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Abstract— The problem of estimating the discrete variables
in nondeterministic hybrid systems where the continuous
variables are available for measurement is considered. Using
partial order theory, we construct a discrete state estimator,
the LU estimator, which updates the lower (L) and upper
(U) bounds of the set of all possible discrete variables values
compatible with the output sequence and with the systems’
dynamics. If the system is weakly observable, we show that
there always exist a lattice on which to construct the LU
estimator. For computational issues, some partial orders are
to be preferred to others. We thus show that nondeterminism
may be added to a system to obtain a new system that satisfies
the requirements for the construction of the LU estimator on
a chosen lattice. These ideas are applied to a nondeterministic
multi-robot system.

I. INTRODUCTION

The problem of estimating discrete variables in nonde-
terministic hybrid systems where the continuous variables
are available for measurement is considered. This scenario
has already practical interest as in the case of decentralized
multi-robot systems, such as are found in robot soccer,
where the continuous variables represent physical quantities
such as position and velocity, and discrete variables repre-
sent the state of the internal logical system or communica-
tion protocol used by the robots to coordinate their actions.
The estimation problem involves estimating the internal
discrete variables of the system given the evolution of the
continuous physical variables. The systems considered in
this paper are not probabilistic, as nondeterminism arises
because a state can be updated to a known set of possible
values instead of being updated to one possible value only.
This is a way of taking modeling uncertainty into account.

For deterministic systems, the problem of estimating and
tracking the values of non-measurable variables in hybrid
systems has been investigated by several authors. Bemporad
et al. [3] show that observability properties are hard to check
for hybrid systems and an observer is proposed that requires
large amounts of computation. In [14] an algebraic check is
proposed to determine the observability property of a jump
linear system, and the state change is detected a posteriori
assuming a minimum time between switches. In this work,
the time scales of the discrete and continuous dynamics
are comparable, and the state of the system is tracked.
For non-deterministic systems, [10] studies observability
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conditions for exact reconstruction of the current state after
each system event, and [5] consider the problem of finding
optimal control strategies for partially observable Markov-
decision processes. The systems treated in this paper are
not probabilistic, and they are closer to the one proposed
in [10], excepts that exact reconstruction of the state after
each event is not required. In the deterministic case, [4]
and [7] show that the complexity of the observer often
arises from the need to compute maps on large sets of
values, corresponding to the set of all possible internal states
compatible with the observed output sequence. These same
difficulties are encountered in [11], where the proposed
observer fails to be applicable for large problem sizes. In
the models that we consider, due to the heavy coupling of
discrete and continuous variables evolution, discrete state
estimation strategies where the analysis of the continuous
signal suffices for determining the discrete state, such as
the ones proposed by [1], are not applicable. Also, the
time scales of the continuous and discrete dynamics are
comparable, so that we have no guarantee that the system
remains in each discrete mode for a sufficiently long time
as assumed in [2].

In [12] some of the complexity issues, such as those
encountered in [11] or [4], [7], were avoided by finding
a good way of representing the sets of interest and of
computing maps on them. In particular, a system defined
on its space of variables, is extended to a larger space
of variables equipped with lattice structure to obtain an
extended system. Provided this extended system satisfies
certain requirements, a discrete state estimator, the LU
estimator, can be constructed, which updates the least and
greatest element of the set of all values of discrete variables
compatible with the output sequence and with the dynamics
of the system. This work builds on these ideas to generalize
to nondeterministic systems. If the system is weakly ob-
servable, a lattice always exists on which the LU estimator
can be constructed. This shows that the lattice approach
to estimation generally applies to observable systems. For
complexity reasons, those partial orders that allow the
use of algebraic properties for the computation of their
elements are to be preferred. We show that nondeterminism
can be added to the system to obtain a new system that
satisfies the properties needed for the construction of the LU
estimator on a chosen lattice. This way, the complexity of
the estimator can be reduced by paying the price of having
a possibly slower convergence rate. This is a compromise
between performance and complexity.

