
Observers for a Class of Hybrid Systems on a

Lattice

Domitilla Del Vecchio and Richard M. Murray

Control and Dynamical Systems
California Institute of Technology

1200 E California Boulevard, Mail Stop 107-81
Pasadena, CA 91125

{ddomitilla, murray}@cds.caltech.edu

Abstract. In this paper we consider the problem of estimating discrete
variables in a class of hybrid systems where we assume that the con-
tinuous variables are available for measurement. Using lattice and order
theory we develop a framework for constructing an observer on an en-
larged space of variables with lattice structure, which updates only two
variables at each step. We apply our ideas to a multi-robot system ex-
ample, the RoboFlag Drill.

1 Introduction

In the last decade hybrid systems models have become very popular in the
control community. Some of the systems under study have been changing from
systems governed by continuous differential equations, to systems characterized
by very large numbers of discrete and continuous variables whose evolution is
determined by both continuous dynamics and logics. Examples include inter-
net systems, continuous plants controlled by digital controllers, and multi-agent
systems. The interplay of continuous dynamics and decision protocols renders
these system interesting and complicated enough that new mathematical tools
are needed for the sake of analysis and control. Issues like controllability and ob-
servability arise naturally when trying to analyze the properties of these systems
for control.

The problem of estimating and tracking the values of non-measurable vari-
ables in hybrid systems with computational effort comparable to the one needed
for simulating the hybrid system itself is a challenging one. Bemporad et al.
[1] show that observability properties are hard to check for hybrid systems and
an observer is proposed that requires large amounts of computation. Caines [2]
shows that the complexity of the observer often arises from the need to compute
maps on large sets of values, corresponding to the set of all possible internal
states compatible with the observed output sequence. These same difficulties
are encountered in [8], where the proposed observer fails to be applicable for
large problem sizes.

In this paper we attack the problem of estimation and tracking of non-
measurable variables in hybrid systems by considering a simplified scenario where

Richard Murray
http://www.cds.caltech.edu/~murray/papers/2003u_dm04-hscc.htmlSubmitted, 2004 Workshop on Hybrid Systems: Computation and Control (HSCC)

2 D. Del Vecchio and R. M. Murray

among all the system’s variables the continuous variables are available for mea-
surement. We thus focus on the problem of estimating the discrete variables of
the system. The discrete and continuous variables values are usually heavily cou-
pled through logical operations and continuous dynamics, and the question of
estimating the values of the discrete variables is not a trivial one. The continu-
ous variables may represent physical quantities such as positions and velocities,
while discrete variables may represent the state of the internal logical system
that is used for control and coordination such as in the case of decentralized
multi-robot systems.

Our point of view is that some of the complexity issues such as those en-
countered in [8] or [2] can be avoided by finding a good way of representing the
sets of interest and by finding a good way of computing maps on them. As a
naive example consider the set S of all natural numbers between one and one
thousand. This set can be represented as S = [1, 1000], without the need of
listing all its elements. Suppose we want to know what set S is mapped to by a
map φ. We can either compute such a map on all the elements of S, or we can
compute it on the least and greatest elements of S. In this case if the map φ has
some properties, the set φ(S) can be deduced by φ(1) and φ(1000) without too
much additional computation. This simplification is possible thanks to the order
structure naturally associated to N and thanks to the structure of the map φ.

In this paper we formalize these ideas using lattice theory. In particular
given a system Σ defined on its space of variables, we extend it to a larger space
of variables that has lattice structure so as to obtain the extended system Σ̃.
Under certain properties verified by the extension Σ̃, an observer for system
Σ can be constructed, which updates at each step only two variables. Namely
it updates the least and greatest element of the set of all values of discrete
variables compatible with the output sequence and with the dynamics of Σ. The
structure of the obtained observer resembles the structure of the Luenberger
observer as it is obtained by “copying” the dynamics of the system Σ and by
correcting it according to the measured output values. We present initial results
that introduce the mathematical framework and point to next steps.

The contents of this paper is as follows. In Section 2 we review some basic
definitions and results on lattice theory, and some basic terminology of transition
systems. The main result is given in Section 3 where we provide an explicit
construction for the observer which updates least and maximum elements on
a proper lattice structure. In Section 4 we introduce a multi-robot system, the
RoboFlag Drill, and in Section 5 we show how to apply our ideas to this example.
We then conclude the paper with some simulation results on the RoboFlag Drill
system in Section 6.

2 Basic Concepts

In this section we give first some background on lattice theory as it can be
found in [3]. Then we recall basic definitions on transition systems (see [7] for

Observers for a Class of Hybrid Systems on a Lattice 3

x y

x ∨ y x y

x ∧ y

A B

C D

x y x y

x ∧ y x ∧ y

x ∨ y

a

b

c

d f(d)=f(c)

f(a)=f(b)

f

a

b

c
d f(d)

f(c)

f(b)
f(a)

f

A: Order preserving but not order embedding

B: Order embedding but not order isomorphism

Fig. 1. (Left) In diagram A and B x and y are not related, but they have a join and a
meet. In diagram C we show a complete lattice, and in diagram D we show an ordered
set that is not a lattice, since the elements x and y have a meet, but not a join. (Right)
In diagram A we show a map that is order preserving but not order embedding. In
diagram B we show an order embedding map that is not order isomorphism: any two
elements maintain the same order relation, but in between c and d there is nothing,
while in between f(c) and f(d) some other elements appears (i.e. it is not onto).

more details). Finally we recall some basic observability definitions as they can
be found in many references (see [8] for example).

