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Abstract

A generalized model predictive control (MPC) formulation is derived that extends the ex-
isting theory to a multi-vehicle formation stabilization problem. The vehicles are individually
governed by nonlinear and constrained dynamics. The extension considers formation stabiliza-
tion to a set of permissible equilibria, rather than a unique equilibrium. Simulations for three
vehicle formations with input constrained dynamics on configuration space SE(2) are performed
using a nonlinear trajectory generation (NTG) software package developed at Caltech. Prelim-
inary results and an outline of future work for scaling/decentralizing the MPC approach and
applying it to an emerging experimental testbed are given.

1 Introduction

Interest in stabilizing and maneuvering a formation of multiple vehicles has grown in recent years.
Application areas include grid searching by coordinating robots, surveillance using multiple un-
manned air or ground vehicles, and synthetic aperture imaging with clusters of micro-satellites.
Typically, individual vehicle dynamics are decoupled but become coupled by virtue of objectives
that involve desired formations. The engineering complexity and challenge of these problems in
terms of controls, communications and networking, exceeds that of the traditional controls problem
formulated for a system treated as a single entity. To make headway, simplifications must be made,
usually by considering simplified vehicle dynamics and/or assuming unlimited communications and
networking capability.

The existing literature contains methods of pre-computing control laws to achieve coordinated
objectives. Methods utilizing potential functions for coordinating formations include [7] and [12],
where graph theoretic tools are also effectively used in the latter reference. In both cases, individual
vehicle dynamics correspond to fully actuated second order point masses. Leonard and Fiorelli [7]
permit a set of permissible locations for the vehicles in formation and their locations may be
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interchanged. In contrast, Olfati-Saber and Murray [12] incorporate a formation graph definition
that mandates precise relative locations for all vehicles in the graph, which in certain application
domains is desirable. Both approaches are free from a strict leader-follower architecture, adding
robustness of the group to individual vehicle failures. The same individual vehicle dynamics are
considered by Young et al [15], where a leader-follower architecture is experimentally validated
on wheeled robots. A group feedback is added from the followers to the leader in an attempt to
compensate for the lack of robustness. Stability and controllability by distributed local feedbacks is
examined by Yamaguchi et al [13] for formations of kinematic robots. A contribution of this paper
is that the individual vehicles may be governed by nonlinear and constrained dynamics.

A generalized multi-vehicle formation stabilization problem, free from a leader-follower archi-
tecture, is defined in this paper. The problem is similar, in the formation definition and use of a
virtual leader, to that given by Egerstedt and Hu [4] who consider velocity control of kinematic
robots. The difference is that the desired formation here is not necessarily a unique state for each
vehicle in the formation. Moreover, we provide the necessary definitions and appropriate proofs for
stability to a set of equilibria. The results in this paper are new in that an optimization based ap-
proach, namely model predictive control (MPC), is applied to the formation stabilization problem
that we define.

MPC is the most natural and in some cases the only methodology for control of systems that
are governed by constrained dynamics. The current control action is determined by solving on-line,
at each sampling instant, a finite horizon open-loop optimal control problem. Each optimization
yields an optimal control and the first portion is applied until the next sampling instant. A recent
thorough survey of nonlinear MPC stability theory is given by Mayne et al in [9]. The generalized
formulation and conditions for stability stated in [9, 8] are used as a guide for the formulation here.
A review of proofs of various MPC formulations and new applications is given by Dunbar [3].

There are several appealing aspects of MPC for the coordination of multiple vehicles to sta-
bilize a formation. The main advantage is that optimization based methods in general permit
reconfigurability [11]. Specifically, the cost functions and constraints in the optimal control prob-
lem can potentially be changed on-the-fly to accommodate new formations and limitations, such
as inter-vehicle and obstacle collision avoidance. However, what we buy in reconfigurability, we
potentially lose in reliability of the control law itself. Some of the risks of a real-time optimization
based method such as MPC for vehicle stabilization are highlighted in [3]. Controller design for
a multi-vehicle experimental testbed being developed at Caltech is also a key motivation for this
paper [2].

The organization of the paper is as follows. Section 2 details the MPC formulations in a gen-
eralized multi-vehicle settings and Section 3 focuses on multi-vehicle simulation examples. The
first example considers the constrained dynamics of the testbed vehicles described in [2], while
considering simple formation requirements for different MPC parameterizations. The next example
considers simplified dynamics but examines distributed, synchronized MPC computations with the
effects of model error between vehicles. The software used in the simulations is the Nonlinear Tra-
jectory Generation (NTG) software package developed at Caltech by Milam et al [10]. Conclusive
remarks and extensions in the multi-vehicle framework for future research are given in Section 4.