The contents of this paper are as follows. In Section II,
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basic definitions on transition systems, and basic definitions
on partial order theory are reviewed. In Section III, the LU
discrete state estimator is constructed, and in Section IV its
existence is investigated. In Section V, a way is proposed
to construct the estimator on a chosen lattice. These ideas
are applied to a multi-robot system in Section VI.

II. BASIC DEFINITIONS

Let S be the set of states with s ∈ S. A transition function
on S is a function F : S −→ 2S which updates the state s to
a new set of states s′ ∈ F(s), with 2S := {A|A ⊆ S}. Given
a transition function F , an execution of F is a sequence
σ = {s(k)}k∈N such that s(k + 1) = F(s(k)) for all k ∈ N.
The set of all executions of F is denoted E(F).

Definition 2.1: Let F be a transition function on a set
of states S, the set Ω ⊂ S is the ω-limit set of F , denoted
ω(F), if it is the smallest set such that the following hold:
(i) if s ∈ Ω and s′ ∈ F(s), then s′ ∈ Ω;

(ii) for each σ ∈ E(F), there exists a time kσ such that
σ(kσ ) ∈ Ω for all k ≥ kσ .

We now recall the notion of observability for transition
systems as it can be found in [11].

Definition 2.2: Given a transition function F and an
output map g : S→Y , for some Y , two executions σ1,σ2 ∈
E(F) are weakly equivalent, denoted σ1 ∼σ2, if there exists
k∗ such that σ1(k∗) /∈ω(F) and σ1(k) = σ2(k) for all k ≥ k∗.

Definition 2.3: The transition function F is said to be
observable with respect to the output function g : S →Y if
whenever σ1 is not weakly equivalent to σ2 then there is k
such that g(σ1(k)) 6= g(σ2(k)).
We will consider transition systems where s = (α ,z), where
α ∈ U is the discrete part of the state with U a finite
discrete set, and z ∈ Z is the continuous portion of the
state, for example Z = R

N . In such a case F = ( f ,h),
where f : U ×Z → 2U is the function that updates the
discrete state, and h : U ×Z → 2Z is the function that
updates the continuous part of the state. We will denote
such nondeterministic transition systems by the tuple Σ =
( f ,h,U ,Z ). The executions of Σ, denoted E(Σ), are of the
form σ = {α(k),z(k)}k∈N, with α(k + 1) ∈ f (α(k),z(k))
and z(k + 1) ∈ h(α(k),z(k)). Since we assume that the
continuous variables z are measured, the output sequence
is given by g(σ) = {y(k)}k∈N := {z(k)}k∈N.

We recall some basic notions from partial order theory
(see [6] for more details). A set χ with a partial order
relation ”≤” is said to be a lattice if any two elements have
their supremum and their infimum in (χ ,≤). Note that the
order is partial as some pairs of elements are not related
by ” ≤ ”. For x,w ∈ χ their supremum is called join and is
denoted by xgw := sup{x,w}, and their infimum is called
meet and is denoted by x f w := in f{x,w}. If S ⊂ χ , we
define

∨

S := sup(S) and
∧

S := in f (S). Let (χ ,≤) be a
non-empty ordered set. If x f w and x g w exist for any
x,w ∈ χ , then (χ ,≤) is a lattice. If

∨

S and
∧

S exist for
all S ⊆ χ , then (χ ,≤) is a complete lattice. Let (χ ,≤)
be a lattice and let S ⊆ χ be a subset of χ . Then S is

a sublattice of (χ ,≤) if a,b ∈ S implies that a g b ∈ S
and a f b ∈ S. The cardinality of S is denoted |S|. Given
a complete lattice (χ ,≤), an interval sublattice is defined
as follows. Any interval sublattice of (χ ,≤) is given by
[L,U ] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ . That is, this
special sublattice can be represented by only two elements.
The power lattice of a set U , denoted (P (U ),⊆), is given
by the power set of U , P (U ) (the set of all subsets of
U ), ordered according to the set inclusion ⊆.

