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Abstract— This paper considers the problem of estimation
over communication networks. Suppose a sensor is taking
measurements of a dynamic process. However the process needs
to be estimated at a remote location connected to the sensor
through a network of communication links that drop packets
stochastically. We provide a framework for computing the
optimal performance in the sense of expected error covariance.
Using this framework we characterize the dependency of the
performance on the topology of the network and the packet
dropping process. For independent and memoryless packet
dropping processes we find the steady-state error for some
classes of networks and obtain lower and upper bounds for the
performance of a general network. Finally we find a necessary
and sufficient condition for the stability of the estimate error
covariance for general networks with spatially correlated and
Markov type dropping process. This interesting condition has
a max-cut interpretation.

I. INTRODUCTION AND MOTIVATION

In recent years, systems comprising of multiple sensors
cooperating with each other have received wide-spread in-
terest (see, e.g., [1], [2]). Although such systems admittedly
have a higher complexity than the strategy of using only
one sensor, the increased accuracy often make these systems
worthwhile. From an estimation and control perspective, such
systems present many new challenges, such as dealing with
data delay or data loss imposed by the communication links,
fusion of data emerging from multiple nodes and so on.
Most of these issues arise because of the tight coupling
between the estimation and control tasks that depend on
the sensed data and the communication channel effects that
affect the transmission and reception of data. Communication
links introduce many potentially detrimental phenomena,
such as quantization error, random delays, data loss and data
corruption to name a few. It is imperative to understand and
counteract the effects of the communication channels.

Motivated by this, there has been a lot of work done on
estimation and control over networks of communication links
(see, e.g., [3], [4] and the references therein). Beginning
with the seminal paper of Delchamps [5], quantization effects
have been variously studied both in estimation and control
context by Tatikonda [6], Nair and Evans [7], Hespanha
et al [8] and many others. The effect of delayed packet
delivery using various models for network delay has also
been considered by many researchers.

In this work, we focus on estimation across a network
of communication links that drop packets. We consider a
dynamical process evolving in time that is being observed
by a sensor. The sensor needs to transmit the data over
a network to a destination node. However the links in the

network stochastically drop packets. Prior work in this area
has focused on studying the effect of packet drops by a single
link in an estimation or control problem. Assuming certain
statistical models for the packet drop process, stability of
such systems was analyzed, e.g., in [10], [11] and the control
performance by Seiler in [10] and by Ling and Lemmon
in [12]. Approaches to compensate for the data loss were
proposed by Nilsson [9], Hadjicostis and Touri [13], Ling and
Lemmon [12], [14], Azimi-Sadjadi [15], Sinopoli et al. [16]
and Imer et al. [17]. Sinopoli et al. [18] also considered
the problem of optimal estimation across a packet-dropping
link that drops packet in an i.i.d. fashion and obtained
bounds on the expected error covariance. Most of the above
designs aimed at designing a packet-loss compensator. The
compensator accepts those packets that the link successfully
transmits and produces an estimate for the time steps when
data is lost. If the estimator is used inside a control loop,
the estimate is then used by the controller. A more general
approach is to design an encoder and a decoder for the
communication link. This was considered for the case of a
single communication link in [19]. It was demonstrated that
using encoders and decoders can improve both the stability
margin and the performance of the system.

For general networks, the problem is much more com-
plicated than the case of a single communication link since
potentially there are multiple paths from the source to the
destination. Recent work [20] identified optimal information
processing schemes that should be followed by the nodes
of the network to allow the sink to calculate the optimal
estimate at every time step. That work also identified the
condition on the network for the estimate error covariance
to be stable under this algorithm. In this paper, we calcu-
late the performance of such a strategy. This performance
also provides a lower bound on the performance that can
be achieved by any other scheme (e.g., transmitting mea-
surements without any processing). We also generalize the
condition for stability of the estimate error covariance from
the independent and memoryless packet drop processes to
ones that are described by Markov chains or are spatially
correlated across the network. We provide a mathematical
framework for evaluating the performance for a general
network and provide expressions for networks containing
links in series and parallel. We also provide lower and upper
bounds for the performance over general networks.

The paper is organized as follows. In the next section,
we set up the problem and state the various assumptions.
Then, we provide the mathematical framework needed to
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calculate the steady-state performance and introduce the
concept of latency. We show how to evaluate latency for
series and parallel networks. We then provide bounds for
the performance for a general network. We conclude with
some remarks and avenues for future work.