2.1 Lattice theory

Given a set χ with an order relation ”≤”, we define the join “∨” and the
meet ”∧” of two elements x and w in χ as

1. x ∨ w = sup{x, w} and x ∧ w = inf{x, w};
2. if S ⊆ χ,

∨
S = sup S and S ⊆ χ,

∧
S = inf S;

where by sup{x, w} we denote the smallest element in χ that is bigger than both
x and w, and we denote by inf{x, w} the biggest element in χ that is smaller
than both x and w. In analogous way we denote by sup S the smallest element
in χ that is bigger than all the elements in S, and we denote by inf S the biggest
element in χ that is smaller than all the elements in S.

Let χ be a non-empty ordered set. If x∧w and x∨w exist for any x, w ∈ χ,
then χ is a lattice. If

∨
S and

∧
S exist for all S ⊆ χ, then χ is a complete lattice.

Notice that any finite lattice is complete. In Figure 1 (left) we report diagrams
showing ordered sets. From the diagram it is easy to tell when one element is less
than another: x < w if and only if there is a sequence of connected line segments
moving upward from x to w. Let χ be an ordered set. Then χ is a chain if for all
x, w ∈ χ, either x ≤ y or y ≤ x, that is any two elements are comparable. At the

4 D. Del Vecchio and R. M. Murray

opposite extreme of a chain is an antichain. The ordered set χ is an antichain if
x ≤ y if and only if x = y. Let χ be a lattice and let ∅ �= S ⊆ χ be a subset of
χ. Then S is a sublattice of χ if a, b ∈ S implies that a ∨ b ∈ S and a ∧ b ∈ S.

Definition 1. Let P and Q be ordered sets. A map f : P → Q is said to be

(i) order preserving if x ≤ w =⇒ f(x) ≤ f(w);
(ii) order embedding if x ≤ w ⇐⇒ f(x) ≤ f(w);
(iii) order isomorphic if it is order embedding and it maps P onto Q.

Definition 2. If P and Q are lattices, then a map f : P → Q is said to be
an homomorphism if f is join-preserving and meet-preserving, that is for all
x, w ∈ P we have that f(x ∨ w) = f(x) ∨ f(w) and f(x ∧ w) = f(x) ∧ f(w). A
bijective homomorphism is a (lattice) isomorphism.

Every order isomorphic map faithfully mirrors the structure of P onto Q. In
Figure 1 (right) we show some examples.

Lemma 1. Let P and Q be ordered sets and f : P → Q be an order isomor-
phism. Then f preserves all joins and meets, that is for any S ⊆ P whenever∨

S (
∧

S) exists in P then
∨

f(S) (
∧

f(S)) exists in Q and

f(
∨

S) =
∨

f(S), and f(
∧

S) =
∧

f(S) .

2.2 State Transition Systems

For completeness, we review the basic definitions used in transition systems as
described more completely in other work [7]. Consider a set of variable symbols
V with types type(v) for each v ∈ V . A state s is a function from V into
U where U =

⋃
v∈V type(v). The set of all states is denoted S. For a subset

W of V , we denote by s|W the restriction of s to W , so that we have that
S|W = {s|W : s ∈ S}. A transition relation on S is a relation R ⊆ S×S. If sRs′

and v ∈ V , we will write v to refer to s(v) and v′ to refer to s′(v). For example,
if we denote R by x′ < y ∨ y′ = z then sRs′ ⇐⇒ s′(x) < s(y) ∨ s′(y) = s(z).
Note that sRs′ is equivalent to writing (s, s′) ∈ R.

Given a transition relation R, an execution of R is a sequence σ = {sk}k∈N

such that skRsk+1 for all k ∈ N. The set of all executions of R is denoted E(R). If
σ ∈ E(R) is fixed and v ∈ V we denote by v(k) the value σ(k)(v). The trajectory
of v ∈ V with respect to σ is the sequence {σ(k)(v)}k∈N.

We now recall the notion of observability for transition systems as it can be
found in [8].

Definition 3. Given a transition relation R on S and an output map g : S → U ,
for some U , two executions σ1, σ2 ∈ E(R) are distinguishable if there exists a k
such that g(σ1(k)) �= g(σ2(k)).

Definition 4. (Observability) The transition relation R is said to be observable
with respect to the output function g : S → U if any two executions σ1, σ2 ∈
E(R) are distinguishable.

Observers for a Class of Hybrid Systems on a Lattice 5

We will consider state transition systems with both discrete and continuous
variables. VC is the set of continuous variables that we denote with z with
type(z) = R

N for all z ∈ VC , and VD is the set of discrete variables that we
denote with α with type(α) = U for all α ∈ VD. In this paper we assume that
V = VC ∪VD, with VC ∩VD = ∅. Then a state s ∈ S can be also reviewed as the
pair (s|VC , s|VD). We leave U unspecified for the moment. We also assume that
the set of continuous variables coincide with the set of measurable variables, that
is g : S → S|VC .

