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Abstract

Using geometric concepts from observability theory for
nonlinear systems, we propose an approach for param-
eter estimation for linearly and nonlinearly parameter-
ized systems. The proposed approach relies on extend-
ing a parameter estimation problem to a state estima-
tion problem by introducing the parameters as aux-
iliary state variables. Applying tools from geometric
nonlinear control theory we establish an observability
check for parameters, and we construct a local observer
with established speed of convergence in the observable
sets of the extended system.

1 Introduction

The problem of parameter estimation for linearly pa-
rameterized dynamical systems is well established (see
[4] for example). Most of the update laws designed
for parameter estimation guarantee parameter conver-
gence if the persistence of excitation condition (PE)
is verified [3, 9, 8]. The check of the persistence of
excitation condition involves the computation of an in-
tegral on a given interval of time for all times. Such an
integral must be positive definite to allow parameter
convergence of a gradient-like adaptation law [15, 16].
In such a case the parameters converge to their true
values and in [13] a Lyapunov function for the param-
eter’s error dynamics is found. Unfortunately there
is no constructive procedure for determining which in-
puts are persistently exciting and it is well known [4]
that, for estimating the parameters in linear systems
(DARMA model), the PE degree of the input has to
be at least equal to the number of the parameters to
be estimated.

As described in [2], for example, there are in principle
no differences between parameter estimation and state
estimation. Also [1] relates the stability properties of
differential equations arising in adaptive identification
with observability properties of a related dynamical

system (see also [16].) A parameter estimation prob-
lem can be extended to a state estimation problem by
introducing the parameters as auxiliary state variables.
This idea is not new to the literature on estimation of
parameters in linear stochastic systems where the ex-
tended Kalman filter has been used for joint parameter
and state estimation problems [10].

Here we adopt a nonlinear observability point of view,
and construct a joint state-parameter observer with lo-
cal Lyapunov function-based convergence proof. The
trade-off is that the analysis is local and holds only in
the observable sets of the extended system. In the fol-
lowing sections we develop the theoretical framework,
relying on well known results in nonlinear observers
[6, 17, 5, 12, 18]. We first give an observability check
for parameters: the extended system can be observable,
locally observable or unobservable. In the latter case
there does not exist any parameter observer since in
any portion of the state space the complete evolution of
the system can be generated by different dynamical sys-
tems with different parameters as well. In the first and
second case there exists a parameter observer and we
construct one with convergence proof. In particular, in
the case of locally observable systems, the convergence
proof relies on the assumption that the system evolves
in an observable set (see for example [12].) Finally, to
show the applicability of the proposed approach, we
provide some simulation examples.

2 Problem Statement

Consider the system
{

ẋ = f(x, θ, u(t))

y = h(x, θ, u(t))
(1)

with x ∈ Rn, θ ∈ Rp unknown constant parameter
vector, u = (u1, ..., ul) ∈ Rl exogenous input, y ∈ Rm

measured output, f and h smooth functions. We as-
sume that θ is lying in a known compact set Ωθ. The
problem is the joint estimation of the state x and the
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unknown constant parameters θ, which may occur lin-
early or nonlinearly in the function f . Considering the
extended state x := (x, θ) ∈ Rn with n = n+p, system
(1) becomes

{

ẋ = f(x, u(t))

y = h(x, u(t))
(2)

where f(x, u(t)) := (f(x, θ, u(t)), 0p). We pose
the question of what conditions on system (2) al-
low to reconstruct x and therefore θ from the ob-
servation of y. We then recall some results on
nonlinear observability (see [5, 17, 6, 12] for exam-
ple). Let h(x, u) = (h1(x, u), ..., hm(x, u)), u =

(u1, ..., u
(n1−1)
1 , ..., ul, ..., u

(nl−1)
l ) with

∑l

i=1 ni = nu,
and

ϕ0i = hi,

ϕji = Lfϕ
j−1
i =

∂ϕj−1i

∂x
f +

j−1
∑

k=0

∂ϕj−1i

∂u(k)
u(k+1) = y

(j)
i .

Define the map Φ(x,u) : Rn × Rnu → Rn to be

Φ(x,u) = (h1, ϕ
1
1, ..., ϕ

k1−1
1 , ..., hm, ϕ

1
m, ..., ϕ

km−1
m )

for some kis such that
∑m

i=1 ki = n.

