algebraic check is given. For this purpose,
define h̃k(w, z) := h̃(h̃k−1(w, z), f̃ k−1(w, y(k − 2))), and
f̃ k(w, y(k − 1)) := f̃ ( f̃ k−1(w, y(k − 2), y(k − 1)), with
f̃ 0(w, y) := w and h̃0(w, z) := z.

Proposition 12. Consider the monotone DTS Σ =
(U × Z,Y, ( f , h), g). If its monotone extension Σ̃ is
observable, there is k̄ > 0 such that {z | g̃(w0, z) =
y(0), ..., g̃(h̃k̄−1(w0, z), f̃ k̄−1(w0, y(k̄ − 2)) = y(k̄ − 1)} =
{z(0)}, where y(k) = g̃(w(k), z(k)), and w0 = w(0).
This proposition indicates that if the system Σ̃ is
observable, the continuous state z can be expressed as
a function of the output sequence and of the starting
discrete state. Thus, there is a map that attaches to
a discrete state, a value of the continuous state after
some time given an output sequence: this map is
defined to be the observability map.

Definition 13. (Observability map) Let the monotone
extension Σ̃ of Σ be observable. Let Y := {y(k)}k∈[1,k̄]
be the output sequence up to the smallest step k̄
such that the system of equations g̃(z,w) = y(0),...,
g̃(h̃k̄−1(z,w), f̃ k̄−1(w, y(k̄−2))) = y(k̄−1) has an unique
solution for z ∈ Z. Then, the observability map,
denoted OY : χ → Z, is the map that for a fixed Y
attaches to w the unique z satisfying the above system.
Also, Σ̃ is said to be observable in k̄ steps.

Here is an algebraic condition that guarantees that Σ̃ is
induced order compatible with (Z,≤).

Proposition 14. If the monotone extension of Σ, Σ̃ is
observable in two steps, and the observability map
Oy : χ→ Z is order preserving, then the pair (Σ̃, (Z,≤
)) is induced order compatible.
Proof. To prove (i) of Definition 9, let Y = (y(k), y(k +
1)) be a pair of consecutive outputs in the output
sequence {y(k)}k∈N corresponding to an execution of
Σ̃. By the observability in two steps hypothesis, it
follows that {z ∈ Z | y(k) = g̃(w, z), y(k +
1) = g̃(h̃(w, z), f̃ (w, y(k)))} = {z∗}, and thus lz(k,w) =
z∗ = uz(k,w). Also, by the Definition 13, it follows
that z∗ = OY (w). By the order preserving property
of OY , it follows that OY (w1) ≤ OY (w2) if w1 ≤

w2. Item (ii) of Definition 9 is clearly verified as
lz(k, α) = uz(k, α). Item (iii) can be proved in the
following way. Let d̄ := maxwi�w j‖h̃(OY (wi),wi) −
h̃(OY(w j),w j)‖ for wi,w j ∈ [L,U]. Then, (iii) is ver-
ified with γ(|[L,U]|) = d̄|[L,U]|. �

Remark 15. The basic assumption in order to have
induced order compatibility, is the order preserving
property of the observability map. In fact, the two

z1

(x1,y1)

z2 z3 z4 z5

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

Fig. 2. An example state of the RoboFlag Drill for 5 robots. Here
α = {3, 1, 5, 4, 2}.

steps observability assumption can be abolished if
item (i) of Definition 9 is relaxed to consider a longer
sequence of output observations. This can be done
with minor modifications.

6. SIMULATION EXAMPLE

A version of the RoboFlag Drill system, already pre-
sented in (DelVecchio and Murray, 2004a), is consid-
ered where the robots have partially measured second
order dynamics. Briefly, there are two teams of N
robots, say the attackers and the defenders, in which
each defender is assigned to an attacker and moves
toward it in order to intercept it before it passes over
a defensive zone. There is an assignment protocol
that establishes that two close defenders moving one
toward the other will exchange their assignments. The
dynamics of the defenders are different from our pre-
vious work. In this case in fact, they are second order
dynamics in which the state is not entirely measured.
Figure 2, represents an example with five robots per
team. The attacker positions are denoted by (xi, yi) and
their dynamics is given by

if yi > δ then y′i = yi − δ.