2 MPC for vehicle formation stabilization

In this section, a multi-vehicle problem is posed and a general MPC formulation is stated as
a solution. The formation problem definition is motivated by an objective of stability to a set of
equilibria and by the requirement that all vehicles have equivalent roles relative to the formation, i.e.
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there is no leader/follower architecture. MPC stability results given in [9] are then extended to this
new objective. The extension is much like the discrete-time robust MPC (to bounded disturbances)
formulated in [8], where stability is guaranteed to a control invariant set. For completeness, a lemma
that generalizes Lyapunov functions in continuous time to achieve stability to a desired invariant
set is given.

2.1 MPC Problem Statement

The model predictive formulation given in this section is intended to introduce the MPC method-
ology as it applies to a formation stabilization problem which will be defined. The formulation is
generalized in the incorporation of constraints and/or costs to achieve nominal asymptotic stability.
In the simulations we apply a formulation that is cost based and the conclusions outline the current
constraint based formulations that are being investigated. The cost based formulations here have
less guarantees, e.g. collision may occur, but are investigated for future comparisons in numerical
feasibility and computation time with constraint approaches.

In this formulations and in the simulations, the common state space for each vehicle X is either
T (SE(2)) or R4. More generally, X may be a constraint space that is a convex and closed subset
of Rn. Consider the k vehicles with system models

ẋi = fi(xi, ui), xi(t0) = xi0, t ∈ [t0,∞), i = 1, ..., k,

and fi is a vector field on X for all i = 1, ..., k. For notational ease later, introduce the vector
notation

ẋ = f(x,u), x ∈ Xk, u ∈ Uk, where (1)

x =







x1
...
xk






, u =







u1
...
uk






, f =







f1
...
fk






,

Xk , X× · · · × X,

Uk , U× · · · × U.

The vehicles are dynamically decoupled, which permits the statement that x lives in the Cartesian
product space Xk.

Remark 1. Collision avoidance can be accounted for by incorporating constraints, resulting in a
state space that is a restriction of Xk. Stabilizing MPC formulations that accommodate this is a
subject of future work.

Given an initial state x(t0) = x0 and a control trajectory u(·) ∈ Uk, the state trajectory
xu(·;x0) is the curve satisfying

xu(t;x0) = x0 +

∫ t

t0

f(xu(τ ;x0),u(τ)) dτ, ∀t ≥ t0, (2)

when constraints on the state are not active. At any current time t and for current state x(t) = x,
the general optimal control problem is

inf
u(·)

J(x,u(·), T ), where (3)

J(x,u(·), T ) =
∫ t+T

t

q(xu(τ ;x),u(τ)) dτ + V (xu(t+ T ;x)) (4)
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subject to equation (1) and terminal constraint

xu(t+ T ;x) ∈ Xf ,

where Xf is assumed to be compact. In equation (4) we can set t = 0, i.e. we can regard the current
initial time as zero since f(·), V (·) and q(·) are time-invariant. The optimal control problem is
denoted Pmv

T (x). The optimal cost function and control and state trajectories (setting current time
t to 0) are denoted J∗(x, T ), u∗(τ ;x, T ) and x∗(τ ;x, T ), where τ ∈ [0, T ].

Definition 1. The Model Predictive Control or MPC Problem is

1. solve Pmv
T (·) from state x at current time t,

2. implement the optimal input trajectory κ(τ ;x, T ) , u∗(τ ;x, T ) for τ ∈ [0, δ], where 0 ≤ δ <
T ,

3. repeat step 1. from state x← x∗(δ;x, T ) at current time t← t+ δ until x ∈ Xf .

Henceforth we assume the following

A1 The minimum of the value function J∗(·, T ), T ≥ 0, is attained.

A2 Perfect knowledge of each vehicles dynamics governed by equation (1), and initial condition
when necessary, is available to all other vehicles.

A3 Computation times are negligible.