Definition 1 System (2) is said to be locally observ-
able if there exist a non-empty set χ× U ⊂ Rn × Rnu ,
such that the map Φ(x,u), for some kis, is invert-
ible with respect to x and its inverse is smooth for all
(x,u) ∈ χ× U , that is

rank(
∂Φ(x,u)

∂x
) = n (3)

for all (x,u) ∈ χ × U . Then we say that χ × U is an
observable set. If χ×U = Rn ×Rnu , the system is ob-
servable, and if χ×U = ∅, the system is not observable.

Notice that in practice the observable sets can be com-
puted by computing the set where the determinant of
(∂Φ(x,u)/∂x) is zero, i.e. {(x,u)|det(∂Φ(x,u)/∂x) =
0}, and then taking the complement to Rn × Rnu .

Let z = (y1, y
(1)
1 , ..., y

(k1−1)
1 , ..., ym, ..., y

(km−1)
m )T , so

that z = Φ(x,u). Assuming that system (2) is locally
observable and that (x,u) ∈ χ × U we can estimate
z and then invert Φ with respect to x so to have an
estimate for x. The dynamics for z can be written as

ż = Az + ρ(z,u)

y = Cz
(4)

where A = block-diag(A1, ..., Am) with Ai ∈ Rki×ki in
the form

Ai =











0 1 0 · · · 0
... · · · · · · · · · 0
0 · · · · · · · · · 1
0 0 · · · · · · 0











,

C = (c1, ..., cm)T , with ci = (0, ..., 0, 1, 0, ..., 0)T ∈ Rn

with the 1 in position k1 + ...+ ki−1 + 1 for i > 1 and
c1 = (1, 0, ..., 0)T , ρ(z,u) = (ρ1(z,u)

T , ..., ρm(z,u)T )T ,

with ρi(z,u) = (0, ..., 0, Lfϕ
(ki−1)
i |x=Φ−1(z,u))

T ∈ Rki .
Then we focus on the estimation problem for z, and
show with the following theorem how to construct an
observer. The basic idea of such a theorem can be
found in many references on nonlinear observers, here
we follow the framework found in [12] with some mod-
ifications.

Theorem 2 Given system (2), assume that (x,u) ∈
Ωx×Ωu ⊂ χ×U , where χ×U is an observable set. Per-
form the nonlinear change of coordinates z = Φ(x,u),
and construct the observer

˙̂z = Proj(Aẑ + ρ(ẑ,u) + S−1Ko(y − Cẑ), ẑ), (5)

where Proj(y, ẑ) is the Lipschitz continuous function
defined as

Proj(y, ẑ) =











y if p(ẑ) ≤ 0

y if p(ẑ) ≥ 0 and (∇p(ẑ), y) ≤ 0

yp if p(ẑ) > 0 and (∇p(ẑ), y) > 0

(6)
where

p(ẑ) =
‖ẑ − z0‖

2 − r2Ω
α2 + 2αrΩ

,

and

yp =

[

I − S
−1
P−1S

−1 p(ẑ)∇p(ẑ)∇p(ẑ)T

∇p(ẑ)TS
−1
P−1S

−1
∇p(ẑ)

]

y

with α an arbitrarily small positive constant, rΩ and
z0 the radius and the center of the region Ωz ∈ Rn

respectively, with Φ(Ωx × Ωu) ⊂ Ωz ⊂ Φ(χ × U),
Ko designed such that (A − KoC) is Hurwitz, P so-
lution of the Lyapunov equation P (A − KoC) + (A −
KoC)TP = −Q, Q > 0, S = block-diag(S1, ..., Sm),
Si = diag(ν, ν2, ..., νki), with ν ∈ R, and S =
block-diag(S1, ..., Sm) with Si = diag(1/νki−1, ..., 1) for
all i. Then observer (5) guarantees for ẑ(0) ∈ Ωz that

(i) ‖ẑ(t)− z0‖ ≤ rΩ + α for all times;

(ii) lim
t→∞

‖ẑ(t)− z(t)‖ = 0.