Let (s, s′) ∈ R, that is ((s|VC , sVD), (s′|VC , s′|VD)) ∈ R. We now define two
other relations RC and RD from R. The first relates s with any other state of
the form (s′|VC , ∗) and the second relates s with any other state of the form
(∗, s′|VD). Clearly RC ∩ RD = R. Moreover we restrict to the case in which
R is deterministic, so that RC and RD become functions, which we denote
respectively by h : U × R

N → R
N and f : U × R

N → U . In what follows
we will denote a transition system Σ by the couple (f, h) assuming that VC is
the set of measurable variables.

3 Observer Construction

In this section we show that if we can extend the space U to a space χ with
lattice structure, and if we can extend the maps f and g to the whole χ such
that f is order isomorphic on suitable subsets of χ, then in the case in which
Σ is observable we can construct a system that at each step updates only two
variables. These variables are the join and the meet of the set of all possible α’s
values compatible with the output sequence; moreover the set that they define
converges asymptotically to a set whose intersection with U is the current value
of α. This is stated formally in the following theorem

Theorem 1. Consider the system Σ = (f, h) with h : U × R
N → R

N and
f : U × R

N → U . Let z ∈ R
N denote the continuous variables and α ∈ U the

discrete variables. Assume that variables z are measurable, that is y = z. Assume
that

(i) There exist a lattice χ such that U ⊆ χ;
(ii) The map h : U ×R

N → R
N can be extended to the whole χ as h̃ : χ×R

N →
R

N , such that h̃|U×RN = h and

Ay(k) := {x ∈ χ : y(k + 1)} = h̃(y(k), x) = [
∧

Ay(k),
∨

Ay(k)],

which means that Ay ⊆ χ is a lattice and is equal to {x : x ≥ ∧
Ay ∧ x ≤∨

Ay};
(iii) The map f : U × R

N → U can be extended to the whole χ as f̃ : χ × R
N →

χ, such that f̃ |U×RN = f and f̃ : Ay → [f̃(
∧

Ay), f̃(
∨

Ay)] is an order
isomorphism;

(iv) System Σ is observable.

6 D. Del Vecchio and R. M. Murray

Then the following system

L(k) = f̃(L(k − 1)) ∨ (
∧

Ay(k)) , (1)

U(k) = f̃(U(k − 1)) ∧ (
∨

Ay(k)) , (2)

with L(0) =
∨

Ay(0) and U(0) =
∧

Ay(0), is such that

(a) α ∈ [L(k), U(k)] ∩ U for all k (correctness);
(b) |[L(k + 1), U(k + 1)]| ≤ |[L(k), U(k)]| (non-increasing error);
(c) |[L(k), U(k)] ∩ U − α| → 0 as k → ∞ (convergence),

where |S| denotes the cardinality of the set S. Moreover, if the extended system
Σ̃ = (f̃ , h̃) defined on χ × R

N with output z is also observable, then properties
(a)–(c) become:

(a’) α ∈ [L(k), U(k)];
(b’) |[L(k + 1), U(k + 1)]| ≤ |[L(k), U(k)]|;
(c’) L(k) → α(k) and U(k) → α(k) as k → ∞.

Proof. The proof proceeds in two steps. In the first step we show that Assump-
tions (i)–(iii) imply that

for all w ∈ [L(k + 1), U(k + 1)], there exists x ∈ [L(k), U(k)] : w = f̃(x)(3)
for all x ∈ [L(k), U(k)], x ∈ Ay(k). (4)

In the second step we show that properties (3) and (4) together with Assumption
(iv) imply property (c), (a) and (b).

Step 1. Property (4) can be proved directly using the definition of L(k)
and U(k) given in expressions (1) and (2). In fact if x ∈ [L(k), U(k)] then
x ≤ U(k) and by (2) we have x ≤ ∨

Ay(k). Also x ≥ L(k), which by (1) implies
x ≥ ∧

Ay(k).

To prove (3) we first show that f̃ is an order isomorphism on each sub-lattice of
Ay(k), then we notice that [L(k), U(k)] is a sublattice of Ay(k), and therefore
property (3) is a direct consequence of the definition of order isomorphic maps.
Let Āy(k) = [l̄y, ūy] for some l̄y ∈ Ay(k) and ūy ∈ Ay(k). Clearly Āy(k) ⊆ Ay(k),
and Āy(k) is a lattice. Therefore f̃ : Āy(k) → f̃(Āy(k)) is a lattice isomorphism
since f̃ is an isomorphism on Ay(k). We now show that f̃(Āy(k)) = [f(l̄y), f(ūy)].
To prove this equality we need to show that each element of the first set is con-
tained in the second set, and viceversa. For any z ∈ f̃(Āy(k)) we have z ∈
[
∧

f̃(Āy(k)),
∨

f̃(Āy(k))]. Since f̃ : Āy(k) → f̃(Āy(k)) is a lattice isomorphism,
by Lemma 1 f̃(

∧
Āy(k)) =

∧
f̃(Āy(k)) and f̃(

∨
Āy(k)) =

∨
f̃(Āy(k)). Then,

since l̄y =
∧

f̃(Āy(k)) and ūy =
∨

f̃(Āy(k)), we have z ∈ [f̃(l̄y), f(ūy)]. We
now show that for any z ∈ [

∧
f̃(Āy(k)),

∨
f̃(Āy(k))] we also have z ∈ f̃(Āy(k)).