Assumption A1 does not imply uniqueness of the optimal solution. Assumption A2 is typical and A3
almost universal in the MPC literature. By ignoring uncertainty (absence of disturbances included)
we can proceed by incorporating all vehicles in one (centralized) optimization over each horizon.
Having more than one copy of such an optimization, say one per vehicle, would be redundant since
they would all produce the same result. Assumption A3 permits δ = 0, in which case Pmv

T (·) is
continuously resolved. The MPC controller in this case is denoted κ(x, T ) and the closed-loop
system becomes

ẋ =

{

f(x,κ(x, T )), ∀x ∈ XT −Xf

f(x,κf (x)), ∀x ∈ Xf
(5)

The theoretical results that follow apply to equation (5). Extension of the results for practical MPC
controllers (δ > 0), as applied the simulations, could be performed by following the procedure in
[1]. An important paper that requires none of these assumptions and will be used as a basis for
future work on constraint based approaches is [14]. In the next sections we define a multi-vehicle
formation and give generalized conditions on (q, V,Xf ) for proving stability.

2.2 Multi-vehicle formation objective

The control objective is to steer the set of states R 3 t 7→ {x1, . . . , xk} ∈ Xk to an equilibrium
formation, which will be defined. The general formation set includes non unique permissible states
at any given t, rather than precise locations for each vehicle at any t. A formation where a
precise but variable location for each vehicle is also defined as a subset. Naturally, the equilibrium
formation satisfies equilibrium conditions for all of the vehicles in the formation. Although modelled
separately, the vehicle (closed-loop) dynamics become coupled by virtue of the formation objective.
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Suppose that the formation is specified by the integrated cost in the MPC problem posed for each
vehicle; each cost would then incorporate some or all of the states and inputs of the other vehicles.
For any such vehicle, we refer to the other vehicles that are referenced in it’s formation specification
as neighbors. In this sense the vehicles are cooperative, i.e. the closed-loop dynamics of every vehicle
is directly affected by it’s neighbors in the formation.

Partitioning the state vector in terms of position and velocity subvectors will be useful for
notational reasons. When X = T (SE(2)) or X ⊆ R4, denote, respectively

xi =









zi
θi

żi
θ̇i









or xi =

[

zi
żi

]

, ∀i = 1, ..., k,

where zi and żi live in R2 and (θi, θ̇i) ∈ TS1.
A precise definition of a formation of vehicles is now given. A Uk-controlled invariant set M of

equation (1) defines a subset of Xk for which

∀x(t0) ∈M, there exits u(t) ∈ Uk, ∀t ∈ R such that x(t) ∈M, ∀t ∈ R.

Definition 2. Given a Uk-controlled invariant setM ⊂ Xk of equation (1) and a formation reference
Xr(t) ∈ X, ∀t ≥ t0, a k-vehicle formation associated with equation (1) is denoted F(M,k,Xr(t))
and defined as

F(M,k,Xr(t)) =
{

x ∈ Xk | (x(t)−Xr(t)) ∈M, ∀t ≥ t0
}

, (6)

where Xr is a column vector with k copies of Xr for each component.

The formation reference can be considered a virtual leader that is free from the possibility
of fault [4, 3]. In sub-vector notation, Xr is denoted (Zr, θr, Żr, θ̇r) or (Zr, Żr) depending on X.
Example Uk-controlled invariant sets that will be used in simulation studies are given below.

Example 1. For X = T (SE(2)) or X ⊆ R4,

M1
k =

{

x ∈ Xk
∣

∣

∣
||zi|| = ρi, ||zi − zp|| = dip, żi = 0,

zi 6= zj , ∀i, j = 1, 2, ..., k, i 6= j, and for some p ∈ {1, 2, ..., k}
}

.

Example 2. For X = T (SE(2)),

M2
k =

{

x ∈M1
k

∣

∣

∣
θ̇i = 0, θi = θ′, ∀i = 1, 2, ..., k

}

.

where the value of θ′ is given.

Example 3.

M3
k = {x̂(α, ξ)}, for some x̂ ∈M2

k ,

where (α, ξ) are scheduling parameters based on the locations of the vehicles at the end of each
optimization horizon.
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The norms in this example are the standard norm on R2 and ρi, dij ∈ R+ (positive, real) for all
i, j = 1, 2, ..., k, i 6= j. The choices for dip need to be compatible with the radius of the circle(s).
The neighbors of a vehicle with state xi are the vehicles with state xj for which dij is given. The
number of neighbors affects the number of possible permutations of vehicle configurations also.
Even if a given setM is a Uk-controlled invariant set, the feasibility of F for the k vehicles depends
greatly on Xr(t). Example 1 and Example 2 illustrate the non-uniqueness of permissible states in a
desired formation. Example 3 defines a formation with precise locations for each vehicle, but these
locations change with each optimization, as will be shown. An appropriate set that includes the
restriction of F(M,k,Xr(t)) to equilibrium conditions is now given.