Definition 2.4: Let x,w∈ χ , with (χ ,≤) a lattice, and f :
χ → 2χ be non deterministic. We say that f is generalized
order preserving if x ≤ w =⇒ f (x) ≤ f (w), where we say
that f (x) ≤ f (w) if

∨

f (x) ≤
∨

f (w) and
∧

f (x) ≤
∧

f (w).
This definition is weaker than the one given for determinis-
tic maps (see [6]), as there can be elements in f (x) greater
than elements in f (w).

Definition 2.5: Let f : χ → P be non deterministic. We
say that f is onto if for any w ∈ P there exists a x ∈ χ such
that w ∈ f (x).
The cardinality of P can be greater than the one of χ
because one element can be mapped to many.

In the next section we show how to use these notions
to construct a discrete state estimator for nondeterministic
systems.

III. LU DISCRETE STATE ESTIMATOR:
CONSTRUCTION

Consider the nondeterministic transition system Σ =
( f ,h,U ,Z ), All pairs (z1,z2) for which there exist α ∈U

such that z2 ∈ h(α ,z1) group the set U in classes of the
form {α ∈ U : z2 ∈ h(α ,z1)}. Each class contains all of
the α values that allow the transition from z1 to z2 through
the transition function h. In many practical examples, such
as the multi robot examples that we consider, such classes
are equivalence classes, as they are all non-intersecting.
The following theorem shows that an estimator like the
one constructed for deterministic systems in [12] can be
constructed for nondeterministic systems as well.

Theorem 3.1: Consider the system Σ = ( f ,h,U ,Z ).
Assume that

1. Σ is weakly observable;
2. There exist a lattice (χ ,≤), with U ⊂ χ , and exten-

sions f̃ : χ ×R
N → 2χ and h̃ : χ × Z → 2Z , with

f = f̃ |U ×Z ∩U and h̃|U ×Z = h, such that
2a. Ay(k) = {x ∈ χ : y(k + 1) ∈ h̃(x,y(k))} =

[ly(k),uy(k)] for some ly(k),uy(k) ∈ χ for any k;
2b. f̃ : ([L,U ],y(k)) −→ [

∧

f̃ (L,y(k)),
∨

f̃ (U,y(k))] is
generalized order preserving for any [L,U ] ⊆
[ly(k),uy(k)];

2c. f̃ : ([L,U ],y(k)) ∩ U −→
[
∧

f̃ (L,y(k)),
∨

f̃ (U,y(k))] ∩ U is onto for
any [L,U ] ⊆ [ly(k),uy(k)];

then the deterministic system

L(k +1) =
∧

f̃ ((L(k)g ly(k)),y(k))

U(k +1) =
∨

f̃ ((U(k)fuy(k)),y(k)) (1)



with L(0) =
∧

χ and U(0) =
∨

χ , is such that
(i) α(k) ∈ [L(k),U(k)] for all k;

(ii) |[L(k),U(k)]∩U | −→ 1 as k → ∞.
Proof: (Sketch). The proof is similar to the one in

[12], except that now the function f̃ is nondeterministic,
and thus one has to carry out the arguments using

∨

f̃ and
∧

f̃ as opposed to f̃ itself. This is sketched in what follows.
For simplifying notation, we omit the dependence of f̃ on
y.

Item (i) can be proved by induction on k. By the initial-
ization of the estimator L(0) ≤ α(0) ≤ U(0) (base case).
Assume that L(k) ≤ α(k) ≤ U(k), and show this holds at
step k + 1. It suffices to notice that ly(k)g L(k) ≤ α(k) ≤
U(k) f uy(k), because α(k) ∈ Ay(k) by definition. By the
order preserving property of f̃ , we have

∧

f̃ (ly(k)gL(k)) ≤
∧

f̃ (α(k)) ≤ α(k +1)

and

α(k +1) ≤
∨

f̃ (α(k)) ≤
∨

f̃ (U(k)fuy(k)).