For the defenders, let the assignment be denoted by
α = (α1, ..., αN) ∈ perm(N), with αi the assignment
of defender i, U = perm(N), their state variable be
denoted by z = (z1,1, z1,2, ...., zN,1, zN,2) ∈ Z, with
output (z1,1, ..., zN,1) ∈ Y. The function f : U ×
Y → U that updates α is given by

if xαi < zi,1 and xαi+1 < zi+1,1 then (α′i , α
′
i+1) = (αi+1, αi),

(5)
for any i. The function h : U × Z → Z that updates
the z variables is given by

z′i,1 = (1 − β)zi,1 − βzi,2 + 2βxαi

z′i,2 = (1 − λ)zi,2 + λxαi (6)

for any i. The set Z is such that zi,1 ∈ [xi, xi+1] and
zi,2 ∈ [xi, xi+1] for any i, which is guaranteed if β and
λ are assumed sufficiently small.



It can be easily shown that the system is discrete state
observable and order compatible with (χ,≤) defined in
the following way. The set χ is the set of vectors inNN

with components less than N, and the order between
any two vectors in χ is established component-wise.
By construction perm(N) ⊂ χ (see (DelVecchio and
Murray, 2004a) for details). It can be verified that
the system is observable in two steps. The system is
monotone and the observability map is order preserv-
ing. To see this, consider the positive cone K in Z
composed by all vectors v = (v1,1, v1,2, ..., vN,1, vN,2)
such that vi,2 ≥ 0, the system preserves this order
as if z(1)

i,2 < z(2)
i,2 and w(1)

i ≤ w(2)
i then (1 − λ)z(1)

i,2 +

λxw(1)
i
≤ (1 − λ)z(2)

i,2 + λxw(2)
i

because xw(1)
i
≤ xw(2)

i

whenever w(1)
i ≤ w(2)

i , and because (1 − λ) > 0. The
output map is readily seen to be order preserving in its
argument w = (w1, ...,wN) ∈ χ as for any k, it follows
that zi,2(k) = 1

β

(

(1 − β)yi(k) − yi(k + 1) + 2βxwi(k)
)

.

The estimator in equations (4) has been implemented
for system in equations (5) and (6). The discrete state
estimator is identical to the one in (DelVecchio and
Murray, 2004a). For the continuous state estimator set
zL = (zL,1, ..., zL,N) ∈ RN and zU = (zU,1, ..., zU,N) ∈ RN ,
where zL,i ≤ zi,2 ≤ zU,i, that is zL,i and zU,i are respec-
tively the lower and upper bound of the zi,2. The first
components zi,1 are neglected as they are measured.
Figure 3 illustrates the estimator performance. W(k) =
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Fig. 3. Estimator performance with N = 10 agents.

∑N
i=1 |mi(k)|, where |mi(k)| is the cardinality of the sets

mi(k) that are the sets of possible αi for each com-
ponent obtained from the sets [Li,Ui] by removing
iteratively a singleton occurring at component i by all
other components. When [L(k),U(k)] ∩ perm(N) has
converged to α, then mi(k) = αi(k). The distance func-
tion for z, x ∈ RN is defined d(x, z) =

∑N
i=1 abs(zi − xi).

The function V(k) is defined as V(k) = 1
2
∑N

i=1(xUi(k) −

xLi(k)), and it is always non increasing. Note that even
if the discrete state has not converged yet, the contin-
uous state estimation error after k = 8 is close to zero.

7. CONCLUSIONS

In this paper, computational tractability of the discrete-
continuous state estimation problem has been achieved

by the use of a partial order on the space of continuous
and discrete states. This was possible due to the order
preserving properties of the system dynamics. An ex-
ample showed how to apply the estimator in the case
of a distributed system whose discrete state space is
so large as to render prohibitive estimation methods
previously proposed. Future research will investigate
how to generalize this ideas, if at all possible, to the
case of non monotone systems and to the case in
which the system is observable but not discrete state
observable.
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