Definition 3. An equilibrium formation Seq associated with F(M,k,Xr(t)) is the subset of Xk×Uk

defined as

Seq = SX
eq × SU

eq

=
{

(x,u) ∈ Xk × Uk | ẋ = 0, x ∈ F(M,k,Xr(t)),

and Żr(t) = θ̇r(t) = 0, ∀t ≥ t0
}

(7)

By definition, SX
eq is a SU

eq-controlled invariant set with respect to equation (1). Either SX
eq is M or,

if the constants (Zr, θr) are nonzero, it is a translated and rotated version of M with respect to an
inertial frame in Xk.

2.3 Stability

MPC of constrained systems is nonlinear, warranting the use of Lyapunov stability theory. The
value function is almost universally employed as a Lyapunov function for stability analysis for
nonlinear (constrained or not) and constrained linear systems. The generalized conditions in [9]
regarding the terminal cost V (·), terminal constraint set Xf and local controller κf (·) are here used
as a guide. We make the following assumptions

A4 f is C2 and fi(xi, ui) linearized around any (xi, ui) in the equilibrium set is controllable for
any i = 1, ..., k.

A5 For all t of interest, u(t) ∈ Uk, a convex compact subset of Rkm containing SU
eq and SU

eq ≡ {0}.
If ẋ = 0 requires a constant u 6= 0, asume we can translate the equilibrium input to the origin.

A6 For all t of interest, x(t) ∈ Xk, which must contain SX
eq .

A7 q(·) is C2 and u 7→ q(x,u) is convex for each x ∈ Xk.

A8 q(·) is positive definite in u and semi-definite in x, satisfying q(Seq) = 0.

From A5 and Definition 3, f(x,0) = 0 for each x ∈ SX
eq . Inside Xf we assume there exist local

stabilizing controllers κf
T = [κ1

f , ..., κ
k
f ]. Design of such controllers raise some interesting issues, as

stabilization is desired to a set and not a particular point. To generalize these terminal controllers
we define their domain and range spaces as κi

f : Xf → U, i = 1, ..., k. Since controllability is
assumed, linear control techniques may be used for local Xf .

Remark 2. The incorporation of F(M,k,Xr) in Pmv
T may be done by enforcing constraints over

the entire horizon time, by design of the integrated cost or a combination of both. From an
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implementation perspective, accuracy of the formation improves by incorporating it in the form of
constraints but this is generally at the price of reduced computational feasibility. In the examples
in Section 3, only the case of designing the integrated cost q to accommodate the desired formation
is considered.

The general conditions here require a Lyapunov function with stabilizing properties toward a set.
An appropriate lemma, combining Lyapunov’s stability theorem and LaSalle’s theorem, is now
given for the system in equation (1) with closed loop state-feedback control

ẋ = f(x,v(x)). (8)

Lemma 1. Let M and Ω be a positively invariant sets for equation (8) with M ⊂ Ω ⊂ Xk and Ω
is compact. Let V : Ω→ R be a continuously differentiable function such that

V (x) = 0 in M and V (x) > 0 ∀x ∈ Ω−M (9)

V̇ (x) = 0 in M and V̇ (x) < 0 ∀x ∈ Ω−M (10)

Then, M is an asymptotically stable invariant set.

The construction of the set Ω does not have to be associated with the construction of V . However,
an appropriate choice for Ω is the largest bounded level of V contained in Xk, containing M and
satisfying equation (10). We now state a theorem based upon conditions B1-B4 in [9] that incor-
porates a generalized MPC implementation for stabilization of multiple vehicles to an equilibrium
formation.

Theorem 1. Let XT denote the set of states x that can be steered to Xf by an admissible control
in time T . Assume that J∗(·) is C1 and that XT is compact. If (V (·), Xf , κf ) satisfy

1. Xf ⊂ Xk, Xf compact, SX
eq ⊆ Xf .

2. κi
f (Xf ) ⊂ U, ∀i = 1, ..., k.

3. Xf is positively invariant for ẋ = f(x,κf (x)).

4. V : Xf → R is C1, satisfies equation (9) with M = SX
eq and

[

V̇ + q
]

(x,κf (x)) < 0, ∀x ∈ Xf − SX
eq ,

then SX
eq is an asymptotically stable invariant set of equation (5) with region of attraction XT .