Item (ii) is proved by contradiction. Assume β ′′
1 ,β ′′

2 ∈
[L(k +1),U(k +1)]∩U . By equations (1) and by property
2c., there are β ′

1,β
′
2 ∈ [ly(k)gL(k),U(k)fuy(k)]∩U such

that β ′′
1 ∈ f (β ′

1) and β ′′
2 ∈ f (β ′

2), and β ′
1,β ′

2 ∈ Ay(k). In
analogous way, there are β1,β2 ∈ [ly(k−1)gL(k−1),U(k−
1)fuy(k−1)]∩U such that β ′

1 ∈ f (β1) and β ′
2 ∈ f (β2), and

β1,β2 ∈Ay(k−1). This implies that there are two executions
of Σ, σ1 = {β1(k),z(k)}k∈N and σ2 = {β2(k),z(k)}k∈N , that
share the same output. This contradicts the weak observ-
ability of Σ.
Note that the main difference between this theorem and
the one holding for the deterministic case ([12]) is that in
this case, the system extension cannot be a bijection as it
is nondeterministic. As a consequence, also observability
needs to be relaxed to weak observability.

IV. LU DISCRETE STATE ESTIMATOR:
EXISTENCE

The following theorem shows that it is always possible
to find a lattice (χ ,≤) such that there exists extensions f̃
and h̃ that satisfy properties 2. of Theorem 3.1. Therefore,
if the system is weakly observable an LU estimator can be
constructed on (χ ,≤).

Theorem 4.1: Consider the system Σ = ( f ,h,U ,Z ).
There exists a lattice (χ ,≤), with U ⊂ χ , and extensions
f̃ : χ ×Z → 2χ , h̃ : χ ×Z → 2Z , with f = f̃ |U ×Z ∩U

and h̃|U ×Z = h, such that
(i) Ay(k) = {x ∈ χ : y(k +1) ∈ h̃(x,y(k))} = [ly(k),uy(k)]

for some ly(k),uy(k) ∈ χ for any k;
(ii) f̃ : ([L,U ],y(k)) −→ [

∧

f̃ (L,y(k)),
∨

f̃ (U,y(k))] is gen-
eralized order preserving for any [L,U ]⊆ [ly(k),uy(k)];

(iii) f̃ : ([L,U ],y(k))∩U −→ [
∧

f̃ (L,y(k)),
∨

f̃ (U,y(k))]∩
U is onto for any [L,U ] ⊆ [ly(k),uy(k)];
Proof: The proof proceeds by construction. (0) A

lattice (χ ,≤) with U ⊂ χ is constructed; (1) the map

f (α j) = αm

⊥

αk
αl

f̃ (αi)

αm

f̃ (w)

⊥

αi

α j

f (αi) = {αl ,αk}

w = αi gα j

Fig. 1. Extension f̃ on lattice χ .

h : U ×Z → 2Z is extended to (χ ,≤) such that (i) is
verified; (2) the map f : U × Z → 2U is extended to
(χ ,≤) such that f̃ |U ×Z ∩U = f , and such that (ii)-(iii) are
verified. Since the constructions (0) and (1) are identical to
the deterministic case ( see [13]), the proof concentrates on
(iii).

(2) In order to prove (ii), f̃ is defined. For simplifying
the notation, we omit the dependence on y. For every pair
of atomic elements (αi,α j), define

f̃ (αi gα j) := f̃ (αi)g f̃ (α j),

f̃ (αi)g f̃ (α j) := P (( f (αi)∪ f (α j)), (2)

where g is the set union as established in (0). See Figure
1. In analogous way f̃ (w g z) is defined for w,z ∈ χ .
Therefore, for any w∈ χ , it follows that f̃ (w) = [⊥,