Since
∨

Āy(k) ∈ Ay(k), and
∧

Āy(k) ∈ Ay(k), we have that f̃(
∨

Āy(k)) ∈
f̃(Ay(k)), and f̃(

∧
Āy(k)) ∈ f̃(Ay(k)). This in turn implies that f̃(

∧
Ay(k)) ≤

Observers for a Class of Hybrid Systems on a Lattice 7

f̃(
∧

Āy(k)) ≤ z ≤ f̃(
∨

Āy(k)) ≤ f̃(
∨

Ay(k)), so that z ∈ f(Ay(k)). Since
z ∈ f(Ay(k)), there exist x ∈ Ay(k) such that z = f̃(x). Since f̃ : Ay → f(Ay(k))
is order embedding we have that f̃(

∧
Āy(k)) ≤ z = f̃(x) ≤ f̃(

∨
Āy(k)) implies∧

Āy(k) ≤ x ≤ ∨
Āy(k), which in turn implies that x ∈ Āy(k), and therefore

z ∈ f̃(Āy(k)).
Step 2. Let us prove (a) first (correctness). We show this by induction on

the step k. Initially α ∈ [L(0), U(0)] = [ly, uy]. For the induction step assume
that α(k) ∈ [L(k), U(k)], let us show that α(k + 1) ∈ [L(k + 1), U(k + 1)].
This can be shown by using the fact that f̃ is order preserving. In fact L(k) ≤
α(k) ≤ U(k) implies f̃(L(k)) ≤ f̃(α(k)) ≤ f̃(U(k)). Also α(k + 1) = f̃(α(k)) ∈
[ly(k + 1), uy(k +1)] therefore α(k + 1) ≤ (f̃(U(k))∧uy(k + 1)) = U(k + 1), and
α(k + 1) ≥ (f̃(L(k)) ∨ ly(k + 1)) = L(k + 1).

To prove (b) we can directly use property (3). In fact by (3) we have that
for each w ∈ [L(k + 1), U(k + 1)] there is a x ∈ [L(k), U(k)] such that w = f̃(x).
This in turn implies that |[L(k + 1), U(k + 1)]| ≤ |[L(k), U(k)]|.

To prove (c) notice that by properties (3), (4), and the fact that U is invari-
ant with respect to f̃ , we have that for each x′ ∈ [L(k + 1), U(k + 1)] ∩ U there
is x ∈ [L(k), U(k)]∩U , such that x′ = f(x), and x ∈ Ay(k). This in turn implies
that the sequence {x(k), y(k)}k∈N corresponds to an execution σ of system Σ,
that is x(k) = σ(k)(x). Therefore for any x, w ∈ [L(k), U(k)] ∩ U , there are se-
quences {x(k), y(k)}k∈N and {w(k), y(k)}k∈N corresponding to executions σ1 and
σ2 of Σ, where x(k) = σ1(k)(x), w(k) = σ1(k)(w), and σ1(k)(y) = σ2(k)(y) =
y(k) for all k. Since the system is observable, the two executions must coincide,
that is x(k) = w(k). Therefore there exist a k0 such that for all k ≥ k0 we have
that |[L(k), U(k)] ∩ U| = 1. This together with (a) proves (c).

We then refer to the system in equations (1) and (2) as an observer for Σ.

4 An Example: The RoboFlag Drill

In this section we consider a simplified version of the RoboFlag Drill system
described in [5] that is similar to “capture the flag”, only for robots. We do
not propose to devise a strategy that addresses the full complexity of the game.
Instead we examine the following very simple drill or exercise. Some number
of blue robots with positions (zi, 0) ∈ R

2 must defend their zone {(x, y) ∈
R

2 | y ≤ 0} from an equal number of incoming red robots. The positions of the
red robots are (xi, yi) ∈ R

2. An example for 5 robots is illustrated in Figure 2.
The red robots move straight toward the blue defensive zone. The blue robots are
assigned each to a red robot and they coordinate to intercept the red robots. Let
N represent the number of robots in each team. The robots start with a random
(bijective) assignment α : {1, ..., N} into {1, ..., N}. At each step, each blue
robot communicates with its neighbors and decides to either switch assignments
with its left or right neighbor or keep its assignment. We consider the problem

8 D. Del Vecchio and R. M. Murray

z1

(x1,y1)

z2 z3 z4 z5

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

Fig. 2. Example of the RoboFloag Drill for 5 robots. Here α = {3, 1, 5, 4, 2} and the
dashed lines indicates these assignments. The attackers are moving down along y di-
rection as indicated by the arrows.

of estimating the current assignment α given the motions of the blue robots –
which might be of interest to, for example, the red robots in that they may use
such information to determine a better strategy of attack. We do not consider
the problem of how they would change their strategy in this paper.