II. PROBLEM SETUP

Consider a process evolving in discrete-time as

xk+1 = Axk + wk, (1)

where xk ∈ Rn is the process state and wk is a white and
Gaussian disturbance process with mean zero and covariance
matrix Q. The process is observed using a sensor that
generates measurements of the form

yk = Cxk + vk, (2)

where vk ∈ Rm is the measurement noise also assumed
to be white, Gaussian with mean zero and covariance R.
Furthermore, the noises vk and wk are assumed to be
independent of each other. We consider the scenario in which
the process needs to be estimated in the minimum mean
square error (MMSE) sense at a remote point denoted by a
destination node d. We assume that the sensor (denoted by s)
and the destination node d are connected via a communica-
tion network. The communication graph is represented by a
directed graph G with node set V (that contains, in particular,
s and d) and link set E ⊆ V×V . The link e = (u, v) models
a communication channel between node u and node v. For
any node i ∈ V , the set of outgoing edges corresponds to
the links along which the node can transmit messages while
the set of incoming edges corresponds to the links along
which the node receives messages. We denote the set of in-
neighbors of node v by N (v).

The communication links are modeled using a packet
erasure model. The links take in as input a finite vector of real
numbers. For every link, at each time-step, a packet is either
dropped or received completely at the output node. For most
of this paper, we assume independent and memoryless packet
drop processes, i.e., the probability of dropping a packet on
link e ∈ E is given by pe independent of other links and
time. We ignore quantization, data corruption, and stochastic
delays. We also assume a global clock so that the nodes are
synchronized. We further assume that each node can listen
to all the messages over the different incoming links without
interference from each other.1

The operation of different nodes in the network at every
time-step k can be described as follows:

1) Each node computes a function of all the information
it has access to at that time.

2) It transmits the function on all the outgoing edges.
We allow some additional information in the message
that tells us the time step j such that the function that
the node transmits corresponds to the state xj . The

1This property can be achieved by using a division multiple access scheme
like FDMA, TDMA, CDMA etc.

destination node calculates the estimate of the current
state xk based on the information it possesses.

3) Every node observes the signals from all the incoming
links and updates its information set for the next time
step. For the source node, the message it receives at
time step k corresponds to the observation yk.

The timing sequence we have specified leads to strictly
causal estimates. At time step k, the function that the source
node transmits depends on measurements y0, y1, · · · , yk−1.
Further even if there were no packet drops, if the destination
node is l hops away from the source node, its estimate for
the state xk at time k can only depend on measurements y0,
y1, · · · , yk−l−1 till time k − l − 1.

III. OPTIMAL ENCODING AND DECODING

We now describe an algorithm A, originally developed
in [20], that achieves the optimal performance at the expense
of constant memory and transmission (modulo the transmis-
sion of the time stamp). At each time step k, every node v
takes the following actions:

1) Calculate its estimate x̂v
k of the state xk based on any

data received at the previous time step k − 1 and its
previous estimate. The estimate can be computed using
a switched linear filter as follows. The source node
implements a Kalman filter and updates its estimate at
every time step with the new measurement received.
Every other node checks the time-stamps on the data
coming on the incoming edges. The time-stamps corre-
spond to the latest measurement used in the calculation
of the estimate being transmitted. Let the time-stamp
for node u ∈ V at time k be tu(k). Also let Duv(k)
be the binary random variable describing the packet
drop event on link (u, v) ∈ E at time k. Duv(k) is
‘0’ if the packet is dropped on link (u, v) at time k
and ‘1’ otherwise. For a network with independent
and memoryless packet drops, Duv(k) is distributed
according to Bernoulli with parameter puv . We define
Duu(k) = 1. Node v updates its time-stamp using the
relation

tv(k) = max
u∈N (v)∪{v}

Duv(k)tu(k − 1). (3)

Note that for the source node s, ts(k) = (k−1) for all
k ≥ 1. Suppose that the maximum of (3) is given by
node n ∈ N (v)∪{v}. The node v updates its estimate
as x̂v

k = Ax̂n
k−1.

2) Affix a time stamp corresponding to the last measure-
ment used in the calculation of its estimate and transmit
the estimate on the outgoing edges.

3) Receive any data on the incoming edges and store it
for the next time step.

Proposition 1: (Optimality of Algorithm A): The algo-
rithm A is optimal in the sense that it leads to the minimum
possible error covariance at any node at any time step.
The proof of the above theorem is provided in [20]. We
should remark that the above result holds for any packet
drop sequence.