∨

f̃ (w)].
Also define f̃ (⊥) = ⊥. It follows by construction that
f (α) = f̃ (α) ∩ U for any α ∈ U . To show that f̃ is
order preserving (ii), we check Definition 2.4. Since for any
w ≤ z we have

∧

f̃ (w) =
∧

f̃ (z) =⊥, we need to check that
∨

f̃ (w) ≤
∨

f̃ (z). In fact if w ≤ z, then w = α1 g ... g αm
and z = α1 g ... g αm g αm+1 g ... g αn for some αi ∈ U

by part (0). By definition f̃ (w) = P (( f (α1)∪ ...∪ f (αm))
and f̃ (z) = P (( f (α1)∪ ...∪ f (αm)...∪ f (αn)). Therefore
∨

f̃ (w) = ∪ j=1:m f (α j) ⊂ ∪ j=1:n f (α j) =
∨

f̃ (z). (iii) To
prove that f̃ : [⊥,U ]∩U −→ [⊥,

∨

f̃ (U)]∩U is onto, we
need to show that for any β ∈ [⊥,

∨

f̃ (U)]∩U there is
α ∈ [⊥,U ]∩U such that β ∈ f̃ (α). By construction (part
(0)) we have that U = α1 g ... g αn, for some α1, ...,αn.
Therefore [⊥,

∨

f̃ (U)] ∩ U = ∪i=1:n f (αi), which implies
that β ∈ f (αi) for some i∈{1, ...,n}. Since U = α1 g ...gαn
we have that αi ∈ [⊥,U ]∩U for all i.

Theorem 4.1 states that there is always a lattice (χ ,≤),
U ⊂ χ , with extensions f̃ and h̃ of f and h on (χ ,≤),
such that the conditions that allow to apply the estimator
given in Theorem 3.1 are satisfied. However, the resulting
lattice (χ ,≤) can be large, and the computation of joins and
meets between elements in the lattice can be computational
expensive, and may require storage of a number of joins



and meets for on-line implementation of the estimator. This
problem can be avoided if an algebraic structure is naturally
associated with U , so that join and meet, and f̃ on elements
in (χ ,≤) can be computed exploiting algebraic properties.
But if an order structure (χ ,≤) is fixed, extensions f̃ and h̃
that satisfy the conditions in Theorem 3.1 on such a lattice
are not guaranteed to exist. To overcome this problem, we
propose to replace f with a function F such that F(S)
contains f (S) for any set S ∈ U and F has the properties
required in Theorem 3.1 on the chosen (χ ,≤). This is
formally explained in the following section.

V. ADDING NONDETERMINISM FOR
CONSTRUCTING THE LU ESTIMATOR

In the following result, which is a Corollary of Theorem
3.1 , we show that if the order structure (χ ,≤) is fixed even
if there does not exist extensions of f and h on (χ ,≤) that
have the properties required for the estimator construction,
we can find a nondeterministic system (F,H) with the
desired properties, whose executions contain the ones of
( f ,h). However, if ( f ,h) is deterministic, monotonicity of
the error as prescribed by [12] can be lost, and if ( f ,h)
is not deterministic a slower convergence rate can result
depending on the choice of (F,H). This is a compromise
between complexity and performance.

Corollary 5.1: Consider the system Σ = ( f ,h,U ,Z ).
Let Σ be weakly observable and fix a lattice (χ ,≤), with
U ⊂ χ . If there are nondeterministic maps F : U ×Z ×
Z → 2U and H : U × Z → 2Z such that the system
Σe = (F,H,U ,Z ) is such that
(a) E(Σ) ⊂E(Σe);
(b) each σe ∈E(Σe) such that g(σe) = g(σ) for some σ ∈

E(Σ) is weakly equivalent to σ ;
(c) Σe is such that items 2a, 2b, 2c of Theorem 3.1 are

satisfied;
then

L(k +1) =
∧

F̃ ((L(k)g ly(k)),y(k),y(k +1))

U(k +1) =
∨

F̃ ((U(k)fuy(k)),y(k),y)k +1)) (3)

with L(0) =
∧

χ , U(0) =
∨

χ , and {y(k)}k∈N = g(σ) with
σ ∈ E(Σ), is such that (i) and (ii) of Theorem 3.1 are
verified.