Proof: The introduced projection operator is a vari-
ant of the standard projection algorithm presented in
[14], and it has the same properties, namely

1) ‖ẑ(t)− z0‖ ≤ rΩ + α for all times;

2) Proj(y, ẑ) is Lipschitz continuous;

3) ‖Proj(y, ẑ)‖ ≤ ‖y‖;



4) z̃TSPSProj(y, ẑ) ≥ z̃TSPSy;

where z̃ = z − ẑ. The proof of (i) descends directly
from property 1) of the projection operator. To prove
(ii) consider the dynamics of the error z̃, which can be
derived by equations (4) and (5):

˙̃z = Az+ρ(z,u)−Proj(Aẑ+ρ(ẑ,u)+S−1Ko(y−Cẑ), ẑ)
(7)

We consider the Lyapunov function for system (7):

V = z̃TSPSz̃,

where S = block-diag(S1, ..., Sm) with Si =
diag(1/νki−1, ..., 1) for all i, and with Ko such that

P (A−KoC) + (A−KoC)TP = −Q, (8)

for some arbitrary Q > 0. Taking the derivative of V
with respect to time we have

V̇ = z̃SPS
(

Az + ρ(z,u)

− Proj(Aẑ + ρ(ẑ,u) + S−1Ko(y − Cẑ), ẑ)
)

+
(

Az + ρ(z,u)

− Proj(Aẑ + ρ( ˆz,u) + S−1Ko(y − Cẑ), ẑ)
)T
SPSz̃

and recalling property 4) we obtain

V̇ ≤ z̃TSPS
(

Az + ρ(z,u)
)

−

z̃SPS
(

Aẑ + ρ(ẑ,u) + S−1Ko(y − Cẑ)
)

+
(

Az + ρ(z,u)
)T
SPSz̃

−
(

Aẑ + ρ(ẑ,u) + S−1Ko(y − Cẑ)
)T
SPSz̃,

which leads to

V̇ ≤ z̃T (SPS(A− S−1KoC) + (A− S−1KoC)TSPS)z̃+

z̃TSPS(ρ(z,u)− ρ(ẑ,u)) + (ρ(z,u)− ρ(ẑ,u))TSPSz̃.

Let w̃ = Sz̃, then given the structure of S and S, the
latter expression becomes

V̇ ≤ w̃T 1

ν
[P (A−KoC) + (A−KoC)TP ]w̃

− 2w̃P (ρ(z,u)− ρ(ẑ,u)).

Since ẑ, z and u are bounded in compact sets Ωz,
Φ(Ωx × Ωu), and Ωu, and ρ(·, ·) is continuous, it has
a Lipschitz constant uniformly in u that we call kL.
Then by using (8) also, we get for ν < 1

V̇ ≤ −
1

ν
w̃TQw̃ + 2‖P‖kL‖w̃‖

2,

which finally leads to

V̇ ≤ −λ0‖w̃‖
2, (9)

with λ0 = λmin(Q) 1
ν
− 2‖P‖kL > 0, which depends on

the choice of Ko and ν < 1, and leads to the proof of
(ii). By integrating equation (9) we can obtain

‖z̃(t)‖ ≤ a‖z̃(0)‖e−bt

where a = 1/νk, with k = maxi{ki − 1}, and b =
λ0/2λM (P ), with λM (P ) the maximum eigenvalue of
P . Thus since λ0 = λmin(Q) 1

ν
− 2‖P‖kL, we can de-

crease ν so to have the desired speed of convergence.
By increasing the speed of convergence also a increases
so to cause a larger transient, but the projection algo-
rithm will assure that ẑ remains bounded in the desired
set.

Since α is arbitrarily small, and Ωz ⊂ Φ(χ × U), then
by virtue of (i) of Theorem 2 ẑ ∈ Φ(χ×U) for all time.
Therefore x̂ = Φ−1(ẑ,u).