ThB19.6

3451



IV. STEADY-STATE ERROR COVARIANCE CALCULATION

In this section we calculate the steady-state estimate error
covariance at any node using the algorithm A. For node v
and time k, tv(k) denotes the time-stamp of the most recent
observation used in estimating xk. This time-stamp evolves
according to (3). The expected estimation error covariance
at time k at node v can be written as

E |xk − x̂k|tv(k)|2

=
k

∑

l=0

Pr (tv(k) = k − l − 1)E |xk − x̂k|k−l−1|2

=
k

∑

l=0

Pr (lv(k) = l)

[

AlPk−l−1A
l +

l−1
∑

j=0

AjQAj

]

,(4)

where Pk is the estimation error covariance of xk based
on {y0, y1, . . . , yk−1} and lv(k) = k − 1 − tv(k) is the
latency for node v at time k. Pk evolves according to a
Riccati recursion. The above equation gives the expected
estimation error covariance for a general network with any
packet dropping process. The effect of the packet dropping
process appears in the distribution of the latency lv(k). We
consider the steady-state error covariance in the limit as k
goes to infinity, i.e.,

P∞
v = lim

k→∞
E |xk − x̂k|tv(k)|2.

If P∞
v is bounded, we will say that the estimate error is

stable; otherwise it is unstable. As we can see from (4),
the stability of the system depends on how quickly does the
probability distribution of the latency decrease.

For now we focus on an i.i.d. packet drop model. At any
time and for any link e = (u, v), the packet is dropped with
probability pe independent of time k and of other links of
the network. From (3), Duv(k) indicates the event of packet
drop for link e = (u, v). For each link e and time k let Ze(k)
be the difference between k and the most recent successful
transmission on link e preceding time k., i.e.,

Ze(k) = min{j ≥ 1|Duv(k + 1 − j) = 1}

Using the definition of Ze(k), the last time that any message
is received at node v from link (u, v) is k−Zuv(k) + 1 and
that message has time-stamp tu(k − Zuv(k)). Then (3) can
be written in terms of Ze(k) as tv(k) = maxu∈N (v) tu(k −
Zuv(k)).

Now Ze(k) is distributed as a truncated geometric random
variable with Pr (Ze(k) = i) = (1 − pe)pi−1

e ∀ k > i ≥ 1
and Pr (Ze(k) = k) = 1−

∑k−1
i=1 Pr (Ze(k) = i). We can get

rid of the truncation by extending the definition of tu(k) for
negative k′s as well. For k < 0 we define tu(k) = 0. Then,
for instance, for the source node s we have ts(k) = (k −
1)+, where x+ = max{0, x}. In general, we have tv(k) =
maxu∈N (v) tu(k−Zuv), where Ze’s are independent random
variables distributed according to a geometric distribution,
i.e., Pr (Ze = i) = (1 − pe)pi−1

e ∀i ≥ 1. Further note
that Ze’s do not depend anymore on k. Solving the above

recursive formula, we can write tv(k) in terms of the time-
stamp at the source node (i.e., (k − 1)+) as

tv(k) = max
P :an s-v path

(k − 1 −
∑

e∈P

Ze)
+, (5)

where the maximum is taken over all paths P in the graph
G from source s to the node v. Therefore the latency at
node v can be written as lv(k) = k − 1− tv(k) = min{k −
1, minP :an s-v path(

∑

e∈P Ze)}.From the above equation it can
be seen that as k → ∞ the distribution of ld(k) approaches
the distribution of ld defined as

ld = min
P :an s-d path

(
∑

e∈P

Ze). (6)

We refer to ld as the steady-state latency of the network.
Therefore, the steady-state error covariance at node d can be
written as

P∞ =
∞
∑

l=0

Pr (ld = l)



AlP !Al +
l−1
∑

j=0

AjQAj



 , (7)

where P ! is the steady-state estimation error covariance of
xk based on {y0, y1 · · · , yk−1} and is the solution to the
Discrete Algebraic Riccati Equation (DARE)

P ! = AP !AT + Q − AP !CT (CP !CT + R)−1CP !AT .

We assume that the system {A,Q
1

2 } is stabilizable. Hence
the rate of convergence of Pk to P ! is exponential [21] and
the substitution of P ! for Pk−l in (4) does not change the
steady-state error covariance.