Proof: (i) of Theorem 3.1 follows directly from
equations (3) and from assumptions (a) and (c). (ii) follows
from the fact that Σe is weakly observable on {y(k)}k∈N (by
(b)), and from the fact that by virtue of (c), Theorem 3.1
can be applied to Σe.
Given the system Σ, there are several ways one can construct
a system Σe that satisfies items (a) and (c) of Corollary 5.1,
but one is not guaranteed that also (b) will be satisfied. In
the following algorithms, a possible procedure is proposed
for constructing a system Σe for which (a) and (c) hold on
a fixed lattice (χ ,≤).

Algorithm 5.1: (procedure for constructing H)

z1

(x1,w1)

z2 z3 z4 z5

(x2,w2)

(x3,w3)

(x4,w4)

(x5,w5)

Fig. 2. An example state of the RoboFlag Drill for 5 robots. Here α =
{3,1,5,4,2}.

- At each k let ay(k) = {α ∈ U | y(k+1) ∈ h(α ,y(k))}.
Define Ay(k) := [

∧

ay(k),
∨

ay(k)];
- compute Ay(k)∩U , and define H such that y(k+1) =

H(αi,y(k)) if and only if αi ∈ Ay(k)∩U ;
- define y(k +1) ∈ H̃(w,y(k)) if and only if w ∈ Ay(k).

By this construction, it follows that if Ay(k)∩U = ay(k),
then H(αi,y(k)) = h(αi,y(k)) for any αi ∈ Ay(k)∩U . If
instead Ay(k)∩U contains more elements than the ones
in ay(k), these are added to the set of α such that y(k +
1)∈ h(α ,y(k)). It is also by construction that H̃|U ×Z = H.
Clearly, property 2a. of Theorem 3.1 is satisfied.

Algorithm 5.2: (procedure for constructing F)
- At each k let ay(k) = {α ∈ U | y(k+1) ∈ h(α ,y(k))}.

Define Ay(k)′ := [
∧

f (ay(k),y(k)),
∨

f (ay(k),y(k))];
- if for any α ′ ∈ Ay(k)′ ∩U there is α ∈ ay(k) such

that α ′ ∈ f (α ,y(k)), and there is a natural exten-
sion f̃ that satisfies 2b. of Theorem 3.1 then define
F(α ,y(k),y(k + 1)) := f (α ,y(k)) for α ∈ ay(k), and
F̃ := f̃ ;

- else define F(α ,y(k),y(k + 1)) := Ay(k)′ ∩U for any
α ∈ ay(k), and define F̃(w,y(k),y(k+1)) := Ay(k)′ for
any w ∈ Ay(k).

It follows by this construction that F̃ |U ×Z ×Z ∩U = F.
Property 2b. of Theorem 3.1 is trivially satisfied in the case
F 6= f , as any subset [L,U ] of Ay(k) is mapped to Ay(k)′.
Also property 2c. is verified, as for any α ′ ∈ Ay(k)′ ∩U ,
there is α ∈ ay(k) such that α ′ ∈ F(α ,y(k),y(k + 1)). By
construction one can verify that (a) of Corollary 5.1 is also
satisfied.

In the next section, this procedure is applied to a nonde-
terministic multi-robot system.

VI. EXAMPLE: THE ROBOFLAG DRILL

In this section, a nondeterministic version of the
RoboFlag Drill proposed in [12] is presented. Some number
of blue robots with positions (zi,0) ∈ R

2 must defend their
zone {(x,w) | w ≤ 0} from an equal number of incoming



red robots. The positions of the red robots are (xi,wi) ∈R
2.

