
Enhancing Tolerance to Unexpected Jumps in GR(1) Games
Sumanth Dathathri

California Institute of Technology
sdathath@caltech.edu

Sco� C. Livingston
slivingston@cds.caltech.edu

Richard M. Murray
California Institute of Technology

murray@cds.caltech.edu

ABSTRACT
When used as part of a hybrid controller, �nite-memory strategies
synthesized from linear-time temporal logic (LTL) speci�cations
rely on an accurate dynamics model in order to ensure correctness
of trajectories. In the presence of uncertainty about the underlying
model, there may exist unexpected trajectories that manifest as
unexpected transitions under control of the strategy. While some
disturbances can be captured by augmenting the dynamics model,
such approaches may be conservative in that bisimulations may fail
to exist for which strategies can be synthesized. In this paper, we
consider games of the GR(1) fragment of LTL, and we characterize
the tolerance of hybrid controllers to perturbations that appear as
unexpected jumps (transitions) to states in the discrete strategy
part of the controller. As a �rst step, we show robustness to certain
unexpected transitions that occur in a �nite manner, i.e., despite
a certain number of unexpected jumps, the sequence of states ob-
tained will still meet a stricter speci�cation and hence the original
speci�cation. Additionally, we propose algorithms to improve ro-
bustness by increasing tolerance to additional disturbances. A robot
gridworld example is presented to demonstrate the application of
the developed ideas and also to perform empirical analysis.

CCS CONCEPTS
•Computingmethodologies→Arti�cial intelligence; •So�ware
and its engineering→Formal methods;

KEYWORDS
Linear Temporal Logic, Formal Methods, Synthesis, Robustness
ACM Reference format:
Sumanth Dathathri, Sco� C. Livingston, and Richard M. Murray. 2017.
Enhancing Tolerance to Unexpected Jumps in GR(1) Games. In Proceedings
of �e 8th ACM/IEEE International Conference on Cyber-Physical Systems,
Pi�sburgh, PA USA, April 2017 (ICCPS), 11 pages.
DOI: h�p://dx.doi.org/10.1145/3055004.3055014

1 INTRODUCTION
�e ability of strategies synthesized from formal speci�cations to
be tolerant to unexpected events such as disturbances or failures
is important, especially for safety-critical applications. Reactive
strategies synthesized to meet temporal logic objectives are not
error resilient by default. Even with non-critical disturbances that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICCPS, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4965-9/17/04. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3055004.3055014

were not accurately modeled during synthesis, no guarantees can
be provided about satisfaction of the temporal-formula used for syn-
thesis. In some cases it may not be possible to synthesize a strategy
if these perturbations are fully modelled through the dynamics.

In this paper, we make progress towards enhancing the tolerance
of strategies synthesized to satisfy speci�cations in the generalized
reactivity(1) (GR(1)) fragment of linear-temporal logic (LTL) [11, 12].
GR(1) formulae are considered because they are quite expressive
in terms of temporal properties captured, yet symbolic synthesis
algorithms are possible with relatively low computational complex-
ity [3, 7, 10]. �e �rst result we show is that by re�ning a strategy
synthesized to satisfy a GR(1) formula, a strategy that is winning
against a stricter formula can be generated and is robust to certain
unexpected events. �en, exploiting this tolerance, we propose
multiple algorithms that combine separately synthesized strategies
to form a single robust winning strategy. It is o�en desired that the
system can recover from these unexpected events and this be done
without resynthesizing the entire strategy again. In this regard, we
propose an approach which lets us recover from these unexpected
events without a complete resynthesis.

Understanding the response of systems to perturbations has
been extensively studied in control theory and more recently, for
reactive controllers and their synthesis. In [9, 13], the robustness
considered is in terms of bounded input-output deviation. �is re-
lates directly to the prevalent notion in control for robustness [16],
where controllers are designed to ensure bounded disturbances lead
to bounded deviations from nominal-behavior for the system. In
the current work, the tolerance to disturbances is in the form of
satisfaction of a formula representing the desired system behavior.
In [2], the e�ect of disturbances on system behavior is quanti�ed
and the focus on synthesizing robust systems that degrade grace-
fully - smallest number of system failures possible but not primarily
directed at GR(1) speci�cations. Some existing work on notions of
robustness in terms of satisfaction or violation of a formula can be
found in [1, 14].

In [4], they use a similar underlying idea to the one in the current
work to re-synthesize a strategy against a new GR(1) formula that
is more robust. In scenarios where unforeseen perturbations occur
when the controller is implemented on the hybrid system, the
results presented in our paper allow for continued execution with
guarantees in terms of formula satisfaction. In [15], motivated by a
similar idea, they propose an approach which uses the saved results
from an intermediate step during synthesis to construct sequences
of control actions that can tolerate violations of environmental
safety assumptions. However, the work presented here di�ers
in that the perturbations tolerated are more general. Additional
guarantees are provided, for instance, where there is a failure on
the system end. �is has other potential implications as discussed
in Section 6. Additionally, an approach to recover from both system
failures and environmental assumption violations when possible

2017 Int'l Conference on Cyberphysical Systems (ICCPS)
http://www.cds.caltech.edu/~murray/papers/dlm17-iccps.pdf

ICCPS, April 2017, Pi�sburgh, PA USA S. Dathathri et al.

is proposed that does not involve enumeration of an entire GR(1)
strategy as in [15].

In summary, the main contributions of this work are the follow-
ing: 1) to characterize the inherent tolerance of GR(1) strategies to
unexpected events; 2) to propose approaches to re�ne enumerated
GR(1) strategies to augment their tolerance to unexpected pertur-
bations and prove that they satisfy a stricter temporal formula; 3)
to quantify empirically the cost of augmenting the tolerance using
the proposed schemes.

2 PRELIMINARIES
Let � be a �nite set. �e power set of � (i.e., the set of all subsets
of �) is denoted by P (�). �e set of all �nite strings formed from
concatenating elements of � is denoted by �⇤, which is known as the
Kleene closure [6]. �e set of all countably in�nite strings of � is �� .
In this paper, a subscript notation is used, e.g., �0�1�2 · · ·�n 2 �⇤,
but observe that in�nite strings can also be regarded as functions
of the natural numbers N into �.

Let APenv be a set of input atomic propositions, and APsys be
a set of output atomic propositions such that APenv \APsys =
;. A state s is an assignment of True and False to the atomic
propositions in APenv [APsys. We use subset notation to indicate
states and thus, for brevity, introduce � = P (APenv [APsys).

A nondeterministic �nite-memory strategy is a pair (f ,m0) to-
gether with a �nite setM , wherem0 2 M and

f : M ⇥ P (APenv) ! P
⇣
M ⇥ P (APsys)

⌘
(1)

is a function. Intuitively the set M represents the memory of the
strategy. At each move, a new output is given depending on the
input and the current memory value. As part of the move, a memory
value is selected. Since we are only concerned with �nite-memory
strategies in this paper, we refer to them as strategies. �e set of
input-output sequences that may occur under f is de�ned as

Plays(f) =
(
� 2 �� | 9m 2 M� .8k � 0.

(mk+1,�k \ APsys) 2 f (mk ,�k \ APenv)
)
, (2)

where everym 2 M� has the same �rst element,m0. Elements of
Plays(f) are referred to as plays. �e set of pre�xes that may be
extended into a play is

Pref (f) =
�
� 2 �⇤ | 9� 2 �� .�� 2 Plays(f) . (3)

We describe speci�cations for these strategies in linear-time tempo-
ral logic (LTL) [12]. LTL formulae over propositions (APenv [APsys)
are evaluated over positions i in � 2 �� , where � = �0�1 · · · .
In addition to the Boolean operators, the standard LTL operators
2 (always), 3 (eventually) and � (next) are used here for the spec-
i�cation.