Let us define the generating function of the complementary
density function G(X) and the moment generating function
F (X) of the steady state latency ld

G(X) =
∞
∑

l=0

Pr (ld ≥ l + 1)X l (8)

F (X) =
∞
∑

l=0

Pr (ld = l)X l,

where X is a matrix. On vectorizing (7) we obtain

vec (P∞) = F (A ⊗ A)vec (P !) + G(A ⊗ A)vec (Q),

where A ⊗ B is the Kronecker product of matrices A and
B. Using the fact that F (X) = (X − I)G(X) + I yields

vec (P∞) = ((A ⊗ A − I)G(A ⊗ A) + I) vec (P !)

+ G(A ⊗ A)vec (Q). (9)

We can see from (9) that the performance of the system
depends on the value of G(X) evaluated at X = A ⊗ A.
In particular, the system is stable if and only if G(X) is
bounded at A ⊗ A. Since G(X) is a power series, this
is equivalent to the boundedness of G(x) (evaluated for a
scalar x) at the square of the norm of the eigenvalue of A
with the largest norm. We summarize the result of the above
arguments in the following theorem.

Theorem 1: Consider the system model described in Sec-
tion II. Let the packet drops be independent from one time
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step to the next and across links. Then the minimum expected
steady-state estimation error covariance is given by (9).
Furthermore, the error covariance is stable, iff |λmax(A)|2
lies in the region of convergence of G(x) where λmax(A)
is the maximum-norm eigenvalue of A.

The above theorem allows us to calculate the steady state
expected error covariance for any network as long as we
can evaluate the function G(X) for that network. We now
consider some special networks and evaluate the performance
explicitly. We start with a network consisting of links in
series, or a line network.

1) Line Networks: In this case, the network consists of
only one path from the source to the destination. Since the
drops across different links are uncorrelated, the variables
Ze’s are independent. Thus

F (X) = E [X ld ] = E [X
∑

e
Ze ] =

∏

e

E [XZe ].

Since Ze is a geometric random variable, E [XZe ] = (1 −
pe)X(I−peX)−1 provided that λmax(X)pe < 1. Therefore,

F (X) = E [X ld ] =
∏

e

[

(1 − pe)X(I − peX)−1

]

.

Using partial fractions, we can easily show that

G(X) =
n−1
∑

i=0

Xi + Xn
∑

e

ce
pe

1 − pe
(I − peX)−1,

where ce = (
∏

e′ '=e(1 − pe

pe′
))−1. Therefore the cost can be

written as

vec (P∞) =
∏

e

[

(A ⊗ A)(
I − pe(A ⊗ A)

1 − pe
)−1

]

vec (P !)

+ G(A ⊗ A)vec (Q). (10)

Remark 1: When there is only one link between the
source and the destination the steady state error covariance
will be the solution to the Lyapunov equation

P∞ =
√

pAP∞√
pA + (Q + (1 − p)AP !A).

This matches with the expression derived in [19] using
Markov jump linear system theory.

2) Network of Parallel Links: Now consider a network
with one sensor connected to a destination node through n
links with probabilities of packet drop p1, . . . , pn. In this
case the steady state latency is given by ld = min1≤i≤n(Zi).
Since the minimum of independent geometrically distributed
random variables with parameters {pi} is itself geometrically
distributed with parameter peq =

∏

i pi, G(X) can be written
as G(X) = (I −

∏

i piX)−1. Thus the steady-state error can
be evaluated using (9). Note that the region of convergence
of G(X) enforces

∏

i pi|λmax(A)|2 < 1 for stability which
again matches with the condition in [20].

ee

s
e

e

e

d

4

3

1

2

0

Fig. 1. Example of a network of combination of parallel and serial links

3) Arbitrary Network of Parallel and Serial Links: Using
similar arguments as in previous sections, we can find the
steady-state error covariance of any network of parallel and
serial links. These networks are derived from the parallel
and serial concatenations of sub-networks. The following two
simple rules can give the steady state error of any network
of parallel and series links. Let ld(G) denote the steady-state
latency function of network G. Also given two subnetworks
G1 and G2, denote their series combination by G1 ⊕ G2 and
their parallel combination by G1‖G2.

1) For series connection, we have ld(G1⊕G2) = ld(G1)+
ld(G2). Using the independence of latency functions of
the two sub-networks, the generating function of the
network is given as

G(X) = (X − I)G1(X)G2(X) + G1(X) + G2(X).