An example for 5 robots is illustrated in Figure 2. The
red robots move straight toward the blue defensive zone.
The blue robots are assigned each to a red robot and they
coordinate to intercept the red robots. Let N represent the
number of robots in each team. The robots start with a
random assignment α : {1, ...,N} into {1, ...,N}. At each
step, each blue robot communicates with its neighbors and
decides to either switch assignments with its left or right
neighbor or keep its assignment.

The system can be described with a guarded command
program that is a way of specifying transition functions.
Such programs are constituted by a set of clauses. Each
clause is of the form guard : rule. When a guard becomes
true the corresponding rule is executed (for more details see
[8]). The red robot dynamics is described by the N clauses
wi − δ > 0 : w′

i = wi − δ for i ∈ {1, ...,N}. The blue robot
dynamics Σ are described by the 3N clauses

zi < xαi : z′i = zi +δ , (4)
zi > xαi : z′i = zi −δ , (5)

switch(i,i+1) : (α ′
i ,α ′

i+1) = (αi+1,αi), (6)

for i ∈ {1, ...,N}, where switch(i, j) is such that

switch(i,i+1) ⇒ xαi ≥ xαi+1 (7)
switch(i,i+1)∧ switch( j, j+1) = f alse, i 6= j (8)
(

(xα1 ≥ xα2)∨ ....∨ (xαN−1 ≥ xαN )
)

⇒

(switch(1,2)∨ ...∨ switch(N−1,N) = true. (9)

Primed variables denote the value of a variable after it has
been updated. Guards (6) establish that two close robots will
exchange their assignments if switch is true. In particular,
(7), (8), (9), along with (4),(5),(6), guarantee that, if there
are some close robots with conflicting assignments, there is
one and only one pair of robots among them that will switch
the assignments. This renders the assignment protocol in
commands (6) nondeterministic, as at each step we do
not know which pair of robots switches assignments. It is
possible to show (see [9] for details) that the assignment
protocol converges to the equilibrium value (1, ...,N). For
the blue robots we assume that zi < zi+1, and that xi ≤ zi ≤
xi+1 for all time. With this assumption, it is possible to show
that system Σ is weakly observable (see [11]). We define
x = (x1, ...,xN), z = (z1, ...,zN), α = (α1, ...,αN).

The commands reported in (6) determine the function
f : U ×Z → 2U that updates the discrete variables α ,
with U = perm(N), while the commands in (5) and
(4) determine the function h : U ×Z → Z , with Z =
R

N . Therefore the blue robot system is defined by Σ =
( f ,h,perm(N),RN).

State estimation problem. We consider the problem of
estimating the current assignment α(k), given the motions
of the blue robots z(k) and of the red robots (x(k),w(k)),
and by knowing the dynamics of the system Σ.

In view of constructing the LU estimator, we choose as
lattice (χ ,≤) the same as the one used in [12]. Briefly,

(χ ,≤) is the set of vectors in N
N with entries in [1,N], and

the order is established componentwise First, we show in the
following claim that on such a lattice there are no extensions
of f that satisfy the requirements for the construction of the
LU estimator as given in Theorem 3.1.

Claim 6.1: Consider the system Σ = ( f ,h,perm(N),RN)
represented in equations (4-5-6). Then there does not exist
any extension f̃ of f on (χ ,≤) that satisfy 2b. and 2c. of
Theorem 3.1.

Proof: (Sketch.) This is shown for N = 4 for sim-
plicity, the same can be proved for any N. Assume
α(k) = (4,3,2,1). This implies, from commands (4)-(5)
read from right to left, that the set of all α compatible
with y(k),y(k+1) is given by Ay∩U , where Ay = [ly,uy] =
[(2,3,1,1),(4,4,3,4)]. By computing f ([ly,uy] ∩U ) one
note that if f ([ly,uy]∩U ) ⊆ [

∧

f̃ (ly),
∨

f̃ (uy)], it must be
∧

f̃ (ly) ≤ (2,1,1,1) and
∨

f̃ (uy) ≥ (4,4,4,4). This in turn
implies that (2,3,1,4)∈ [

∧

f̃ (ly),
∨

f̃ (uy)]∩U , but it is not
in f̃ ([ly,uy]∩U )∩U . As a consequence f̃ : [ly,uy]∩U →
[
∧

f̃ (ly),
∨

f̃ (uy)]∩U cannot be onto.