A �nite-memory strategy (f ,m0) is said to be
• input-enabled if and only if for every � env 2 P (APenv)� ,

there exists � 2 Plays(f) such that � env
k = �k \ APenv for

k � 0.
• deterministic if and only if | f (m,s) |  1 for all (m,s) 2

M ⇥ P (APenv).
• a realization of an LTL formula � if and only if (f ,m0)

is input-enabled and Plays(f) ✓ L(�), where L(�) is the

language of � . �is is to say, for every � 2 Plays(f),
� |= �.

Deterministic strategies imply a function from state sequences to
memory sequences.

R����� 1. Let (f ,m0) be a deterministic strategy. For each � 2
Plays(f), there exists a unique m 2 M

� satisfying f (mk ,�k \
APenv) =

(
(mk+1,�k \ APsys)

)
for k � 0.

It follows from the remark that a sequence of inputs determines
precisely one output sequence for a deterministic strategy.

A GR(1) formula is an LTL formula of the form

�env ^2�

env ^ *.
,

�̂

j=1
23� env

j
+/
-

=) �sys ^2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
, (4)

where �env is a state formula (i.e., without temporal operators)
that is a function of APenv, �sys is a state formula that is a func-
tion of APsys, and all � env

j , � sys
k subformulae are functions of

APenv [APsys and also without temporal operators. �e subfor-
mula �env is a function of APenv [APsys [�APenv, where

�APenv = {� x | x 2 APenv} .
Except for � operators appearing as subformulae from �APenv,
there are no other temporal operators in �

env. Finally, �sys is
de�ned similarly to �

env but as a function of APenv [APsys [�
APenv [�APsys.

To facilitate working with (4), and in particular the subformulae
�

env and �

sys, we extend the semantics of the operator |= for �nite
strings. For a �nite string � , by ��1 we refer to the last element of
� . In other words, ��1 = � |� |�1. Let � 2 �⇤. To further simplify
notation, the superscripts sys and env for s 2 � indicate projections
on to APsys andAPenv respectively. �at is, given s , ssys := s\APsys
and senv := s \ APenv. De�ne

� |= � () �� |= � for any � 2 �� , (5)

where � is any Boolean formula that is a function of APenv [
APsys [�APenv [�APsys. Because at most one� operator binds
to each atomic proposition, it follows that only �0,�1 determine
whether the formula is satis�ed.

Let � be a GR(1) formula, i.e., be of the form (4), and let (f ,m0)
be a �nite-memory strategy.

D��������� 2. A state s 2 � is said to be �-reachable under
(f ,m0) if and only if there exists � 2 Plays(f) such that for some
k � 0,

�k = s, (6)
� |= �env, (7)

�j :(j+1) |= �

env for j < k � 1. (8)

�e set of all states that are �-reachable under (f ,m0) is denoted by
I� (f ,m0).

�e �nite-memory strategy (f ,m0) is said to be a strict realization
of (or to strictly realize) the GR(1) formula � if it is a realization of

Enhancing Tolerance to Unexpected Jumps in GR(1) Games ICCPS, April 2017, Pi�sburgh, PA USA

� and for all � 2 Plays(f)
� |= �env =) � |= �sys, (9)

� |= (2� �env =) 2� �sys). (10)
Intuitively, strict realizability ensures that blocking of an environ-
ment liveness condition when the other assumptions are met only
occurs when the system is following transition rules. Here, 2� is the
‘historically’ LTL operator whose semantics are as de�ned in [10].

3 PROBLEM FORMULATION
3.1 LTL on state-memory pairs
A basic idea behind the methods presented in later sections is to
begin with a given �nite-memory strategy and construct another
one that is more robust. �e construction involves re-using “pieces”
of the given strategy, such as memory-values and transitions. As
such, the memory values occurring during each play become impor-
tant for reasoning about correctness and resilience to perturbations.
�us motivated, the semantics of |= for LTL as invoked in Section 2
is extended to handle memory values of strategies. Let (f ,m0)
be a strategy that strictly realizes �, and has set M of memory
values. Following the notation used in the previous section, let
� = P (APenv [APsys) be the set of game states. De�ne a set of
state-memory pairs,

�̄ = � ⇥M .
An element �̄ 2 �̄� is thus a sequence of state and memory pairs,
i.e., there is � 2 �� and m 2 M

� such that for k � 0, �̄k =
(�k ,mk). Given an LTL formula � that is in terms of APenv [APsys
and a variable that takes values inM , the operator |= can thus be
interpreted on �̄ .

3.2 Memory sequences associated with plays
Because properties will be expressed in terms of sequences of states
and memory values that occur during plays, a means for obtaining
memory values that can occur in the strategy during a given play is
needed. For this purpose, de�ne the function Memf on Pref (f) [
Plays(f) as follows. Let � 2 Pref (f) [Plays(f). De�ne � sys

k :=
�k \ APsys and � env

k := �k \ APenv. If � 2 Pref (f), then de�ne

Memf (�) = {m 2 M⇤ | 8k � 0,k < |� |.
(mk+1,�

sys
k) 2 f (mk ,�

env
k)}. (11)

If � 2 Plays(f), then de�ne

Memf (�) = {m 2 M� | 8k � 0.

(mk+1,�
sys
k) 2 f (mk ,�

env
k)}. (12)

Observe that Pref (f) \ Plays(f) = ; (recall (2) and (3)), hence
Memf is well-de�ned.

3.3 Problem of recovery from perturbations
�ough there are many distinct notions of robustness for control
systems, a common theme is tolerance to deviation from nominal
plant behavior. Note that the “plant” includes actuators and sen-
sors on the robot itself. �us in the context of reactive synthesis,
deviance can also arise on the side of the controlled system, not
only the adversarial environment.

We begin by introducing a few de�nitions �rst. De�ne the set
I

M
� (f ,m0) ✓ �̄ as

I

M
� (f ,m0) := {(s,m̄) | s 2 I� (f ,m0),m̄ =m |� s | .

� 2 �⇤,m 2 M⇤.
�s 2 Pre f (f)^

m 2 Memf (�s) ^
8k < |� |.�k 2 I� (f ,m0)}.

I

M
� (f ,m0) contains the set of �-reachable states along with the

corresponding memory locations. Given that we have the set of
�-reachable states, we need to extract all paths to these �-reachable
states that have only �-reachable states to get all possible combi-
nations of memory, �-reachable states to which the system can be
perturbed to. Given a �-reachable state s , we �nd a pre�x (�s) that
ends with this state and this pre�x has only �-reachable states (Con-
dition: 8k < |� |.�k 2 I� (f ,m0)). Once this pre�x has been found,
we generate the memory sequence in accordance with (f ,m0) to get
the corresponding memory at this state in the strategy (Condition:
8k < |� |.

⇣
mk+1, (�s)k+1 \ APsys

⌘
2 f (mk , (�s)k+1 \ APenv)).

Using the de�nitions above, a function is constructed that indi-
cates feasible transitions (in a sense to be made precise) that are not
in the given strategy f . �is function is crucial for studying pertur-
bations and applications of a given strategy that are extrinsic to its
original semantics. To this end, de�ne the set of all state-memory
pairs that can be reached by some play of f , i.e.,

I (f) =
(
(s,w) | 9� 2 Plays(f), 9m 2 Memf (�) :

9k : s = �k ^w =mk+1
)
. (13)

Using this de�nition of reachable state-memory pairs, we introduce
the notion of a perturbation for a strategy (f ,m0) that realizes �.

D��������� 3. A perturbation for a controller implementing the
�nite-memory strategy (f ,m0) occurs when the system transitions
from a state-memory pair (s,w) 2 I (f) to a state s 0 in � such that
ss

0 6|= �

env or for allw 0 2 M (w 0,s 0 \ APsys) < f (w ,s 0 \ APenv).