Remark 3 Theorem 2 relies on the assumption
that (x,u) is in the observable set χ × U dur-
ing the entire evolution of the system. Since
x is not available for measurement, the condition
(x,u) ∈ {(v, w) | det(∂Φ(v, w)/∂v) = 0} in gen-
eral cannot be checked directly or established a
priori. However we can check whether (ẋ,u) ∈
{(v, w) | det(∂Φ(v, w)/∂v) = 0}. Therefore in prac-
tice we can relax the projection to project ẑ into a
bigger set Ωz not necessarily contained in Φ(χ × U),
and choose ẑ(0) ∈ Φ(χ × U). Then we can let
x̂(0) = Φ−1(ẑ(0),u(0)) and monitor whether (x̂,u) is
approaching the set {(v, w) | det(∂Φ(v, w)/∂v) = 0}.
When (x̂,u) becomes too close to this set, then we turn
the observer off, so that ‖z̃‖ ≤ a‖z̃(0)‖e−bT , where T
is the time at which the observer was turned off. This
way we loose asymptotic convergence, but we can still
have a small enough estimation error if T is sufficiently
big (Example 1 will show this case.)

Remark 4 In the case when the input u of system (1)
is not exogenous and contains feedback terms, as occurs
in a feedback loop, it is not possible to differentiate it
directly to obtain the vector u. We need to provide an
estimate for all the needed input derivatives. It can be
shown that it is possible to construct an observer for
the input derivatives with linear dynamics [12], so that
the closed loop system is still stable. However in this
case it is possible to show that the estimates error will
converge into an arbitrarily small neighborhood of the
origin, but not to the origin exactly.

An alternative solution that still guarantees asymptotic
convergence to zero of the observer error z̃ can be pro-
posed as well. In fact it is possible to augment system
(2) with nu integrators on the input side, and then solve
the control problem for the augmented system. For ex-
ample in the case that system (2) is single input, single
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Figure 1: Parameters estimates with a gradient algorithm
(upper plot) and with the nonlinear observer
approach (lower plot).

output, with f(0, 0) = 0, and that it is stabilizable by
a static function of x, we can consider the augmented
system

ẋ = f(x, ω1)

ω̇1 = ω2

...

ω̇nu
= v,

where v is the new control. This system is still sta-
bilizable by a control v = v(x, ω), and the vector ω
is known since it is the state of the controller. Thus
we do not need to estimate u = ω for constructing
the observer for z, and Theorem 2 applies unchanged.
Moreover it can be shown that the closed loop system
with v = v(x̂, ω) is stable (see [11]).

Remark 5 In the case that the system (1) is affected
by noise, as long as it is bounded, the results of Theo-
rem 2 still hold with the modification that the error z̃
will not be asymptotically zero, but it will be trapped
into a ball around zero whose amplitude depends on
noise amplitude and on the values of ν and Ko.

3 Examples and Simulations

In this section we provide some examples to illustrate
the applicability of the proposed procedure for the es-
timation of parameters, and show the performance in
the case of lack of PE condition (persistence of excita-
tion). We report also one example when adding white
noise to the input channel.

Example 1: We want to estimate parameters a
and b of the following system

ẋ = ax+ b

y = x

by measuring y(t). Assume a = −1 and b = 1. We
first consider the extended nonlinear system by letting
x1 = x, x2 = a, x3 = b be states:

ẋ = f(x)

y = Cx

with f(x) = (x1x2 + x3, 0, 0)
T , and C = (1, 0, 0), so

that h(x) = x1. The problem is then to estimate the
state x = (x1, x2, x3)

T by the output measurements y.
We perform first the observability check

rank(dh, dLfh, dL
2
fh) = 3,

which is verified if ax+ b 6= 0. Consider the change of
coordinates z1 = x1, z2 = ẋ1, z3 = ẍ1, and let the sys-
tem evolve from initial condition x1(0) = z1(0) = 10.
We then construct the observer in the new coordinates
z by choosing K0 = (15, 75, 125)T so to have eigenval-
ues λi = −5, with initial conditions ẑ(0) = (10, 1, 1)T

that lie in the observable set, and obtain the esti-
mates behavior reported in Figure 1 (bottom). In this
example we did not implement the projection algo-
rithm and we monitored the behavior of â(t)x̂(t)+ b̂(t).
Since ax + b = 0 is an attracting set for the system,
the observer also approaches asymptotically the set
â(t)x̂(t) + b̂(t) = 0. According to Remark 3 the z ob-

server was turned off when â(t)x̂(t)+ b̂(t) was too close
to zero, i.e. at t = 10, so that after that time the a
and b estimates remain constant. To have a term of
comparison, we report also in Figure 1 (top) the per-
formance of a standard gradient-like adaptive law, i.e.
˙̂a = γ1x̃x̂ and

˙̂
b = γ2x̃, ˙̂x = âx̂ + b̂ + kx̃, where γ1,

γ2 are the adaptation gains chosen to be 500 and 400
respectively, k = 100, and x̃ = x− x̂.