A. LU Estimator Construction

Corollary 5.1 is used along with the Algorithm 5.2, as
2a. of Theorem 3.1 is satisfied with H = h.

From commands (4)-(5)-(6), we deduce that at each step
a switch of the assignment α can be either observable
if it leads to a change in the velocity or not observable
otherwise. Let v(k) = z(k + 1)− z(k) denote the velocity
and omit the dependence of F on y. Define

F(α) := f (α) if v(k) 6= v(k−1) (10)
F(α) := [ly(k),uy(k)]∩U otherwise. (11)

One can check that (a) and (b) of Corollary 5.1 are satisfied.
An extension F̃ that satisfies (c) of Corollary 5.1 is

F̃(x) = w, (wi,wi+1) := (xi+1,xi), if vi(k) 6= vi(k−1) (12)
F̃(x) := [ly(k),uy(k)] otherwise. (13)

B. Simulation results

The performance of the LU estimator of Corollary 5.1 is
reported in Figure 3. In the figure, W (k) = 1

N ∑N
i=1 |mi(k)|,

where |mi(k)| is the cardinality of the sets mi(k) that
are the sets of possible αi for each component obtained
from the sets [Li,Ui] by removing iteratively a singleton
occurring at component i by all other components. When
[L(k),U(k)]∩ perm(N) has converged to α , then mi(k) =
αi(k). This function represents the estimation error at each
step. The function E(k) = 1

N ∑N
i=1 |αi(k)− i|, which gives an

idea of the speed of convergence of the assignment to the
equilibrium value (1, ...,N). |[L(k),U(k)]∩U | converges to
1, as predicted by Corollary 5.1, but |[L(k),U(k)]| is not
a monotonic function of k as it was in the deterministic
case. This is due to the nondeterministic nature of the
transition functions. The choice of F has a considerable
impact on the convergence speed of the estimator, and the
procedure given in the previous section not necessarily gives



the best choice. The map F we chose is rough and does
not take other information that we have on the system into
account. The most information F can model, the fastest is
the convergence rate.
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Fig. 3. Example with N=10(up) and N=30(down). Dashed plots show
the stabilization function of the α assignment (E). Solid plots show the
function W for the estimator.

A way of measuring the complexity of the LU estimator
is to count the number of updated variables. The estimator
roughly updates the 2N variables Li and Ui. System Σ
updates 2N variables as well, that is αi and zi. Therefore,
it can be informally said that the system Σ and its LU
estimator have the same complexity.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The problem of estimating the discrete variables in a class
of nondeterministic hybrid systems, where the continuous
variables are available for measurement has been presented.
Using partial order theory, a discrete state estimator on
a lattice was constructed, which updates the lower and
upper bounds of the set of discrete states compatible with
the output sequence. For weakly observable systems, there
always exist a lattice where the proposed estimator can
be constructed. This shows that the lattice approach to

estimation is general. However, some partial order structures
are to be preferred to others for complexity reasons. We
showed that it is possible to add nondeterminism to a system
to obtain a new system that admits the construction of
the estimator on the chosen lattice. The drawback is that
the LU estimator on the chosen lattice can have a slower
convergence rate than a LU estimator constructed on a
more complicated lattice. This is a compromise between
complexity and performance. Our ideas were applied to a
multi-robot example, whose discrete state set is so large as
to render previously proposed methods inapplicable.

B. Future Work

The results obtained in this study are still preliminary
and point to a large number of future research directions.
In particular, the existence of an observable extension Σe
is to be investigated. A major research trust will be to
consider the case in which the continuous variables need
to be estimated as well.
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