2) For parallel connection, we have ld(G1‖G2) =
min{ld(G1), ld2

(G2)}. Using the independence of
ld(G1) and ld(G2), the complementary distribution
function of ld(G) can be written as the product of the
functions for G1 and G2.

As an example consider the network depicted in Fig. 1. In
this case the network G can be written as (((G0⊕G1)‖G2)⊕
G3)‖G4) where each of the sub-networks Gi is just a link
with probability of packet drop p. Using the above rules
and denoting the moment generating function of the parallel
combination of any network (with G(X)) and a link with
probability of packet drop p by Lp(G)(X), the generating
function of the network can be written as

G(X) = Lp(Lp(G0 ∗ G1) ∗ G3)(X)

where Gi(X) = (I − pX)−1, i = 0, 1, 3 is the generating
function for the i-th link and for each function F (·), Lp is
an operator that such that Lp(F )(X) = F (pX). The steady
state error covariance can thus be evaluated.

4) Networks with Arbitrary Topology: Finding the distri-
bution of the steady-state latency ld of a general network is
not an easy task. However, we can provide upper and lower
bounds on the performance. We first mention the following
intuitive lemma without proof.

Lemma 1: Let P∞(G, {pe, e ∈ E}) denote the expected
steady-state error of a system with communication network
represented by graph G = (V, E) and probabilities of packet
drop pe, e ∈ E . Then the expected steady-state error is non-
increasing in pe’s, i.e., if pe ≤ qe ∀ e ∈ E

P∞(G, {pe, e ∈ E}) 0 P∞(G, {qe, e ∈ E}),
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where A 0 B means that A − B is positive semi-definite.

Using the above lemma we can lower bound the steady-
state error by making a subset of links erasure free. In
particular, consider any source-destination cut in the network
(which is simply a partition of the nodes in two sets one
containing the source node (the source set) and the other
containing the destination node (the destination set)). Setting
the probability of erasure equal to zero for every link except
those crossing the cut gives a lower bound on the error.
Therefore,

P∞(G, {pe, e ∈ E}) 0 P∞(G, {qe, e ∈ E})

where qe = pe iff e is in the cut and zero otherwise. Now
the left side of the above equation can be calculated easily
using the results from Section IV-.3. In particular, it can be
shown that for stability we require that

max
C:s-d cut

(
∏

e∈C

pe)|λmax(A)|2 < 1

We refer to pmc(G) = maxC:s-d cut(
∏

e∈C pe) as the max-cut
value of the network.

One way to upper bound the steady-state error is by setting
the probability of packet drop of some of the edges equal to
one. In [20], it is shown that the performance of the network
G is lower bounded by the performance of another network
G′ with the following properties:

• G′ has the same node set.
• G′ is the combination of edge-disjoint paths from the

source to destination.
• Along each path the links have the same probability of

dropping packets equal to the probability of packet drop
of one of links in the max-cut of the original network
G.

• Based on the previous property the value of the max-cut
in G′ is the same as the original network G.

Now G′ is a network with series and parallel links only.
Thus its performance can be computed and provides an upper
bound on the steady-state error covariance of G. In particular,
since all the paths from s to d are disjoint,

Pr (ld(G′) ≥ l + 1) =
∏

i

Pr (ld(Pi) ≥ l + 1)

where ld(Pi) is the steady-state latency of path Pi. But for
any path with n links,

Pr (ld ≥ l + 1) =
n−1
∑

i=0

(

i + l − n

l − n

)

(1 − p)ipl−n+1

Using the Stirling formula for large l, we obtain

c1 ≤ Pr (ld ≥ l + 1)

( 1
p
− 1)n−1(l − 1)n−1p l

≤ c2 (11)

where c1, c2 are two positive constants independent of l.
Therefore, for large l, Pr (ld(G′) ≥ l + 1) behaves like

f(l)(
∏

i

pi)
l = f(l)(pmc(G′))l = f(l)(pmc(G))l

where f(l) grows polynomially in l. Thus it is easy to verify
that for network G′ the system is stable if pmc(G) satisfies

pmc(G)|λmax(A)|2 < 1.

Therefore the above condition is both necessary and suffi-
cient for stability.

V. GENERALIZATIONS

Correlated erasure events: The analysis so far assumed
that the erasure events are memoryless and independent
across different links in the network. We could thus formulate
the performance in terms of a generating function of the
steady-state latency distribution as defined in (6). We now
look at the effect of dropping these assumptions.