�e condition ss

0 |= ¬�env corresponds to the environment
violating an assumption on its behavior. And 8w 0 2 M : (w 0,s 0 \
APsys) < f (w ,s 0 \ APenv) corresponds to a disturbance during the
application of an output action. �is work proposes approaches
that enable recovery from certain such perturbations.

De�ne the function ExtTs on I (f) as follows. For (s,w) 2 I (f),
ExtTs(s,w) = {(s 0,w 0) | s 0 2 �,w 0 2 M .

(s 0,w 0) 2 IM� (f ,m0)^
ss

0 |= �

sys^

(w 0, (s 0)sys) < f (w , (s 0)env) _ ss 0 |= ¬�env

!
}.

�e function ExtTs maps a state-memory pair (s,m) in a strategy
to all state-memory pairs (s 0,m0) that occur in I

M
� (f ,m0) that are

not immediate successors according to (f ,m0), or violate the as-
sumption on environmental safety (Condition: (w 0,s 0 \ APsys) <
f (w ,s 0\APenv)_ss 0 |= ¬�env). An additional constraint is imposed
where it is required that the transition between the state-memory

ICCPS, April 2017, Pi�sburgh, PA USA S. Dathathri et al.

pair (s,m) and any state-memory pair ((s 0,m0) 2 ExtTs(s,m)) to
which it is mapped to does not violate �sys i.e ss 0 |= �

sys.

3.4 Re�nement of a strategy
Given� and (f ,m0)we construct a nondeterministic strategy (f̄ ,m0)
with f̄ : P (APenv)� ⇥M ! P (�̄�). Because the strategy is non-
deterministic, for a given sequence of inputs, there is a set of state-
memory sequences generated.

Plays(f̄) =
(
� 2 �� | 9m 2 M� .

⇣
8k > 0.

(mk+1,�
sys
k) 2 f (mk ,�

env
k)

_(�k ,mk+1) 2 ExtTs(�k�1,mk)
⌘

^(m1,�
sys
0) 2 f (m0,�

env
0)

)
. (14)

Observe that the successor memory-state pair (m0,s 0) in Plays(f̄)
depends on the current memory-state pair (m,s) and the next input
sinput = s

0 \ APenv. By augmenting the memory-values with
elements from �, new memory-values can be created that f̄ can
use as memory inputs. Given a memory-state pair and an input
in P (APenv), f̄ can map to an output in P (APsys) and a memory-
value in the augmented memory domain. �is way Plays(f̄) can
be used to construct a strategy f̄ (in the conventional sense) that
maps from a memory value and an input to a memory value and
an output.

Notice that herem is the memory sequence corresponding to �
in accordance with f̄ .

To simplify notation, for (s,m) 2 �̄ introduce the indicator for-
mula

1(s,m) :=
^

p2s[{m }
p ^

^

q2APenv [APsys [M\s[{m }
¬q,

whereM is a �nite universal set of memory values. �e indicator
formula 1(s,m) evaluates to True at (x ,�) 2 � ⇥ M if and only if
x = s and � =m. De�ne 1jump as

1jump :=
^

(s,m)2dom (ExtTs)

1(s,m) !

�
_

(s 0,m0)2ExtTs(s,m)

1(s 0,m0)
!
.

P���������� 4. Let � 2 Plays(f̄) and m 2 M

� such that it
satis�es the conditions in (14), and let �̄ 2 �̄� such that 8k � 0.�̄k =
(�k ,mk+1). �en,

�̄ |= �env ^2(�env _ 1jump) ^ *.
,

�̂

j=1
23� env

j
+/
-
^32¬1jump

=) �sys ^2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
. (15)

�is proposition arises as a special case of Proposition 5 where
n = 0 in the setup before Proposition 5. Proposition 5 proposes an
approach to combine multiple strategies to provide tolerance to per-
turbations, when there is just one strategy the current proposition
results.

Figure 1: Gridworld setup

Intuitively, the practical signi�cance of Proposition 4 is that, if
there is a disturbance that causes an unexpected transition to some
state that is �-reachable in other plays and if there are only �nitely
many such disturbances, then execution of the �nite-state machine
can continue a�er an appropriate change of its internal state (mem-
ory value) and still result in a correct input-output sequence. If �env
is violated during a particular transition between a state s and its
successor s 0, i.e, ss 0 6|= �

env, and s 0 is �-reachable, then a sequence
of input-outputs that satis�es the system part of � is still possible
if there are �nitely many such disturbances. It also allows for such
disturbances during application of the output action to a hybrid
system – where (m0,s 0 \ APsys) < f (m,s 0 \ APenv). Herem is the
current memory value and s 0 \ APenv the input and s 0 \ APsys the
ground truth system state a�er the application of the output action.

However, this result not does imply that all disturbances in
which the system fails to transition to the desired state or the
transition rule �env is violated can be handled. Only perturbations
to �-reachable states that do not violate �sys are tolerated.

�e added 32¬1jump segment on the assumption side in (15)
ensures that the perturbations do not occur in�nitely o�en.

4 AUGMENTING ROBUSTNESS
To illustrate the methods proposed in this section to augment ro-
bustness, we begin with a small deterministic example. Consider
planar robotic motion planning on a 4 ⇥ 4 grid. In the example in-
stance shown in Figure 1, the robot begins in the cell marked ‘I’ and
has to visit the cells marked ‘G’ in�nitely o�en while avoiding the
shaded walls. �e robot can transition to any of its non-diagonally
adjacent cells.

For a given gridworld, two strategies satisfying the safety and
progress requirements but di�ering in their initial poses are syn-
thesized. While the robot was executing Strategy 1 (in Figure 2),
a perturbation causes the robot to transition from the cell Y =
(Yr ,Yc) = (0,1) with memorym = 11 to (0,2) where Yr refers to
the row position of the robot and Yc refers to the column position.
�is transition is not desired according to Strategy 1 but is still safe
for the system, i.e, �sys is still satis�ed by the move of the robot
from (0,1) to (0,2). However, the strategy fails to predict what the

Enhancing Tolerance to Unexpected Jumps in GR(1) Games ICCPS, April 2017, Pi�sburgh, PA USA

Y=(0,2)
m=10

Y=(0,1)
m=11

Y=(0,0)
m=12

Y=(1,0)
m=14

Y=(0,0)
m=13

Y=(2,0)
m=15

Y=(1,0)
m=16

Figure 2: Strategy 1

Y=(3,2)
m=1

Y=(2,2)
m=9

Y=(1,2)
m=2

Y=(0,2)
m=3

Y=(0,1)
m=4

Y=(1,0)
m=6

Y=(0,0)
m=5

Y=(2,0)
m=7

Y=(1,0)
m=8

(a) Strategy 2

Y=(3,2)
Aux=0
m=31

Y=(2,2)
Aux=0
m=32

Y=(1,2)
Aux=0
m=33

Y=(0,2)
Aux=0
m=34

Y=(0,2)
Aux=1
m=35

(b) Strategy 3

Figure 3: Synthesized strategies to augment robustness

sequence of actions from there should be such that� can be satis�ed.
Proposition 5 guarantees that continued execution along strategy 2
from the state (0,2) with memorym = 3 would satisfy � for the
robot. Here, Strategy 2 (in Figure 3a) was synthesized to satisfy a
speci�cation similar to the one used to synthesize Strategy 1.