The proof of this theorem is given in Appendix A. The generalized conditions 1-4 in Theorem 1
contain all of the following variants of MPC (see [3] for other variants):

V1 Terminal equality constraint. Set Xf = SX
eq , V (x) = 0 and κf ∈ SU

eq and the conditions are
trivially satisfied. Note that computational feasibility is likely to improve over the (unique)
terminal state case that this type of constraint usually incorporates.

V2 Terminal cost. In this case Xf = Rkn, which naturally enlarges the domain of the terminal
cost V . For nonlinear unconstrained problems, the work of Jadbabaie [5] can be applied here,
where V is a modified CLF in that it satisfies condition 4. In this formulation, the horizon
is chosen long enough such that a level set of V (which can be thought of as Xf although it
is not enforced) is reached at the horizon time. This variant is examined in the simulation
examples.
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V3 No terminal cost or constraints. For unconstrained nonlinear systems, it has been shown [5]
that there always exists a horizon time (long enough) such that stability to the origin can be
attained. Some simulation examples also employ this variant.

Remark 3. Constraints may invalidate the assumption that J ∗ is C1; there are also proofs that do
not require this assumption [1]. Also, if J∗ is radially unbounded and XT is taken as a large level
set of J∗ (subset of XT defined in theorem), then XT is compact and we can delete this assumption.

3 MPC Coordinated Multi-Vehicle Simulations

This section details simulation examples of multi-vehicle coordinated control problems solved using
model predictive control. The first example considers vehicle dynamics on configuration space
SE(2) with constrained inputs. A simple formation reference and the effects of adding a local
terminal cost to an integrated cost for stabilization of the formation are investigated. The terminal
cost satisfies the conditions of Theorem 1. The second example considers vehicles with linear, 2-D
second order dynamics with only an integrated cost and no constraints. This example investigates
what happens when assumption A2 is no longer true, i.e. when the vehicle models are no longer
perfect and the MPC computations are distributed on each vehicle. The simulations are done using
the NTG software package developed at Caltech [10].

3.1 Desired Formation and Reference

From the examples, the following invariant sets will be referenced k = 3 vehicles

M1
3 =

{

x ∈ X3
∣

∣

∣
||zi|| = 1, ||zi − zp|| =

√
3, żi = 0, ∀i, j = 1, 2, 3

}

.

M2
3 =

{

x ∈M1
3

∣

∣

∣
θ̇i = 0, θi = 0, ∀i = 1, 2, 3

}

.

M3
3 = {x̂(α, ξ)}, for some x̂ ∈M2

3 ,

where (α, ξ) will be defined in Section 3.2. The state space X for each vehicle in the simulations is
T (SE(2)) for Example 1 and R4 for Example 2.

3.2 Example 1

The dynamics of the individual vehicles are taken from the multi-vehicle wireless testbed [2]
(schematic and pictures given). Denoting the configuration (x, y, θ) ∈ SE(2) and assuming vis-
cous friction, the equations of motion of a vehicle are:

mẍ = −ηẋ+ (Fs + Fp) cos θ
mÿ = −ηẏ + (Fs + Fp) sin θ

Jθ̈ = −ψθ̇ + (Fs − Fp)r.

(11)

The starboard and port fan forces are denoted Fs and Fp, respectively, and r denotes the (common)
moment arm of the forces. To match the previous notation, zT

i = [xi, yi]. An equilibrium point for
the dynamics in equation (11) is any constant position and orientation (xc, yc, θc) with zero veloc-
ity. However, the linearized dynamics are not controllable around any equilibrium (uncontrollable
subspace has rank 2). To achieve controllability, we can look at the error dynamics around tracking
a constant velocity ẋnom and heading θnom reference

Xr(t) = [xr(t0) + tẋnom, yr(t0) + tẏnom, θnom, ẋnom, ẏnom, 0] , ∀t ≥ t0 (12)
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where ẏnom = ẋnom tan(θnom). The error state and inputs are (xei, Fsei, Fpei) = (xi − Xr, Fsi −
Fnom, Fpi − Fnom), i = 1, 2, 3, and the error dynamics are

mẍei = −η(ẋei + ẋnom) + (Fsei + Fpei) cos(θei + θnom)
mÿei = −η(ẏei + ẏnom) + (Fsei + Fpei) sin(θei + θnom)