Markov events: If we assume that the drop events on
each link are governed by a Markov chain (but are still
independent of other links), we can obtain the performance
as follows. Let us assume that the packet drop event on link
(u, v), denoted by Duv(k) evolves according to a Markov
chain with transition matrix Muv . We further assume that
Muv is irreducible and reversible. Let us first consider the
case where the initial distribution of packet drop on each
link is the stationary distribution of the Markov chain on
that link. Then we can rewrite (3) as (5) as before, where Zl

is a geometric random variable with distribution

Pr (Zuv = l) =

{

αuvMuv(1, 2)Muv(1, 1)l−2 ∀ l ≥ 2

1 − αuv l = 1
,

with αuv as the probability of packet drop based on the
stationary distribution of link e = (u, v) and Muv(i, j) as the
(i, j)-th element of Muv . Therefore, all the previous analysis
goes through. In particular, the stability condition is

( max
c:s-d cut

∏

e∈c

Me(1, 1))|λmax(A)|2 < 1.

Now, if the initial distribution is not the stationary distri-
bution, the variables Zuv(k) will not be time-independent
and the analysis does not goes through. However, since for
large k the chains approach their stationary distribution, the
stability condition remains unchanged.

Spatially correlated events: Suppose that the packet drop
events are correlated across the network but memoryless over
time. In other words, at each time step k, the packet drop
events occur according to distribution Pr0(Duv, (u, v) ∈
E). Now Ze(k)’s are not independent across the network
and hence finding the steady-state error covariance does not
seem to be tractable. However, we can find the condition
for stability. For this, we define a generalized notion of
equivalent probability of packet drop for correlated events.
Consider a s− d cut c, and let B(c) denote the set of edges
crossing this cut. Then the equivalent probability of packet
drop for this cut is defined as

peq(c) = Pr (Duv = 0, ∀ (u, v) ∈ B(c)).

The value of the max-cut for the network is the maximum of
peq(c) over all the cuts, pmc(G) = maxc:s−dcut peq(c). We
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can show that the condition for stability of the system is

pmc(G)|λmax(A)|2 < 1.

To see this, consider the scenario when only one packet is to
be routed from the source to destination starting at time t0.
For each time-step t ≥ t0 let Vr(t) denote the set of nodes
that have received the packet at time t. Clearly Vr(t0) =
{s}. We want to bound the probability that at time t0 + T ,
destination node has not yet received the packet. Note that
for every time-step between t0 and t0 + T , Vr(t) clearly
forms a cut-set since it contains s and not d. Now the size
of Vr(t + 1) does not increase with respect to time-step t
iff all the links that cross the cut generated by Vr(t) drop
packets. However by the definition of pmc(G) the probability
of this event is at most pmc(G). Therefore, we have

|Vr(t + 1)|
{

≥ |Vr(t)| + 1 with prob. at most pmc(G)

= |Vr(t)| with prob. at least 1 − pmc(G)

Thus for large T , the probability that at time t0 + T the
destination node has not received the packet is upper bounded
by n(1−pmc(G))nTnpmc(G)T−n, where n is the number of
nodes in the network. In the original scenario, a new packet
is generated at the source at each time step. However, since
the importance of the packets is increasing with time, we can
upper bound the error by considering that the network is only
routing packet generated at time k − l. The probability that
the latency is larger than l grows like f(l)pmc(G)l, where
f(l) is polynomial in l with bounded degree and thus the
sufficiency of the stability condition follows. The necessity
part involves similar ideas and is omitted.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of optimal
estimation across a network. We modeled the links as packet
erasure links. We provided a framework for computing the
optimal estimate error covariance and gave upper and lower
bounds on the performance of general networks. We also
carried out the stability analysis for arbitrary networks and
for packet erasure processes that are possibly correlated
across time or the network.

In this paper, we have ignored issues of quantization. One
interesting and challenging problem is to include constraints
of a limited bit rate into the framework. The work of
Sahai [22] and Ishwar et al [23] may be relevant to this
problem. In the future, we would like to explore these
connections.

REFERENCES

[1] “An Introduction to Multisensor Data Fusion,” D. L. Hall and J. Llinas,
Proceedings of the IEEE, 85(1), 1997, pp. 6-23.