The system can be described with a guarded command program. Such pro-
grams are constituted by a set of clauses. Each clause is of the form guard : rule,
where guard is the guard, and rule is the rule. When a guard becomes true the
corresponding rule is executed (for more details see [4]). The description here is
similar to the one in [5]). The red robot dynamics ΣRed are described by the N
clauses

yi − δ > 0 : y′
i = yi − δ

for i ∈ {1, ..., N}. These state simply that the red robots move a distance δ
toward the defensive zone at each step. The blue robot dynamics ΣBlue are
described by the 3N clauses

zi < xαi : z′i = zi + δ , zi > xαi : z′i = zi − δ, zi = xαi : z′i = zi (5)

for i ∈ {1, ..., N}. For the blue robots we assume that initially zi ∈ [zmin, zmax]
and zi < zi+1 and that xi ≤ zi ≤ xi+1 for all time. We define x = (x1, ..., xN),
z = (z1, ..., zN), α = (α1, ..., αN). The assignment protocol dynamics ΣAssign is
defined by

xαi ≥ zi+1 ∧ xαi+1 ≤ zi+1 : (α′
i, α

′
i+1) = (αi+1, αi) , (6)

which is a modification of the protocol presented in [5], since two adjacent robots
switch assignments only if they are moving one against the other. The complete
RoboFalg specification is then given by ΣRF := ΣRed ∪ ΣBlue ∪ ΣAssign. In
particular the clauses in (5), representing ΣBlue, model the function h that

Observers for a Class of Hybrid Systems on a Lattice 9

updates the continuous variables, and the clauses in (6), representing ΣAssign,
model the function f that updates the discrete variables.

RoboFlag Drill Observation Problem: Given initial values for x and y
and the values of z corresponding to an execution of ΣBlue ∪ΣAssign , determine
the value of α during that execution.

5 Observer Construction for The RoboFlag Drill System

In this section we first show that the RoboFalg Drill is observable, and then
we show how Theorem 1 can be applied to construct the observer in equations
(1- 2).

5.1 Observability

Lemma 2. The system Σ represented by the guarded command program (5) and
(6) with measurable variables z is observable.

Proof. Since we are interested in the observability of the α trajectories, for prov-
ing observability we show that any two executions of ΣBlue ∪ ΣAssign, σ1 and
σ2, with {α1(k)}k∈N �= {α2(k)}k∈N have different output sequences. For out-
put we consider the vector of directions of motion of the zi . Since the mea-
surable variables are the zi’s, also their direction of motion is measurable; let
g(σ(k)) = (g1(σ(k)), ..., gN (σ(k))) denote the vector of directions at step k for
the execution σ. From equations (5) it is clear that the direction of motion
depends only on α and not on z, therefore g(σ) = g(α). Note that every α
trajectory reaches the equilibrium value [1, ..., N], and therefore there is a step
k at which f(α1(k)) = f(α2(k)) and α1(k) �= α2(k). Therefore it is enough
to prove that for any α1 �= α2 we have g(α1) = g(α2) =⇒ f(α1) �= f(α2).
g(α1) = g(α2) by (5) implies that (1) zi,1 < xαi,1 ⇐⇒ zi,2 < xαi,2 and (2)
zi,1 ≥ xαi,1 ⇔ zi,2 ≥ xαi,2 . This implies that xαi,1 ≥ zi+1,1 ∧ xαi+1,1 ≤ zi+1,1 ⇔
xαi,2 ≥ zi+1,2 ∧ xαi+1,2 ≤ zi+1,2. By letting α′ = f(α), we thus have that
(α′

i,1, α
′
i+1,1) = (αi+1,1, αi,1) ⇔ (α′

i,2, α
′
i+1,2) = (αi+1,2, αi,2). Hence if there

exists an i such that αi,1 �= αi,2, then there exists a j such that α′
j,1 �= α′

j,2, and
therefore f(α1) �= f(α2).

5.2 Lattice Structure

We now construct a lattice χ and extensions of f and h such that assumptions
(i)–(iii) of Theorem 1 are verified.

We choose as χ the set of vectors in N
N with coordinates xi ∈ [1, .., N], that

is
χ = {x ∈ N

N : xi ∈ [1, ..., N]} .

The partial order that we choose on such a set is given by

∀x, w ∈ χ, x ≤ w if xi ≤ wi ∀i . (7)

10 D. Del Vecchio and R. M. Murray

We define join and meet in the following way:

∀ x, w ∈ χ, v = x ∨ w if vi = max{xi, wi}
∀ x, w ∈ χ, v = x ∧ w if vi = min{xi, wi} .

In this way we have for example
∨

χ = [N, ..., N] and
∧

χ = [1, ..., 1], and the
set χ with the order defined in (7) is clearly a lattice. The set U is the set of all
permutations of N elements and it is a subset of χ. All the elements in U form
an anti-chain of the lattice, that is any two elements in U in χ are not related by
the order defined in (7). In the sequel we will denote by w the variables with type
χ not specifying if the type is U , and we will always denote by α the variables
with type U .

The function h can be naturally extended in the following way

zi < xwi : z′i = zi + δ , zi > xwi : z′i = zi − δ, zi = xwi : z′i = zi (8)

for w ∈ χ. Then the clauses (8) model the function h̃. In analogous way f is
extended as

xwi ≥ zi+1 ∧ xwi+1 ≤ zi+1 : (w′
i, w

′
i+1) = (wi+1, wi) , (9)

for w ∈ χ. Then the clauses (9) model the function f̃ . As a consequence we have
two new functions h̃ : R

N ×χ → R
N and f̃ : R

N ×χ → χ, such that f̃ |RN×U = f

and h̃|RN×U = h.

5.3 Properties of the extended functions

We analyze in this section the properties of the extensions f̃ and h̃ proposed
in the previous section. In particular we show that properties (ii) and (iii) of
Theorem 1 hold.