Now consider a scenario where it is not desirable to resynthesize
or enumerate a new strategy. We wish to �nd a sequence of actions
to a �-reachable state visited by Strategy 1 such that continued
execution along Strategy 1 satis�es �. Proposition 6 guarantees the
correctness of the algorithm to �nd such a sequence of actions. For
this example, Strategy 3 (in Figure 3b) depicts one such path that
was synthesized starting from (3,2) reconnecting to a �-reachable
state. �e reader must note that the absence of an adversary in this
example makes the recovery process trivial, but solving a reach-
ability game for general GR(1) formulae so as to reconnect to a
�-reachable state in the original strategy is more involved.

4.1 Combining Multiple Strategies
In this section, the intuition from Section 3.4 is used and a more
general proposition is presented and proved. �e results in this sec-
tion allow for the concatenation of multiple strategies synthesized
with formulae di�ering in the initial condition.

Let �0 be a GR(1) formula, and let (�0,m0) : M0 ⇥ P (APenv) !
P

⇣
M0 ⇥ P (APsys)

⌘
be a strategy that realizes �0. Let �1,�2, . . . ,�n

be the additional states in � to which the system is likely to be
perturbed to. �e strategy must visit these states for the system
to be able to recover a�er being perturbed to these states. For
i 2 {1,2, . . . ,n} where n < 1, de�ne �env

i as a Boolean formula
which is True for a state s in � if and only if s \ APenv = �

env
i .

Similarly, de�ne �
sys
i as a Boolean formula which is True for a

state s in � if and only if s \ APsys = �
sys
i .

�en, construct a set of strategies (�i ,mi
0) such that for each

i 2 {1,2, . . . ,n}, (�i ,mi
0) strictly realizes �i , where

�i = �env
i ^2�

env ^ (
�̂

j=1
23� env

j) =)

�
sys
i ^2�

sys ^ (
K̂

k=1
23�

sys
k). (16)

To simplify notation, without loss of generality, let �i : Mi ⇥
P (APenv) ! P

⇣
Mi ⇥ P (APsys)

⌘
such that 8i, j 2 {0,1, . . . ,n},i ,

j ! Mi \Mj = ;.
Let M̄ = [

i=0,1,2, ...,n
Mi . De�ne a partial function ExtTs : �̄ ⇥ M̄ !

P ([
i=0,1,2, ...,n

I

M
� (�i ,mi

0)) such that for (s,w) 2 I (�i) for some i  n

,

ExtTs(s,w) = {(s 0,w 0) | s 0 2 �,w 0 2 Mi ,i 2 {0,1, . . . ,n}.
(s 0,w 0) 2 IM�i (�i ,m

i
0)^

ss

0 |= �

sys^

(w 0,s 0 \ APsys) < �i (w ,s 0 \ APenv) _ ss 0 |= ¬�env

!
}.

De�ne 1̄jump as

1̄jump :=
^

(s,m)2dom (ExtTs)

1(s,m)

! �
_

(s 0,m0)2ExtTs(s,m)

1(s 0,m0)
!
.

4.1.1 Robust Strategy from combining strategies. Construct a
nondeterministic strategy (�̄,m0

0).

Plays(�̄) =
(
� 2 �� | 9m 2 M̄� .8k > 0.9i .

(mk+1,�
sys
k) 2 �i (mk ,�

env
k)

_

(�k ,mk+1) 2 ExtTs(�k�1,mk)

!

^(m1,�
sys
0) 2 �0 (m0

0,�
env
0)

)
. (17)

Consider � 2 Plays(�̄) andm 2 (M̄)� that satisfy the conditions
in (17). Let �̄ 2 �̄� such that 8k � 0.�̄k = (�k ,mk+1). Here,m is

ICCPS, April 2017, Pi�sburgh, PA USA S. Dathathri et al.

Algorithm 1Multi-strategy combination (Section 4.1)

Input: • Finite-memory strategies (�i ,mi
0) 8i 2

{0,1,2, . . . ,n},
• Sequence of inputs � env 2 AP�env,
• A system to which the sequence � sys 2 (P (APenv))�
can be applied to and its state s 2 � a�er the control
action has been applied
• Set IM�i (�i ,m

i
0) and function ExtTs

Output: Sequence of control actions � sys 2 P (AP�sys)
1: memory=m0

0, i=1, safety=1, l=0
2: (memoryNew, � sys

0) = Strategyf : (memory, � env
0)

3: while (True) do
4: if (� env

i�1 ,�
sys
i�1) (�

env
i) |= �

env and safety=1 then
5: Choose (memoryNew, � sys

i)2 fl : (memory, � env
i)

6: Run: SafetyCheck
7: else if safety=0 ^ (� env

i�1 ,�
sys
i�1) (�

env
i) |= �

env then
8: if 9j  n,m 2 M̄ .(m,� env

i�1 [�
sys
i�1) 2 IM� j (fj ,m

j
0) then

9: Choose (memoryNew,� sys
i) 2 fj (m,� env

i)
10: l = j

11: Run: SafetyCheck
12: else
13: EXIT
14: end if
15: else if (� env

i�1 ,�
sys
i�1) (�

env
i) 6|= �

env then
16: if 9j  n,m 2 M̄j ,s 2 P (APsys).(m,� env

i [s) 2
ExtTs(memor�,� env

i�1 [�
sys
i�1) then

17: (memoryNew,� sys
i) = (m,s)

18: l = j

19: Run: SafetyCheck
20: else
21: EXIT
22: end if
23: end if
24: i+=1, memory=memoryNew
25: end while

Algorithm 2 SafetyCheck

1: apply � sys
i , measure s

2: if (� env
i�1 ,�

sys
i�1)s 6|= �

sys then
3: EXIT
4: end if
5: if (� env

i �

sys
i) = s then

6: safety=1
7: else
8: safety=0, � env

i =s \ APenv, �
sys
i =s \ APsys

9: end if

the memory-sequence corresponding to � generated in accordance
with �̄.

P���������� 5. For all such �̄ , the following holds:

�̄ |= �env
0 ^2(�env _ 1̄jump) ^ *.

,
�̂

j=1
23� env

j
+/
-
^32¬1̄jump

=) �
sys
0 ^2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
. (18)

A proof is provided in the appendix.
Algorithm 1 gives a formal description of the implementation

of a controller on a ‘plant’ that exploits the nondeterminism in the
strategy �̄ to tolerate certain perturbations. Algorithm 2 measures
the state of the system a�er the application of the output action. If
�

sys is violated because of a disturbance, execution is terminated.

When there is a system-actuation failure i.e

(w 0,s 0 \ APenv) <

�j (w ,s 0 \ APsys)
!
, it is checked if the resulting state s

0 corre-

sponds to a transition that is permissible in accordance with �̄.
If so, the memory is reset to an appropriate memory such that
(s 0,w 0) 2 IM�i and execution is continued. At a state s , if the next
input (s 0)env 2 P (APenv) is such that s (s 0)env |= ¬�env then we
choose (s 0)sys as indicated by ExtTs. In this case we continue ex-
ecution from a state indicated by ExtTs as continuing execution
along the original strategy would give no guarantees. By choosing
to deviate in accordance with Proposition 5, we are able to pro-
vide guarantees about system behavior. To summarize, for a set of
strategies {�i : i  n}, we proposed an algorithm that can tolerate
an augmented set of perturbations �nitely many times by allowing
for hops between the di�erent strategies.

Informal descriptions of several parts of Algorithm 1:
• Line 4–6: Check for successful actuation and satisfaction of

assumptions on environment, and continue along original
strategy.

• Line 7–14: Check for actuation failures and satisfaction of
environmental assumption violation, and continue along
altered path.

• Line 15–21: Check for environmental assumption violation,
and continue execution along altered path.