[2] “Distributed Detection with Multiple Sensors: Part I - Fundamentals”,
R. Viswanathan and P. K. Varshney, Proceedings of the IEEE, 85(1),
1997, pp. 54-63.

[3] “Special Issue on Networks and Control,” L. Bushnell (Guest Editor),
IEEE Control Systems Magazine, 21(1), Feb 2001.

[4] “Special Issue on Networked Control Systems,” P. Antsaklis and J.
Baillieul (Guest Editors), IEEE Transactions on Automatic control,
49(9), Sept 2004.

[5] “Stabilizing a Linear System with Quantized State Feedback,” D. F.
Delchamps, IEEE Transactions on Automatic Control, 35, 1990, pp.
916-924.

[6] “Control under Communication Constraints,” S. Tatikonda, PhD The-
sis, MIT, Cambridge, MA 2000.

[7] “Stabilizability of Stochastic Linear Systems with Finite Feedback
Data Rates”, G. N. Nair and R. J. Evans, SIAM Journal on Control
and Optimization, 43(2), July 2004, pp. 413-436.

[8] “Towards the Control of Linear Systems with Minimum Bit-rate”,
J. Hespanha, A. Ortega and L. Vasudevan, Proceedings of the 15th
International Symposium on the Mathematical Theory of Networks,
2002.

[9] “Real-time Control Systems with Delays,” J. Nilsson, PhD Thesis,
Department of Automatic Control, Lund Institute of Technology, 1998.

[10] , “Coordinated Control of Unmanned Aerial Vehiclea”, P. Seiler, PhD
Thesis, University of California, Berkeley, 2001.

[11] “Stability of Networked Control Systems”, W. Zhang, M. S. Branicky
and S. M. Philips, IEEE Control System Magazine, 21(1), Feb 2001,
pp. 84-89.

[12] “Robust Performance of Soft Real-time Networked Control Systems
with Data Dropouts”, Q. Ling and M. D. Lemmon, Proceedings of the
IEEE Conference on Decision and Control, 2002.

[13] “Feedback Control Utilizing Packet Dropping Network Links”, C. N.
Hadjicostis and R. Touri, Proceedings of the IEEE Conference on
Decision and Control, 2002.

[14] “Optimal Dropout Compensation in Networked Control Systems”, Q.
Ling and M. D. Lemmon, Proceedings of the IEEE Conference on
Decision and Control.

[15] “Stability of Networked Control Systems in the Presence of Packet
Losses”, Proceedings of IEEE Conference on Decision and Control,
2003.

[16] “Time Varying Optimal Control with Packet Losses”, B. Sinopoli, L.
Schenato, M. Franceschetti, K. Poolla and S. S. Sastry, Proceedings
of the IEEE Conference on Decision and Control, 2004.

[17] “Optimal Control of Dynamical Systems over Unreliable Communi-
cation Links”, O. C. Imer, S. Yuskel and T. Basar, NOLCOS, 2004.

[18] “Kalman Filtering with Intermittent Observations”, B. Sinopoli, L.
Schenato, M. Franceschetti, K. Poolla, M. Jordan and S. S. Sastry,
IEEE Transactions on Automatic Control, 49(9), Sept. 2004, pp. 1453-
1464.

[19] “On LQG Control Across Packet-Dropping Links,” V. Gupta, D.
Spanos, B. Hassibi and R. M. Murray, System and Control Letters,
submitted July 2005.

[20] “Data Transmission over Networks for Estimation”, V. Gupta, A. F.
Dana, J. P. Hespanha and R. M. Murray, 17th International Symposium
on Mathematical Theory of Networks and Systems, MTNS 2006,
Submitted.

[21] “Linear Estimation”, T. Kailath, A. H. Sayed and B. Hassibi, Prentice
Hall, New Jersey, 2000.

[22] “Anytime Information Theory”, A. Sahai, PhD Thesis, MIT, Cam-
bridge, MA 2001.

[23] “On Rate-constrained Distributed Estimation in Unreliable Sensor
Networks”, P. Ishwar, R. Puri, K. Ramchandran and S. S. Pradhan
IEEE Journal on Selected Areas in Communications: Special Issue
on Self-organizing Distributed Collaborative Sensor Networks, 23(4),
Apr. 2005, pp. 765-775.

[24] “Semiring frameworks and algorithms for shortest-distance problems”,
M. Mohri Journal of Automata, Languages and Combinatorics, 2002,
pp. 321–350

ThB19.6

3455