Example 2: We want to find the values of a11,
a12, a21, a22 for the system

ẋ1 = a11x1 + a12x2 + u1

ẋ2 = a21x1 + a22x2 + u2

y = (x1, x2)
T

by observing the output y(t), with u1 = 2, u2 = 0,
a11 = −1, a12 = −2, a21 = 1, a22 = 1. We then
consider the related nonlinear system with x1 = x1,
x2 = x2, x3 = a11, x4 = a12, x5 = a21, x6 = a22,
so that the problem of estimating the parameters of
the above system is analogous to estimating the state
x ∈ R6 of the system

ẋ = f(x)

y = h(x)

(10)
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Figure 2: Parameters estimates for the nonlinear observer
approach: estimation of four parameters.

with f(x) = (x3x1 + x4x2 + 2, x5x1 + x6x2, 0, 0, 0, 0)
T

and h(x) = (x1, x2)
T . We proceed by doing the ob-

servability check according to equation (3), which is
verified in those regions of the state space where

ẋ1x2 − x1ẋ2 6= 0,

so that the system is locally observable. Perform the
change of coordinates z1 = x1, z2 = ẋ1, z3 = ẍ1,
z4 = x2, z5 = ẋ2, z6 = ẍ2 so to apply results of Theo-
rem 2. We let the system evolve from the initial con-
dition x1(0) = 20 and x2(0) = −10. For the observer
we choose initial conditions (20, 6, 6,−10, 10, 1)T that
lie in the observable set, and set the eigenvalues of the
observer to −50 and ν = 0.1. The set ˙̂x1x̂2 − x̂1 ˙̂x2 = 0
was never approached, so that the observer was never
turned off. In fact system (10) always evolves in the ob-
servable set ẋ1x2−x1ẋ2 < 0. We obtain good estimates
of the aij ’s within 0.5 seconds from the beginning of the
simulation as shown in Figure 2. Moreover we report
in Figure 3 the result of parameter estimation for the
same system in the case in which we add noise on the
input channel of the x1 dynamics. The noise is band
limited white noise of amplitude 0.3. As we can see in
the figure the parameters estimates are still stable and
converge to a neighborhood of the true values

4 Conclusion

We have proposed the use of nonlinear geometric tools
for the estimation of parameters in linearly and non-
linearly parameterized systems. We set the problem
as an observability problem for an enlarged dynamical
system containing the parameters as states. A joint
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Figure 3: Parameters estimates for the nonlinear ob-
server approach: estimation of four parameters
in presence of noise.

parameter-state observer which is exponentially sta-
ble with arbitrary convergence speed was constructed.
This approach allows to obtain good parameter esti-
mates also in cases that lack persistence of excitation
(see Example1.) Unfortunately Theorem 2 holds only
if the state of the enlarged system is guaranteed to
evolve in an observable set for all time. If the state is
not assured to stay in such regions for all time, we pro-
posed, in Remark 3, a possible way in which one could
implement the observer in practice. This is shown in
Example 1. The examples proposed suggest that the
transient behavior of a system may contain enough in-
formation to estimate with high accuracy the values of
the parameters from output measurements.

The possibility of designing a control law that guaran-
tees that the system evolves in an observable set for all
time needs to be investigated. The observer proposed
can be shown to be robust with respect to bounded
disturbances, but we did not address the issue of ro-
bustness with respect to model error (as it is done in
[7] for example), which may be investigated in future
work. One interesting application of the proposed ap-
proach is the estimation of parameters in piecewise lin-
ear systems, where each dynamical system, possibly
driven from a step input, never reaches a steady state
because a switch to another dynamical model occurs.
In this case we cannot rely on asymptotic results, but
we need tools for parameter estimation that can ex-
tract information from the transient of the system to
find an accurate estimate of its parameters. The ap-
plicability of the nonlinear geometric approach to this
problem needs to be explored in further work.
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