4.2 Building patches to handle perturbations
�is section proposes an approach to add ‘patches’ to a strategy
that enable recovery from perturbations by �nding a safe sequence
of states back to the original strategy. As opposed to the previous
section where complete strategies were synthesized, here only a
recovery patch is synthesized. Let (h0,m0

0) : M0 ⇥ P (APenv) !
P (APsys) (M0 ⇥P (APsys)) be a �nite-memory strategy that strictly
realizes a GR(1) formula �. For i 2 {1,2, . . . ,n}, let �i be a state in �
such that �i < I(h0,m0

0). De�ne �
env
i ,�

sys
i corresponding to �i as

in Section 4.1. De�ne Tr each as a Boolean formula that evaluates
to True at a state s in � if and only if s 2 I� (h0). De�ne �ir each as
below:

�

i
r each := *.

,
�env
i ^2�

env ^ (
K̂

k=1
23� env

k)+/
-
=)

⇣
�
sys
i ^2�

sys ^3Tr each
⌘
.

Enhancing Tolerance to Unexpected Jumps in GR(1) Games ICCPS, April 2017, Pi�sburgh, PA USA

For i  n, let (hi ,mi
0) : Mi⇥P (APenv) ! P (APsys) (Mi⇥P (APsys))

be a �nite-memory strategy that strictly realizes(de�ned as for the
GR(1) speci�cation)�ir each . De�ne M̄ as before and letMi \Mj = ;
for any i, j  n with i , j. Note that �ir each can be converted to a
GR(1) formula by introducing an auxillary variable as in [3]. De�ne
I

r each
�ir each

as

I

M�r each
�ir each

:= {(s,w̄) | s 2 I�ir each (h
i ,mi

0),w̄ =m |� s | .

� 2 �⇤,m 2 M⇤i .
�s 2 Pref (hi)^

m 2 Memhi (�s)^
8k < |� |.(�k 2 I�ir each (h

i ,mi
0) ^ �k |= ¬Tr each)}.

�is de�nition is similar to that of IM� except for the additional
constraint where we require that all states in the pre�x are such
that they are not from I� (h0,m0

0).
�is is to allow pertubation to states in sequences before Tr each

was satis�ed. �is is because if a sequence of states in Plays(hi)
(for i > 0) satis�es �env

i ^2�

env ^ (VK
k=123� env

k) then it satis�es
3Tr each . Since we are synthesizing a patch back to the original
strategy, jumping to a state in I

M�r each ensures that if the envi-
ronment satis�es the assumptions on safety and liveness, we will
reach a state where Tr each holds.

Next, de�ne ExtTsr each for (s,w) 2 I (hi) for some i  n as

ExtTsr each (s,w) := {(s 0,w 0) | s 0 2 �,w 0 2 Mi ,

i 2 {0,1, . . . ,n}.
(i = 0) =) (s 0,w 0) 2 IM� (h0,m0

0)^
(i > 0) =) (s 0,w 0) 2 IM�r each�ir each

)^

ss

0 |= �

sys^

(w 0, (s 0)sys) < hi (w , (s 0)env) _ ss 0 |= ¬�env

!
}.

�is again is similar to the earlier de�nition of ExtTs except that
we distinguish between the case where i = 0 and i > 0. De�ne
¯̄1jump as:

¯̄1jump :=
^

(s,m)2dom (ExtTsr each)

1(s,m)

! ¬�
_

(s 0,m0)2ExtTsr each (s,m)

1(s 0,m0)

!
.

4.2.1 ‘Patched’ Robust Strategy. Construct a nondeterministic
strategy h̄ de�ned as below:

Plays(h̄) =
(
� 2 �� | 9m 2 M̄� .8k > 0.9i .

(i = 0) =)

(mk+1,�

sys
k) 2 hi (mk ,�

env
k)

_(�k ,mk+1) 2 ExtTsr each (�k�1,mk)

!

^ (i > 0) =)
266664(�k ,mk+1) 2 ExtTsr each (�k�1,mk)

_

8w 2 M0.(w ,�k) < I

M
� (h0,m0

0)^

(mk+1,�
sys
k) 2 hi (mk ,�

env
k)

!#

^(m1,�
sys
0) 2 h0 (m0

0,�
env
0)

)
. (19)

�e de�nition of h̄ is similar to f̄ de�ned earlier, except for i > 0.

�e condition (i > 0) !
266664(�k ,mk+1) 2 ExtTs(�k�1,mk) _

8w 2

M0.(w ,�k) < IM� (h0,m0
0) ^ (mk+1,�

sys
k) 2 hi (mk ,�

env
k)

!#
ensures

that unless pertubed according to ExtTsr each , on reaching a state
in state in I� (h0), execution is continued in accordance with the
strategy h0. Consider � 2 Plays(h̄) andm 2 (M̄)� that satisfy the
conditions in (19). Let �̄ 2 �̄� such that 8k � 0.�̄k = (�k ,mk+1).
Here,m is the memory-sequence corresponding to � generated in
accordance with h̄.

P���������� 6. For all such �̄ , the following holds:

�̄ |= �env
0 ^2(�env _ ¯̄1jump) ^ *.

,
�̂

j=1
23� env

j
+/
-
^32¬¯̄1jump

=) �
sys
0 ^2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
. (20)

A proof is provided in the appendix.
Algorithm 3 formally describes the implementation of a con-

troller based on h̄. �e controller makes use of the nondeterminism
to recover from perturbations to the patches. Execution is begun
along the strategy h0 till a perturbation sets in. �e controller at-
tempts to recover using a patch (when perturbed onto a patch) if
feasible and execution is continued along the patch to a state in
I� (h0). Following this, execution along the original strategy is con-
tinued. Also, note the algorithm allows for jumps to �-reachable
states in the strategy itself (as does h̄). �e strategy also allows for
perturbations from one patch to another during execution of the
patch itself. In the presence of an adversary, the �-reachable states
encodes the adversary’s state as well as the system state.

Informally, the recovery trajectory takes the system to A when
the adversary reaches B where (A,B) is a �-reachable state. Addi-
tional informal descriptions of speci�c parts of Algorithm 3:

• Line 5–7: Check for successful actuation, satisfaction of
environmental assumption, and for whether original strat-
egy is being executed before continuing execution along
original strategy.

ICCPS, April 2017, Pi�sburgh, PA USA S. Dathathri et al.

Algorithm 3 Execute controller for a patched strategy
Input: • GR(1) formula �

• Finite-memory strategy (h0,m0
0) realizing� and a set of

strategies (hl ,ml
0) for l 2 {1,2, . . . ,n} realizing �ir each

• Sequence of inputs � env 2 P (APenv)�
• System whose state s 2 � is measured a�er a control
action (2 P (APsys)) has been applied
• Sets I� (h0), IM0 (h0,m0

0) := I

M
� (h0,m0

0), I
M
l (hl ,ml

0) :=
I

M�r each
�lr each

(hl ,ml
0) for l 2 {1,2, . . . ,n}

Output: Sequence of control actions � sys 2 P (AP�sys)
1: memory=m0

0
2: i=1, l=0, safety=1, reached=1
3: (memoryNew, � sys

0) = Strategyh0 : (memory, � env
0)

4: while (True) do
5: if (� env

i�1 ,�
sys
i�1) (�

env
i) |= �

env and safety=1 and reached=1
then

6: (memoryNew, � sys
i) = Strategy h0 : (memory, � env

i)
7: Run: SafetyCheck
8: else if (� env

i�1 ,�
sys
i�1) (�

env
i) |= �

env and safety=1 and
reached=0 then

9: (memoryNew, � sys
i) = Strategy hl : (memory, � env

i)

10: if � sys
i [� env

i 2 I� (h0,m0
0) then

11: Choose (memoryNew, �

sys
i) such that

(� sys
i [� env

i ,memor�New) 2 IM0
12: reached=1
13: end if
14: Run: SafetyCheck
15: else if safety=0 ^ (� env

i�1 ,�
sys
i�1) (�

env
i) |= �

env then
16: if 9j  n,m 2 M̄ .(m,� env

i�1 [�
sys
i�1) 2 IMj (hj ,m

j
0) then

17: Choose (memoryNew,� sys
i) 2 fj (m,� env

i)
18: l = j , if j > 0 then reached=0.
19: Run: SafetyCheck
20: else
21: EXIT
22: end if
23: else if (� env

i�1 ,�
sys
i�1) (�

env
i) 6|= �

env then
24: if 9j  n,m 2 M̄j ,s 2 P (APsys).(m,� env

i [s) 2
ExtTsr each (memor�,� env

i�1 [�
sys
i�1) then

25: (memoryNew,� sys
i) = (m,s)

26: l = j , if j > 0 then reached=0.
27: Run: SafetyCheck
28: else
29: EXIT
30: end if
31: end if
32: i+=1, memory=memoryNew
33: end while

• Line 8–9: Check if executing a patch and update accord-
ingly.