Jθ̈ei = −ψθ̇ei + (Fsei − Fpei)r,

(13)

and Fnom = (ηẋnom)/(2 cos θnom). No state constraints are enforced, so X = T (SE(2)). The inputs
(Fs, Fp) live in the constraint space U = [0, 6]×[0, 6] ⊂ R2. The reachable space of the inputs is used
to determine that the controllable equilibrium of equation (13) is now any constant position (xc, yc)
with θ and velocity equal to zero. For the desired formation with three vehicles, the integrated cost
function is

q(x,u) =
3
∑

i=1

{

Wi

[

√

x2
ei + y2

ei − 1

]2

+ Vi

[

ẋ2
ei + ẏ2

ei

]

+ Ui

[

F 2
sei + F 2

pei

]

}

+
1

2

3
∑

i,j=1,i6=j

Wij

[

√

(xei − xej)
2 + (yei − yej)

2 −
√
3

]2

, (14)

In the simulations, Wi = Vi = 1.0, Ui = 0.05, and Wij = Wji is 1.0 or 2.0 for all i, j. With
respect to assumption A7, q is not C1 or C2 at the origin. Replacing the distance error-squared
penalties above with distance squared error squared penalties (4th-order), e.g. (x2 − ρ2)2, restores
continuity as is done in [4]. Instead, equation (14) was implemented with a small constant (0.0001)
under every radical to satisfy assumption A7. It was noted that since the formation is not near the
origin, problems were seldom encountered without the small constant term and that performance
was superior to the cost with 4th order distance penalty. The cost q is positive in X3 −M1

3 and
zero on M1

3 . Any element of Seq must be in the form ((xc, yc, 0, 0, 0, 0), (0, 0)) so an appropriate
terminal cost function must be designed for stability.

3.2.1 A Formation Terminal Cost Function

A terminal cost that satisfies Theorem 1 with (Ω,M) = (Xf ,M
3
3 ) is now given. For an LQR

problem associated with the linearization of equation (13) around any equilibrium, denote the
corresponding positive-definite Riccati matrix as P . The terminal cost designed for this formation
is a scheduled, quadratic penalty on an error state ei, for each vehicle i = 1, 2, 3, with P as a
weighting matrix. Specifically

V (x) = γ
(

eT
1 Pe1 + eT

1 Pe1 + eT
3 Pe3

)

, (15)

where γ is a positive, scalar weighting and the error state for vehicle i = 1, 2, 3 is

ei =
[

xei − gi1(xi, yi), yei − gi2(xi, yi), θei, ẋei, ẏei, θ̇ei,
]

.

The functions gi1, gi2 are defined as

gi1(xi, yi) = cos
(

ξ̄ + αi

)

, gi2(xi, yi) = sin
(

ξ̄ + αi

)

, where

ξ̄ = (ξ1 + ξ2 + ξ3)/3, ξi = arctan ((yi − yr)/(xi − xr)) = arctan (yei/xei) ,
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for each i = 1, 2, 3 and the scheduling variable αi is defined as

αi =







0, when |ξi − ξ̄| < |ξj − ξ̄| ∀j 6= i
2π/3, when |ξi − (ξ̄ + 2π/3)| < |ξj − (ξ̄ + 2π/3)| ∀j 6= i
−2π/3, when |ξi − (ξ̄ − 2π/3)| < |ξj − (ξ̄ − 2π/3)| ∀j 6= i.

(16)

If ξi = ξj for some i 6= j, then αk, k /∈ {i, j} is identified according to equation (16) and αi and αj

are arbitrarily chosen to be (distinctly) what is left of {0, 2π/3,−2π/3}. If ξ1 = ξ2 = ξ3, then each
αi is arbitrarily chosen to be one of {0, 2π/3,−2π/3}, not equal to any other αj .

The idea behind this terminal cost is as follows: at the end of each optimization horizon, the
vehicles are in some location relative to each other and the formation set. Calculating the angle ξi

for each vehicle gives its angular location in the relative formation set frame. Taking the average
of these locations (ξ̄), one desired vehicle state is on the circle with angular location ξ̄ and all other
state variables matching the reference. This is the desired state for the vehicle with angular location
closest to ξ̄. The desired states for the other vehicles, equilaterally spaced on the set, are chosen also
according to equation (16). The terminal cost penalizes the weighted 2-norm of the error between
each vehicle’s state and it’s desired state. No terminal constraint is enforced in this example and
the results with and without a terminal cost are reported. Given the LQR-based design of the
terminal cost above, there exists a corresponding local set Xf in which κf can be taken to be the
LQR controller. Instead of estimating Xf and enforcing it as a terminal constraint set, the effects
of the terminal cost alone are investigated. The cost V is C1 as long as (xei, yei) 6= (0, 0) for all
i = 1, 2, 3, which can be enforced by putting a constraint such that no vehicle can come within a
small distance of the reference.