Lemma 3. Property (ii) of Theorem 1 holds with the lattice structure chosen
in Section 5.2.

Proof. We need to show that

Ay(k) = {w ∈ χ : y(k + 1) = h̃(y(k), w) = [
∧

Ay(k),
∨

Ay(k)],

where y = z. By (8) we have that {w ∈ χ : z(k + 1) = h̃(z(k), w)} = {w|xwi >
zi, } if zi(k + 1) = zi(k) + δ, {w ∈ χ : z(k + 1) = h̃(z(k), w)} = {w|xwi < zi, } if
zi(k + 1) = zi(k) − δ, and {w ∈ χ : z(k + 1) = h̃(z(k), w)} = {w|xwi = zi, } if
zi(k + 1) = zi(k). By assuming xi ≤ zi ≤ xi+1 for all time, we have xwi > zi if
and only if wi > i and xwi < zi if and only if wi < i. Therefore

Ay(k) = {w ∈ χ : [(wi > i) ∧ (zi(k + 1) = zi(k) + δ)]
∨ [(wi < i) ∧ (zi(k + 1) = zi(k) − δ)]

∨ [(wi = i) ∧ (zi(k + 1) = zi(k))]}
Since also w ∈ χ we have that 1 ≤ wi ≤ N , and therefore there exist ly(k) ∈ χ
and uy(k) ∈ χ such that Ay(k) = {w ∈ χ : w ≥ ly(k) ∧ w ≤ uy(k)}, so that
(ii) of Theorem 1 holds.

Observers for a Class of Hybrid Systems on a Lattice 11

Lemma 4. Property (iii) of Theorem 1 holds with the lattice structure chosen
in Section 5.2.

Proof. We need to show that f̃ : Ay(k) → [f̃(ly(k)), f̃(uy(k))] is an order iso-
morphism we need to show: a) that it is onto; b) that it is order embedding.

a) To show that it is onto, we show directly that f(Ay) = [f̃(ly), f̃(uy)].
We omit the dependence on k to simplify notation. Our arguments relay on the
coordinates structure of the sets Ay and f̃(Ay). In particular from equations (9)
we deduce that Ay = (Ay,1, ..., Ay,N), i.e. the set Ay is a vector of sets whose
elements are in N, and in particular Ay,i ∈ {[1, i], [i + 1, N], [i, i]}. Denote by
f̃(Ay)i the ith coordinate set of f̃(Ay). By equations (9) we derive that f̃(Ay)i ∈
{Ay,i, Ay,i−1, Ay,i−1}. We consider the case where f̃(Ay)i = Ay,i−1, the other
cases can be treated in analogous way. If f̃(Ay)i = Ay,i−1 then f̃(Ay)i−1 = Ay,i.
Then we have that

(i) f̃(Ay)i = Ay,i−1 and f̃(Ay)i−1 = Ay,i =⇒
(ii) ∀x ∈ Ay,i we have x ≤ i, and ∀z ∈ Ay,i−1 we have z ≥ i,

which implies (iii) uy,i ≤ i, ly,i ≤ i and uy,i−1 ≥ i, ly,i−1 ≥ i. This last
expression finally implies that

(iv) f̃(ly)i = ly,i−1, f̃(uy)i = uy,i−1, and f̃(ly)i−1 = ly,i, f̃(uy)i−1 = uy,i .

Since for any i we have that Ay,i = [
∧

Ay,i,
∨

Ay,i] = [ly,i, uy,i], (i) and (iv)
imply that f̃(Ay)i = [f̃(ly)i, f̃(uy)i]. The same reasoning holds for any f̃(Ay)i ∈
{Ay,i, Ay,i−1, Ay,i−1}, and for any i, therefore f(Ay) = [f̃(ly), f̃(uy)].

b) To show that it is order embedding it is enough to note again that f̃(Ay) is
obtained by switching Ay,i with Ay,i+1, Ay,i−1, or leaving it to Ay,i . Therefore
if w ≤ v for w, v ∈ Ay then f(w) ≤ f(v) since coordinate-wise we will compare
the same numbers. By the same reasoning the reverse is also true, that is if
f(w) ≤ f(v) then w ≤ v.

The construction of system in equations (1-2) is straightforward, since we need
to “copy” the dynamics reported in (9) and compute a join and a meet. Then
write lower and upper bounds L and U coordinate-wise as U = (U1, ..., UN)
and L = (L1, ..., LN) and initialize L =

∧
χ and U =

∨
χ, so that Li = 1 and

Ui = N . Then the guarded command program which implements the observer
in (1-2) is given by

xLi ≥ zi+1 ∧ xLi+1 ≤ zi+1 :
{[(z′i = zi + δ) ⇒ (l′y,i = i + 1)] ∨ [(z′i = zi − δ) ⇒ (l′y,i = 1)]}
∧ {[(z′i+1 = zi+1 + δ) ⇒ (l′y,i+1 = i + 2)] ∨ [(z′i+1 = zi+1 − δ) ⇒ (l′y,i+1 = 1)]}
∧ (L′

i, L
′
i+1) = (max{Li+1, l

′
y,i}, max{Li, l

′
y,i+1}) (10)

xUi ≥ zi+1 ∧ xUi+1 ≤ zi+1 :
{[(z′i = zi + δ) ⇒ (u′

y,i = N)] ∨ [(z′i = zi − δ) ⇒ (u′
y,i = i)]}

∧ {[(z′i+1 = zi+1 + δ) ⇒ (u′
y,i+1 = N)] ∨ [(z′i+1 = zi+1 − δ) ⇒ (u′

y,i+1 = i + 1)]}
∧ (U ′

i , U
′
i+1) = (min{Ui+1, u

′
y,i}, min{Ui, u

′
y,i+1}) (11)