• Line 10–13: Check if �-reachable state from original strat-
egy has been reached during execution along the patch,
and switch back to original strategy if condition holds.

• Line 15–22: Check for actuation failures and satisfaction
of environmental assumptions, and continue along a patch
with an altered memory value.

• Line 23–30: Check for environmental assumption viola-
tion, and continue execution along a patch with an altered
memory value.

5 EXAMPLE IMPLEMENTATION AND
ANALYSIS

Examples are implemented for the analysis of the techniques de-
scribed in Section 4 for the task of planar robot motion planning
in environments similar to that shown in Figure 1. �e robot is
required to visit a set of locations in�nitely o�en. A moving obsta-
cle whose motion constraints are similar to those of the robot but
di�ering in the starting position and progress states is added to the
setup.

5.1 Complexity for re�nement
An empirical analysis of the computational costs involved in each
of the approaches to augment robustness is presented here. �e
computations were performed on a 2.40GHz �adcore machine
with 16 GB of RAM. �e synthesis was performed with gr1c[8],
used in the Temporal Logic Planning (TuLiP) toolbox [5]. �e
experiment described below is repeated 50 times and the average
synthesis times are presented (See Table 1).

Random 5⇥5 gridworlds are generated with a wall density of
0.2. �e moving obstacle and robot have two di�erent progress-
locations which they visit in�nitely o�en and di�erent initial posi-
tions. For each of the approaches perturbation points are chosen as
below:

• Multiple Strategy Approach: A single perturbation point
is chosen that is not in the set of �-reachable states visited
by the initial strategy. A strategy is synthesized with this
perturbed state as the initial condition and the states visited
by the new strategy are stored. A new perturbation point
is chosen that was not visited by the earlier strategies. And
the procedure is repeated.

• Patching: �e points are chosen as in the previous ap-
proach and patches are generated iteratively. However, at
each iteraton only those states from the new strategy are
stored that occurred before the trajectories reached the
stored set of �-reachable states.

Approach Coverage
(unique
states)

Mean time
for synthesis(s)

New strategy from perturbed state 145.14 0.22
Patching 173.63 2.98

Table 1: Runtimes and unique states visited in 50 trials.

�e coverage i.e the number of unique states - robot, moving
obstacle position combinations - visited by each strategy is also
presented. It loosely characterizes the robustness for the concate-
nated strategies, as this count represents the number of �-reachable
states to which the system can be perturbed to. Patching is imple-
mented iteratively, with the visited states augmented in each patch.

Enhancing Tolerance to Unexpected Jumps in GR(1) Games ICCPS, April 2017, Pi�sburgh, PA USA

With iterative patching, the time for synthesis tends to decrease
progressively with each patch for a given gridworld because the
number of unique visited states tends to go up.

6 DISCUSSION AND CONCLUSION
�is paper characterizes the inherent robustness of �nite-memory
strategies synthesized to satisfy GR(1) formulae and also proposes
approaches to re�ne them to increase their tolerance to pertur-
bations. We show that these re�ned strategies satisfy a stricter
formula than the one used for synthesis. �is tolerance is useful
when the model is not exact for either the system behavior or the
environment behavior. However, not all perturbations as de�ned
in Section 3 can be tolerated. �e system cannot recover from per-
turbations where �sys is violated and perturbations to states that
are not winning using the approaches described here.

Another application of the results presented here is in the pres-
ence of noise in measurements. Reacting to environmental events
in physical systems involves measurements about the environment,
and in the presence of noise, false inferences could be made under
which the guarantees provided in terms of formula satisfaction
would no longer hold. False inferences about an environmental
event could alternatively be viewed as the system failing to apply
the correct control action. �ough �env was satis�ed, the false infer-
ence could result in the system applying an incorrect control action.
Let � 2 P (APenv) be the inferred environmental event and the
ground truth environmental event be µ 2 P (APenv) . �e system
control action s 2 P (APsys) was decided based on f (mk ,�) where
mk is the current memory state. �is can be viewed as a perturba-
tion with (mk+1,s) < f (mk ,µ) for anymk+1 2 M . If s [µ 2 � is a
state for which any of the above described approaches apply, the
system can recover to satisfy the guarantees on system behavior.

Future Work. We plan to extend the framework built here to the
case of in�nitely many jumps. We also intend to develop a metric
that would quantify the robustness added to a strategy through
a given concatenation and prescribe approaches for re�nement
of strategies to make them more robust with optimal synthesis
time/memory costs. Also, we plan to implement the approaches
in Sections 4.1 and 4.2 using enumeration from a stored BDD com-
puted during the original synthesis as opposed to resynthesis.

ACKNOWLEDGMENTS
�is work was partially supported by United Technologies Cor-
poration and IBM, through the industrial cyber-physical systems
(iCyPhy) consortium and by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA.

REFERENCES
[1] Roderick Bloem, Krishnendu Cha�erjee, Karin Greimel,�omas A. Henzinger,

and Barbara Jobstmann. 2010. Computer Aided Veri�cation: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg, Chapter Robustness in the Presence of
Liveness, 410–424. DOI:h�p://dx.doi.org/10.1007/978-3-642-14295-6 36

[2] R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann. 2009. Synthesizing
robust systems. In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009.
85–92. DOI:h�p://dx.doi.org/10.1109/FMCAD.2009.5351139

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
2012. Synthesis of Reactive(1) designs. J. Comput. System Sci. 78 (May 2012),
911–938. Issue 3. DOI:h�p://dx.doi.org/10.1016/j.jcss.2011.08.007

[4] Rüdiger Ehlers and Ufuk Topcu. 2014. Resilience to Intermi�ent Assumption Vi-
olations in Reactive Synthesis. In Proceedings of the 17th International Conference
on Hybrid Systems: Computation and Control (HSCC ’14). ACM, New York, NY,
USA, 203–212. DOI:h�p://dx.doi.org/10.1145/2562059.2562128

[5] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray. 2016.
Control design for hybrid systems with TuLiP: �e Temporal Logic Planning
toolbox. In 2016 IEEE Conference on Control Applications (CCA). 1030–1041. DOI:
h�p://dx.doi.org/10.1109/CCA.2016.7587949

[6] John E. Hopcro� and Je�rey D. Ullman. 1979. Introduction to Automata�eory,
Languages, and Computation. Addison-Wesley.

[7] Yonit Kesten, Nir Piterman, and Amir Pnueli. 2005. Bridging the gap between
fair simulation and trace inclusion. Information and Computation 200 (2005),
35–61. DOI:h�p://dx.doi.org/10.1016/j.ic.2005.01.006

[8] Sco� C. Livingston. gr1c: a collection of tools for GR(1) synthesis and related
activities. h�p://sco�man.net/2012/gr1c. (��). [Online; accessed 15-March
2016].