3.2.2 Simulation Cases and Results

In the simulations, the horizon and update times are 5.0 and 1.0. In addition to matching the
appropriate initial condition for the state at each update, the 3 accelerations for each vehicle are
also initially constrained to ensure continuity of the input forces. Most initial conditions examined
with only an integrated cost were observed to be stabilizing without collisions of the vehicles. Figure
1 shows an initial condition that resulted in stability but two vehicles passed through each other
(an unacceptable scenario resulting in collision for real vehicles). The (black) vehicle in the center

0 5 10 15 20
−4

−2

0

2

x (m)
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Figure 1: MPC formation with integrated cost only: collision occurs

of the circle represents the formation reference and the x’s along the trajectories of the formation
vehicles represent the updates in the MPC controller. In an attempt to avoid collision, the relative
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distance cost weighting Wij was increased from 1.0 to 2.0 and the result is shown in Figure 2.
Collision is avoided but at the sacrifice of performance. The formation eventually stabilizes but
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Figure 2: Larger relative distance weighting: collision avoided but performance decreases

not within the 25 second window shown in the figure. The affect of adding the terminal cost in
equation (15), keeping the relative weight at 1.0, is shown in Figure 3. Other simulations cases for
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Evolution of Formation: T = 5.0, δ = 1.0, with Terminal Cost

Figure 3: Addition of terminal cost to stabilize formation

various initial conditions and cost weight values are detailed in [3].

3.3 Example 2

In this example, individual vehicle dynamics are simplified to observe how a stabilizing global MPC
policy is affected when it becomes distributed and there is model uncertainty between the vehicles
in the formation. The dynamics for each (point mass) vehicle are linear, double-integrators on
state space X = R4 and input space R2. The same cost function in equation (14) is used. In
the global version, one (centralized) optimization is performed to compute the MPC law for every
vehicle at every update time δ. In the local version, there are 3 separate MPC optimizations at
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each update time, one for each vehicle. Each local optimization incorporates the correct model for
the host vehicle and assumes that the other vehicles go in straight lines according to the shared
initial conditions. In both cases, a nontrivial reference is implemented (see [3] for details).

The horizon length is T = 2.0 seconds and update time δ = 0.5 seconds. In the plots, the
vehicles are represented as triangles, where each triangle points in the direction of it’s velocity
vector, and the reference is represented as a red square. As before, the reference trajectory is
marked by a dashed red line. The global (full info) MPC solution vehicles are represented by the
three triangles in black, with colored squares at the center of each triangle. The local info vehicles
are represented by triangles in full color, with matching colors corresponding to matching initial
conditions for the first optimization. Each triangle’s trajectory is marked by a line and each figure
shows the formation at points in time along the entire time history. A global and local model
predictive result is shown in Figure 4 for a velocity error weighting of Vi = 1.0, i = 1, 2, 3. The
top plot corresponds (roughly) to the first half of the time history and the bottom plot shows the
remaining portion. The global formation is stable throughout the entire time history, while the
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Figure 4: Global and local MPC simulations (Vi = 1.0, i = 1, 2, 3)

local formation is very unstable. In fact, some of the local vehicles are observed to intersect each
other, resulting in collision in a real implementation.

The response from the same set of initial conditions but with increased weight on the velocity
error penalty (20.0) is shown in Figure 5. For the particular choice of local models there is a
large degree of sensitivity to such weighting changes, as is evident by the local formation responses
in Figure 5. The global formation appears on the other hand to be insensitive to the weighting
change. The degree of sensitivity of the local formation could likely be reduced by making a more
“educated” model for the reduced order vehicles. A good choice might be to assume that the other
vehicles travel at constant acceleration, perhaps equal to the known initial value of the reference
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Figure 5: Global and local MPC simulations (Vi = 20.0, i = 1, 2, 3)

acceleration. Development of the theory of distributed MPC would likely guide the model classes
from which distributed models could be chosen, given the full (nominal) models of actual vehicles.