12 D. Del Vecchio and R. M. Murray

Since we have shown that (i)-(iv) of Theorem 1 are verified, then the se-
quences L(k) and U(k) have the properties (a)–(c) given by Theorem 1. Note
that properties (a’)–(c’) do not hold since we can prove that the extended system
Σ̃ = (f̃ , h̃), with measurable variables VC is not observable.

5.4 Complexity Considerations

The amount of computation required for updating L and U according to (10)
and (11) is proportional to the amount of computation required for updating
the variables α in system Σ. In fact we have 2N clauses, 2N variables, and
2N computations of “max” and “min” between values in N. Therefore we can
roughly say that the complexity of the algorithm that generates the sequences
L(k) and U(k) is about twice the complexity of the algorithm that generates
the α trajectories. Also note that the clauses in (10) and (11) are obtained
by “copying” the clauses in (9) and correcting them by means of the output
information, according to how the observer is constructed for dynamical systems
(see [6] for details).

By Theorem 1 we have that the function of k |[L(k), U(k)]∩U −α(k)| tends
to zero and it is non increasing. This function is useful for analysis purposes,
but it is not necessary to compute it at any point in the algorithm proposed in
equation (10) and (11). However, since the sequence L(k) is not converging to
the sequence U(k), once the algorithm has converged, i.e. |[L(k), U(k)]∩U| = 1,
we cannot recover α from the values of U(k) and L(k) directly. Instead of com-
puting directly [L(k), U(k)] ∩ U , we carry out a simple algorithm, that in the
case of the RoboFlag Drill example takes at most (N2 +N)/2 steps and takes as
inputs L(k) and U(k) and gives as output α(k) if the algorithm has converged.
This is formally explained in the following paragraph.

Refinement Algorithm. Let ci = [Li, Ui]. Then the algorithm

(m1, ..., mN) = Refine(c1, ..., cN),

which takes assignment sets c1, ..., cN and produces assignment sets m1, ..., mN ,
is such that If mi = {k} then k �∈ mj for any j �= i.

For such an algorithm we have the properties shown in the following lemmas.

Lemma 5. When the set [L(k), U(k)]∩U has converged to α(k), the refinement
algorithm is such that (m1(k), ..., mN (k)) = α(k).

Proof. We notice that when [L(k), U(k)] ∩ U has converged to α, we have that
[L(k), U(k)] ∩ U is of the form {α(k), elements not in U}. Denote with ci the
sets [Li, Ui] before the refinement has occurred, and denote with mi the refined
version of ci’s. Then we show that among the sets [Li(k), Ui(k)] there is at least
one i for which Li(k) = Ui(k), and therefore we have at least one singleton to
take out from the other coordinates. Then the proof proceeds by iteration on N .

Observers for a Class of Hybrid Systems on a Lattice 13

To indicate that U is the set of permutations of N elements, we will write
UN . To show that when [L(k), U(k)]∩UN has converged to α(k) at least for one
i Li(k) = Ui(k) (ci is a singleton), it is sufficient to notice that if this were not
the case we would have more than one possible α ∈ UN in [L(k), U(k)]. Without
loss in generality assume that such i is equal to N . Then take out that singleton
from all the other sets cj for j < N to obtain new sets mj whose elements take
values in a set of possible N−1 natural numbers. Still there is only one β ∈ UN−1

such that β ∈ (m1, ..., mN−1). Then we can apply again the reasoning that for
this to be true there must exist at least one singleton among the sets mj , for
j ∈ [1, N − 1]. Proceeding iteratively, we get the result.

We can also show that the sum of the cardinalities of the mi sets is not increasing
along the time step k. This is formally shown in the following lemma:

Lemma 6. Let ci(k) = [Li(k), Ui(k)], and denote by mi(k) the sets obtained
with the refinement algorithm. Then

N∑

i=1

|mi(k + 1)| ≤
N∑

i=1

|mi(k)|

Proof. Let us denote with primed variables the variables at step k + 1 and with
unprimed variables the variables at step k. The proof proceeds by showing that
for each j there exist a k such that m′

j ⊆ mk. By equations (10) and (11)
we deduce that we can have one of the following cases for each i: (a) c′i ⊆
ci+1 ∧ c′i+1 ⊆ ci, (b) c′i ⊆ ci, (c) c′i ⊆ ci−1 ∧ c′i−1 ⊆ ci. Let us consider case
(a), the other cases can be treated in analogous way. Let cj be a singleton.
In the refinement process it is deleted from any other set, so that we have
ci+1 = mi+1 − cj and ci = mi − cj for all i. Assume that in the first refinement
iteration no new singletons are created. We have one of the following situations:
c′j ⊆ cj+1 ∧ cj+1 ⊆ cj , c′j ⊆ cj , c′j ⊆ cj−1 ∧ c′j−1 ⊆ cj. This implies that
one of the c′k is equal to the singleton cj. The sets m′

i are created removing such
singleton for all the other sets, so that we obtain m′

i +cj = c′i ⊆ ci+1 = mi+1 +cj

and m′
i+1 + cj = c′i+1 ⊆ ci = mi + cj . This in turn implies that m′

i ⊆ mi+1 and
m′

i+1 ⊆ mi. This holds for all of the cases (a),(b), (c), and for each i. Thus∑N
i=1 |m′

i| ≤
∑N

i=1 |mi|.
The same kind of reasoning can be applied if the first refinement iteration of

the ci creates new singletons.