[9] Rupak Majumdar, Elaine Render, and Paulo Tabuada. 2011. Robust Discrete
Synthesis against Unspeci�ed Disturbances. In Hybrid Systems: Computation and
Control (HSCC).

[10] Zohar Manna and Amir Pnueli. 1990. A Hierarchy of Temporal Properties. In
(PODC ’90) Proceedings of the ninth annual ACM Symposium on Principles of
Distributed Computing. 377–408. DOI:h�p://dx.doi.org/10.1145/93385.93442

[11] Zohar Manna and Amir Pnueli. 1992. �e Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag New York, Inc., New York, NY, USA.

[12] Amir Pnueli. 1977. �e Temporal Logic of Programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (SFCS ’77). IEEE Computer
Society, Washington, DC, USA, 46–57. DOI:h�p://dx.doi.org/10.1109/SFCS.1977.
32

[13] Ma�hias Rungger and Paulo Tabuada. 2014. Abstracting and Re�ning Robustness
for Cyber-physical Systems. In Proceedings of the 17th International Conference
on Hybrid Systems: Computation and Control (HSCC ’14). ACM, New York, NY,
USA, 223–232. DOI:h�p://dx.doi.org/10.1145/2562059.2562133

[14] D. C. Tarraf, A. Megretski, and M. A. Dahleh. 2008. A Framework for Robust
Stability of Systems Over Finite Alphabets. IEEE Trans. Automat. Control 53, 5
(June 2008), 1133–1146. DOI:h�p://dx.doi.org/10.1109/TAC.2008.923658

[15] Kai WengWong, Rüdiger Ehlers, and Hadas Kress-Gazit. 2014. Correct high-level
robot behavior in environments with unexpected events. In Robotics: Science and
Systems Conference (RSS’14). h�p://www.roboticsproceedings.org/rss10/p12.pdf

[16] Kemin Zhou, John C. Doyle, and Keith Glover. 1996. Robust and Optimal Control.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Appendices
A PROOF OF PROPOSITION 5

P����. Let � 2 �� andm 2 M

� be such that (�k ,mk) = �̄k .
When �̄ |= 231̄jump , the proposition holds trivially. Consider
the case when �̄ |= 32¬1jump . �is means that there are only
�nite instances of �̄k �̄k+1 |= 1̄jump i.e in other words, only for a
�nite number of k > 0, (�k ,mk) 2 ExtTs(�k�1,mk�1). Let there be
r < 1 such instances i.e 9il 2 N such that �̄il�1 �̄il |= 1̄jump for
l 2 {1,2, . . . ,r }.

Without loss of generality, assume 0 < i1 < i2 < · · · < ir .
8l 2 {1,2, . . . r �1}9ql 2 {0,1,2, . . . ,n} such that (mi ,�i \APsys) =
�ql (mi�1,�i \ APenv) for i 2 {i j ,i j+1, . . . ,i j+1 � 2} . Otherwise at
some i between i j and i j+1 � 2, �̄i �̄i+1 |= 1̄jump – contradicting
our assumption. Similarly, 8i 2 {0,1, . . . ,i1 � 2}, (mi ,�i \APsys) =
�0 (mi�1,�i \ APenv).
8l 2 {1,2, . . . ,r � 1}, (�il ,mil) 2 ExtTs(�il�1 ,mil�1) by the def-

inition of 1̄jump . From the de�nition of ExtTs we can conclude
that (�il ,mil) 2 I�ql wheremil 2 Mql i.e �il is �ql -reachable. For
l 2 {1,2, . . . ,r } by de�nition of �i -reachability and the discussion
above, there exists �l 2 Plays(�ql) and kl such that �il = �

l
kl
,

�

l |= �env
0 , and

�

l
j :(j+1) |= �

env for j < k � 1, (21)

http://dx.doi.org/10.1007/978-3-642-14295-6_36
http://dx.doi.org/10.1109/FMCAD.2009.5351139
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1145/2562059.2562128
http://dx.doi.org/10.1109/CCA.2016.7587949
http://dx.doi.org/10.1016/j.ic.2005.01.006
http://scottman.net/2012/gr1c
http://dx.doi.org/10.1145/93385.93442
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/2562059.2562133
http://dx.doi.org/10.1109/TAC.2008.923658
http://www.roboticsproceedings.org/rss10/p12.pdf

ICCPS, April 2017, Pi�sburgh, PA USA S. Dathathri et al.

and 8l  r � 1
�

l
kl+w

= �il+w for 0  w < il+1 � il , (22)

For l = r
�

l
kl+w

= �il+w for 0  w , (23)
since �̄ir : |= ¬21̄jump .

We write � l � l� l = �

l by taking � lj = �

l
j for 0  j < k . For l 

r�1, � lw = �

l
kl+w

where 0  w < il+1�il , and� lj�kl�il+1+il = �

l
j for

j � kl +il+1�il . For l = r , (� r�r)j�kr = �j for j � kr . To conclude
the setup, we argued that � = � 0� 1� 2 . . . � r�r where � 0 2 Pref (�0).
Combine withm as in constructing �̄ to have �̄ = �̄ 0�̄ 1�̄ 2 . . . �̄n�̄r .

We want to show that

�̄

0
�̄

1
�̄

2 · · · �̄k �̄k+1 · · · �̄n�̄n |=

�env
0 ^2(�env _ 1̄jump) ^ *.

,
�̂

j=1
23� env

j
+/
-

=) �
sys
0 2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
. (24)

�is is equivalent to at least one of the following subformulae being
satis�ed: ¬�env

0 , 3(¬�env ^ ¬1̄jump), 32¬� env
j for some j, or

�
sys
0 ^2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
. (25)

Since � 0 2 Pref (�0) by hypothesis, there exists � 2 �� such that
�

0
� 2 Plays(�0). Also by hypothesis, (�0,m0) realizes �0, i.e.,

Plays(�0) ✓ L(�0), hence �

0
� |= �0. Note that |� 0 | � 1 since

(m1,� 0 \ APenv) = �0 (m0,� 1 \ APsys) by the de�nition of Plays f̄ .
�

0
� |= ¬�env

0 if and only if �̄ |= ¬�env
0 . �us, if � 0� |= ¬�env

0 , then
(24) holds directly. Otherwise (i.e., if � 0� |= �env

0), consider the
subformula 3(¬�env ^ ¬1̄jump).
For all k < |� 0 | � 1, �̄k :k+1 |= ¬1̄jump by construction. Also, for
k � k̄ = |� 0� 1� 2 · · · �k �k+1 · · · � r |, �̄n

k�k̄,k+1�k̄ |= ¬1̄jump and

�̄

r
�1�̄

r
0 |= ¬1̄jump . From the decomposition given above, �̄ 0�1�̄

1
0 |=

1̄jump and �̄

l
�1�̄

l+1
0 |= 1̄jump for l  r � 1. For this case, we can

conclude

�̄ |= 3(¬�env ^ ¬1̄jump) =) (� 0� |= 3¬�env)_
(� 1� 2 · · · �k �k+1 · · · � r�r |= 3¬�env).

If � 0� |= 3¬�env, then there is a minimum k such that �k :� |=
¬�env or �(k� |� |): |= ¬�env. If k < |� | � 1, then �̄ |= 3(¬�env ^
¬1̄jump) (recall �̄k :k+1 |= ¬1jump). �en (24) is satis�ed.