4 Conclusions and Extensions

A generalized constrained and nonlinear MPC formulation with guaranteed stability has been de-
tailed in this chapter for asymptotic stabilization of multiple vehicles to an equilibrium formation.
Real-time implementation issues such as uncertainty and computational delay time are not ad-
dressed. A multi-vehicle coordination problem that admits a generalized formation objective was
then posed. The objective allows that vehicles are stabilized to a set of permissible equilibria,
rather than a precise location for each vehicle in the formation. There is also no particular role
assignment in this formulation, although a formation reference is defined and could be considered a
virtual leader. The theory of MPC is continuing to branch out to address uncertain environments
and recent results have investigated real-time issues associated with this methodology [3]. It is
realistic to assume that computational tools for MPC will only improve with time. The extension
of MPC to a distributed problem adds new elements of complexity to the theory, from which many
new interesting problems can be examined. Of particular interest is computational uncertainty
(distributed and local) and reduced order model effects of the environment. Environment uncer-
tainty could mean the model of the other vehicles in the formation to any one vehicle could be
approximate. Section 3 explored simulations for this type of problem.

The unification of these topics is related to a multi-vehicle experimental testbed being developed
at Caltech [2]. The individual vehicle dynamics and inputs are subject to constraints and the
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objectives include real-time formation maneuvers while avoiding collision and terrain. The MPC
framework outlined in this paper is thus a natural choice to meet these objectives. The testbed
will be subject to the issues that arise from applying MPC real-time, e.g. model-uncertainty and
non-trivial computation times. These topics as well as exploring other variants of MPC and the
theoretic implications of distributing the computations over networks will explored in future work.

A Proof of Theorem 1

We first state two lemmas that will be utilized in the proof.

Lemma 2. Assuming J∗(x, T ) is at least C1, we have the following

∂J∗(x, T )

∂T
= q (x,κ(x, T )) +

[

∂J∗(x, T )

∂x

]T

f (x,κ(x, T )) .

Lemma 3. Assuming J∗(·) and V (·) are at least C1,

∂J∗(x, T )

∂T
≤ q(x̂,κf (x̂)) +

∂V

∂x
(x̂,κf (x̂))f(x̂,κf (x̂)), ∀x ∈ XT ,

where x̂ , x∗(T ;x, T ) ∈ Xf .

Theorem 1. Let XT denote the set of states x that can be steered to Xf by an admissible control
in time T . Assume that J∗(·) is C1 and that XT is compact. If (V (·), Xf , κf ) satisfy

1. Xf ⊂ Xk, Xf compact, SX
eq ⊆ Xf .

2. κi
f (Xf ) ⊂ U, ∀i = 1, ..., k.

3. Xf is positively invariant for ẋ = f(x,κf (x)).

4. V : Xf → R is C1, satisfies equation (9) with M = SX
eq and

[

V̇ + q
]

(x,κf (x)) < 0, ∀x ∈ Xf − SX
eq ,

then SX
eq is an asymptotically stable invariant set of the closed-loop autonomous system with region

of attraction XT .

Proof. The strategy of the proof is to apply Theorem 1 to V and then to J ∗. By definition of Seq,
ẋ = 0 and so V̇ = 0 in SX

eq (technically in Seq). By Condition 4 and assumption A8, Xf − SX
eq is

the set of all points in Xf where V̇ (x,κf (x)) < 0. Since SX
eq is an invariant set by Definition 3,

Theorem 1 says that SX
eq is an asymptotically stable invariant set of the closed-loop autonomous

system ẋ = f(x,κf (x)) with region of attraction Xf . Condition 4, Lemma 2 and Lemma 3 imply
that

[

J̇∗(x,κ(x, T ), T ) + q(x,κ(x, T ))
]

< 0, ∀x ∈ XT − SX
eq . (17)

To apply Theorem 1, observe that J∗(·, T ) : XT → R satisfies equation (9) with M = SX
eq and that

XT contains Xf and is positively invariant with respect to

ẋ =

{

f(x,κ(x, T )), ∀x ∈ XT −Xf

f(x,κf (x)), ∀x ∈ Xf .

14



A proof by contradiction that XT is positively invariant is as follows: take any trajectory that
starts in XT and leaves XT at some time t (0 < t < T ) to come back to XT and eventually to Xf

in time T . Take any point on this trajectory x′ not in XT . An admissible control that gets x′ to
Xf in time T is the concatenation of the control left for the original trajectory with the controller
κf inside Xf , so x

′ must also be in XT . Thus J∗ satisfies Theorem 1 with (Ω,M) = (XT , S
X
eq) by

the same reasoning above that V does with (Ω,M) = (Xf , S
X
eq). ¥
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