It is easy to show that the refinement algorithm can be executed in at most
(N2 + N)/2 steps.

6 Simulation Results

The RoboFlag Drill system represented in equations (5) and (6) has been
implemented in MATLAB together with the observer reported in equations (10)
and (11). Figure 3 (left) shows the behavior of the quantity

V (k) = log |[L(k), U(k)] ∩ U|

14 D. Del Vecchio and R. M. Murray

and

E(k) =
1
N

N∑

i=1

|αi(k) − i|.

V (k) represents the log of the cardinality of the set of all possible assignments
at each step. This quantity gives an idea of the convergence rate of the observer.
E(k) is a function of α, and it is not increasing along the executions of the
system ΣAssign ∪ ΣRed. This quantity is showing the rate of convergence of the
α assignment to its equilibrium [1, ..., N]. In Figure 3 (right) we show the results

1 2 3 4 5 6 7 8 9
0

5

10

15

20

1 2 3 4 5 6 7 8 9
0

5

10

15

1 2 3 4 5 6 7 8 9
0

5

10

15

20

TIME STEP

dashed line= E(k)
solid= log of V(k)

N=8: results for different i. c.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

0 10 20 30 40 50 60
0

1

2

3

4

5

6

N=30: results for different initial conditions

dotted line = log of E(k)
solid line = log of W(k)

TIME step

Fig. 3. (Left) Example with N=8: note that the function V (k) is always non-increasing
and it is converging to zero. (Right) Example with N=30: note that the function W (k)
is always non-increasing and its logarithm is converging to zero.

for N = 30 robots per team. In particular we report the log of E(k) and the log
of W (k) defined as

W (k) =
1
N

N∑

i=1

|mi(k)|,

which by virtue of Lemmas 5 and 6 is non increasing and converging to one,
that is the sets (m1(k), ..., mN (k)) converge to α(k) = (α1(k), ..., αN (k)). In the
same figure we notice that when W (k) converges to one, E(k) has not converged
to zero yet. This suggests that the observer is much faster than the dynamics of
the system under study. We cannot explain such a good performance formally
yet, and the observer speed issue will be addressed in future work.

7 Conclusions

We have proposed a way of constructing an observer for a class of observable
hybrid systems where the continuous variables are measured. The observer is

Observers for a Class of Hybrid Systems on a Lattice 15

constructed on a lattice structure and it updates the least element and the
greatest element of the set of all discrete variables values compatible with the
observed output sequence. These ideas are applied to a multi-robot example:
The RoboFlag Drill. This approach is promising for reducing the computational
effort of the observer since it updates a “cheap” representation of a set rather
than the set itself.

More work is needed to establish how general the conditions listed in Theo-
rem 1 are, and what is the compromise between generality and complexity. Also
more investigation is needed to understand when the extended system is still ob-
servable. Computing the intersection [L(k), U(k)]∩U is needed once the observer
has converged for recovering the α value. The complexity of this computation
is smaller than (N2 + N)/2 for the RoboFlag Drill system with N robots, but
the general case needs more investigation. A question to be still addressed is
concerned with the speed of convergence; the simulation results are encouraging
in this regard and a formal analysis needs to be developed. Finally how are the
properties listed in Theorem 1 related with observability? All these issues are
left to future work.

8 Acknowledgements

This work was supported in part by the ONR grant N00014-10-1-0890 under
the MURI program, and the NSF Center for Neuromorphic Systems Engineer-
ing. We would like to thank Professor Eric Klavins for his contribution to our
knowledge on computer science related subjects such as lattice theory, transition
systems, and guarded command programs, and for his insightful comments.

References

1. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability
of piecewise affine and hybrid systems. IEEE Transactions on Automatic Control,
45:1864–1876, 1999.

2. P. E. Caines. Classical and logic-based dynamic observers for finite automata. IMA
J. of Mathematical Control and Information, pages 45–80, 1991.

3. B. A. Davey and H. A. Priesteley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

4. E. W. Dijkstra. Guarded commands, non-determinacy and a calculus for the deriva-
tion of programs. In Proceedings of the international conference on Reliable software,
pages 2 – 2.13, Los Angeles, California, 1975. http://portal.acm.org.

5. E. Klavins. A formal model of a multi-robot control and communication task. In
Conference on Decision and Control, Hawaii, 2003.

6. David G. Luenberger. An introduction to observers. IEEE Transactions on Auto-
matic Control, AC-16:6:596–602, 1971.

7. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur- rent Systems:
Specication. Springer-Verlag, 1992.

8. D. Del Vecchio and E. Klavins. Observation of guarded command programs. In
Conference on Decision and Control, Hawaii, 2003.