From the de�nition of ExtTs and 1̄jump we have

�

0
�1�

1
0 |= �

sys, (26)

and
�

l
�1�

l+1
0 |= �

sys8l 2 1,2,3, . . . ,r � 1, (27)
whichwewill refer to later while addressing the �nal case. �e other
case in which �̄ |= 3(¬�env ^¬1̄jump) is if � l |= 3¬�env for some
l or � r�r |= 3¬�env (recall �̄ 0�1� 10 |= 1̄jump and �

l
�1�

l+1
0 |= 1̄jump

for l  r � 1). If for any d < |� l | � 1 for l < r ,

�

l
d �

l
d+1 |= ¬�

env,

then (24) is directly satis�ed. If � r�r |= 3¬�env then again (24)
holds.
Otherwise, suppose that �̄ |= 32¬� env

j for some j. From the
semantics of LTL and the fact that� env

j contains no temporal oper-
ators, this implies �n |= 32¬� env

j $ �̄ |= 32¬� env
j . In this case

where �n |= 32¬� env
j , (24) again holds.

We now consider the �nal case where �̄ |= �env
0 ^ 32(�env _

1̄jump) ^
⇣V�

j=123� env
j

⌘
. By �qr -reachability, � rd,d+1 |= �

env for
all d < |� r | � 1. And, � r�r |= 2�

env as argued for this case (oth-
erwise (24) would directly hold). �us, � r � r�r |= 2�

env. Recall
that � r � r�r |= �env

ql . Because � r � r�r 2 Plays(fqr) and � r � r�r |=
�env
r , if neither � r � r�r |= 3¬�env nor32¬� env

j for any j , it must
be that � r � r�r satis�es �sys

qr ^2�

sys ^
⇣VK

k=123�
sys
k

⌘
.

By �ql -reachability of � l0 and strict-realizability, � ld,d+1 |= �

sys

8d < |� l | � 1 for l  r � 1. From (26) and (27), it follows that

�

0
�1�

1
�

2 · · · � r�r |= 2�

sys ^ *.
,
K̂

k=1
23�

sys
k

+/
-
.

Recall the su�x � such that � 0� 2 Plays(�0). (�0,m0) strictly re-
alizes �0, therefore if � 0� |= �env

0 , it must be that � 0� |= �
sys
0 .

�̄ |= �
sys
0 since �̄ |= �env

0 (9). Furthermore, because in this case we
are assuming there is no 0  k < |� 0 |�1 such that � 0k :(k+1) |= ¬�

env

(otherwise we would have (24) hold directly), it follows from strict
realizability (cf. (10)) that for 0  k < |� 0 | � 1, � 0k :(k+1) |= �

sys, and
therefore the condition in the proposition for �̄ holds.

⇤

B PROOF OF PROPOSITION 6
P����. Let � 2 �� andm 2 M

� be such that (�k ,mk) = �̄k .
Repeating the arguments in Section 4.1, we only need to reason
about the case where �̄ |= 32¬¯̄1jump . In this case, as before, let
there be r < 1 instances in which ¯̄1jump holds. Let these instances
be il for l  r such that 0 < i1 < i2 < · · · < ir . By de�nition,
�̄il�1�̄il |= ¯̄1jump =) �̄il 2 ExtTsr each (�̄il�1). Reasoning as
before, for l 2 {1,2, . . . ,n}, 9ql such that �l 2 Plays(hql) and kl
such that �il = �

l
kl
,�l |= �env

0 and conditions (21),(22),(23) hold.
As before, we write �

l
�

l
�

l = �

l . �en, repeating the argu-
ments from earlier decompose �̄ as �̄ = �̄ 0�̄ 1 . . . �̄ r �̄r where � 0 2
Pref (h0). Note that the decomposition was such that for l 2 {1,2
. . . ,r }, � l0 2 IM�r each�qlreach

holds if ql � 1 and � l 2 IM� if ql = 0. �at is

to say each �

l
0 is �

ql
r each -reachable or �-reachable, as the case may

be. We want to show (24).
Reasoning about the other trivial cases as before and rejecting

them, consider the case when

�̄ |= �env
0 ^2(�env _ ¯̄1jump) ^ *.

,
�̂

j=1
23� env

j
+/
-
.

�̄ |= �env
0 $ �̄

0 |= �env
0 . � 0 2 Pref (h0) ! 9� 2 �� . � 0� 2

Plays(h0). By strict realizability, we have � 0� |= �env
0 ! �� |= �

sys
0 .

�erefore, �̄ |= �
sys
0 .

Enhancing Tolerance to Unexpected Jumps in GR(1) Games ICCPS, April 2017, Pi�sburgh, PA USA

For 2  l  r � 1, we have � l0�
l+1
0 |= �

sys from the de�nition
of ¯̄1jump and ExtTsr each . We also have � 0�1�

1
0 |= �

sys. When �̄ |=
2(�env _ ¯̄1jump), by strict realizability and �qlr each � realizabilit�
(or�-reachability as the case maybe) for l  r �1, we have � ld,d+1 |=
�

sys 8d < |� l | � 1 since � ld :d+1 |= �

env8d < |� l | � 1. Also, we have
�

0
d :d+1 |= �

sys for 8d < |� 0 | � 1 since � 0d :d+1 |= �

env8d < |� 0 | � 1.
Consider � r � r�r 2 Plays(hqr). If qr > 0, hqr strictly realizes

�

qr
r each and �

r
0 is �qrr each -reachable. If qr = 0, h0 strictly-realizes

� and �

r
0 is �-reachable. �erefore, if � r�r |= 2�

env we have
�

r
�

r
�

r |= 2�

env. By strict realizability, we have � r � r�r |= 2�

sys.
To conclude, we showed �̄ |= �env

0 ^ 2(�env _ ¯̄1jump) ! �̄ |=
�
sys
0 ^ 2�

sys. Now only showing liveness remains. If qr > 0, we
have � r � r�r |= 3Tr each or � r � r�r satis�es ¬�env

0 or 3¬�env or
32¬� env

j for some j since hqr realizes �qrr each . But, as an assump-

tion we have �̄ |=
⇣V�

j=123� env
j

⌘
and by the semantics of LTL

we have �r |=
⇣V�

j=123� env
j

⌘
. And, �r |=

⇣V�
j=123� env

j

⌘
$

�

r
�

r
�

r |=
⇣V�

j=123� env
j

⌘
. By �qrr each -reachability of � r0 , we have

�

r
�

r
�

r |= �env
qr . And, above we reasoned �

r
�

r
�

r |= 2�

env for
this case. �erefore, it must be the case that � r � r�r |= 3Tr each .
Observe that if s 2 I� (h0,m0

0) then 9w 2 M

0.(s,w) 2 I

M
� (h0,w0

0).
�

r
�

r
�

r |= 3Tr each leads to a contradiction as by the de�nition
of Plays(h̄), we should switch strategies when we reach a state s
that satis�es Tr each . �erefore, qr = 0 when �̄ |= �env

0 ^2(�env _
¯̄1jump) ^

⇣V�
j=123� env

j

⌘
.

By strict realizability and�-reachability, we reasoned that� r � r�r
|= �env

0 ^ 2�

env ! �̄ |= �
sys
0 ^ 2�

sys. Additionally �

r
�

r
�

r |=⇣V�
j=123� env

j

⌘
, by which we have �

r
�

r
�

r |= �
sys
0 ^ 2�

sys ^
⇣V�

j=123�
sys
j

⌘
(since qr = 0 and from the de�nition of (h0,m0

0)

realizing�). �erefore, we have �̄ |= �
sys
0 ^2�

sys^
⇣V�

j=123�
sys
j

⌘
,

hence proving the proposition. ⇤

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem formulation
	3.1 LTL on state-memory pairs
	3.2 Memory sequences associated with plays
	3.3 Problem of recovery from perturbations
	3.4 Refinement of a strategy

	4 Augmenting Robustness
	4.1 Combining Multiple Strategies
	4.2 Building patches to handle perturbations

	5 Example Implementation and Analysis
	5.1 Complexity for refinement

	6 Discussion and Conclusion
	References
	Appendices
	A Proof of Proposition 5
	B Proof of Proposition 6

