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For the synthesis of correct-by-construction control policies from temporal logic
specifications the scalability of the synthesis algorithms is often a bottleneck. In this
paper, we parallelize synthesis from specifications in the GR(1) fragment of linear
temporal logic by introducing a hierarchical procedure that allows decoupling of
the fixpoint computations. The state space is partitioned into equicontrollable sets
using solutions to parameterized reachability games that arise from decomposing
the original GR(1) game into smaller reachability games. Following the partition-
ing, another synthesis problem is formulated for composing the strategies from the
decomposed reachability games. The formulation guarantees that composing the
synthesized controllers ensures satisfaction of the given GR(1) property. Bench-
marking experiments with robot planning problems demonstrate good scalability of
the approach.

1 Introduction

As robotic systems get more complex, logic specifications assist in precisely speci-
fying desired behavior for a system and constructing controllers that provably guar-
antee satisfaction of the specification. In our work, we focus on reactive synthe-
sis from temporal logic specifications. This involves reasoning about all admissible
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behaviors for the environment and synthesizing a policy for the controlled agent.
This makes the algorithms for synthesis difficult to scale and synthesis can be pro-
hibitively expensive when applied to problems with large state spaces.

In this paper, we focus on reactive planning for specifications in linear temporal
logic (LTL) and, in particular, the Generalized Reactivity (1) (GR(1)) fragment. The
complexity for synthesis for general LTL specifications is doubly exponential in the
length of the formula [16]. For LTL formulas in the GR(1) fragment, synthesis can
be performed in time polynomial in the size of the state space, which is typically
exponential in the number of variables that describe the problem. The complexity of
synthesis for the GR(1) fragment scales as cubic or quadratic depending on the al-
gorithms used for synthesis [3] . Tractability has enabled use of the GR(1) fragment
for robotics applications [6, 7, 11, 13].

The issue of scalability is a major bottleneck for the widespread adoption of
formal methods in robotics applications [12]. In [17], synthesis algorithms for a
fragment of LTL are presented, where policy synthesis is accelerated by performing
computations directly on the original system. However, unlike the GR(1) fragment,
this fragment does not let us reason over disjunctions of formulas In [18], scalabil-
ity is addressed using ideas from receding horizon control for synthesis from LTL.
In [1], a compositional approach is taken where first a parameterized controller is
synthesized and then a controller is synthesized over the parameters to compose the
parametric controllers for reachability and safety specifications.

In our work, we adopt a compositional approach where the objective is to allow
for the synthesis procedure to be parallelized. Our work improves the scalability of
synthesis for a more general fragment than that considered in [1] and we do this
by identifying sets of equicontrollable states. In contrast to [1], where the authors
synthesize policies while reasoning about safety and reachability, the work here ad-
dresses liveness assumptions and guarantees as well. The parametric controllers for
the individual reachability games are synthesized in parallel to abstract the states
corresponding to the liveness guarantees into sets of equicontrollable states. Fol-
lowing the decomposition into such sets, we abstract away the local transitions to
construct a composite synthesis problem. The performance gain comes from solv-
ing the parameterized reachability games in parallel during the identification of the
equicontrollable sets.

The main contribution of this paper is an approach to decompose and parallelize
synthesis for the GR(1) fragment. The approach is sound but as a limitation we do
lose completeness as a result of the decomposition. The paper is organized as fol-
lows. Section 2 provides background and introduces notation and Section 3 develops
an example used to illustrate the ideas presented in the paper. Section 4 describes
the approach for partitioning a set into subsets of equicontrollable states. Section 5
describes a procedure for setting up the synthesis problem for the composite con-
troller and employs the synthesized controller to compose the reachability games.
This ensures that the liveness properties are satisfied (soundness). Section 6 summa-
rizes the results from benchmarking experiments on planning problems for robots
with mutually exclusive access to critical areas of the workspace.
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2 Preliminaries

In this section we briefly introduce the notation that we use. Additional details and
precise definitions can be found in [2, 15]. Atomic propositions are statements that
evaluate to True or False. Consider a finite set of atomic propositions AP. Denote
by S the set of states of the system (S := 2AP). We denote the restriction of the set
X to Y by X |Y i.e. X |Y = X \Y .

We write s |= p if a state s 2 S satisfies a proposition p 2 AP. A state s 2 S

satisfies a proposition p 2 AP if and only if p 2 s. We will work with the Boolean
operators ^(conjunction), _(disjunction), !(implication) and $(bi-implication) to
construct Boolean formulas. The temporal operators we use are next (�), eventually
(3) and always (2). For a Boolean formula x over AP, by [[x ]] we refer to the set of
states satisfying x . The semantics of LTL are defined over infinite words in S

w . For
s 2 S

w , sk refers to the (k+1)th element in the sequence s with s0 being the first
element.

For reactive synthesis, we model the synthesis problem as a two-player game
where the environment satisfies certain assumptions on its behavior and with these
assumptions being satisfied, the system is required to behave in a desired manner
while reacting to the environment. To formulate the reactive synthesis problem,
we first partition AP into two disjoint sets of variables APe and APa such that the
set APe is controlled by the environment and APa is controlled by the agent be-
ing designed. The sets APe,APa form a partition of AP, i.e., AP = APe[APa and
APe\APa = /0. Define the state spaces over these sets of propositions as Se := 2APe

and Sa := 2APa .
The synthesis problem is to find a function f : (Se ⇥S ⇥M) ! (Sa ⇥M) such

that the sequences of states generated by this strategy satisfy a given specification
j . M is a finite set of memory values with a unique initial memory value m, in
other words f is a finite-memory strategy. For a finite-memory strategy f , the set of
infinite sequences that occur when using f are referred to as plays:

Plays( f ) = {s 2 S

w |9m 2 Mw such that m0 = m and (1)
8k � 0.(s a

k+1,mk+1) = f (s e
k+1,sk,mk)}.

A strategy is winning for a formula j if and only if all plays of f satisfy the formula,
and it is input enabled, meaning that f should be defined at the initial state-memory
pair, as well as at any state-memory pair that can be reached in any play. A state is
winning state for a specification if there exists a strategy that is winning with the
given state as the initial state.

2.1 Generalized Reactivity (1)

For reactive synthesis, we focus specifically on the GR(1) fragment. The GR(1)
specification models a two-player game where the controlled agent has to satisfy a
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set of liveness guarantees and safety constraints under some assumed behavior for
the environment. This assumed behavior for the environment in turn consists of a
set of liveness properties and safety constraints. A GR(1) formula has the form

(q e ^q

a)^ (2r

e ^
m̂

j=1
23y

e
j )! (2r

a ^
m̂

i=1
23y

a
i ), (2)

where q

e is a Boolean function of propositions in AP and marks the set of assumed
initial poses for the environment. q

a is defined similarly for the controlled agent.
r

e is the assumed safety behavior for the environment and is a Boolean function of
propositions in APa[APe[�APe, with

�APe = {�a : a 2 APe}.

r

a is a Boolean function of APa[APe[�APe[�APa, while y

a,ye are Boolean
functions of APa[APe. A GR(1) synthesis problem is to find a strategy f that is
winning for this formula and, in addition, the following must hold for the every play
s of the strategy:

s |=2� r

e !2� r

a, (3)

where 2� is the historically temporal operator [14]. This ensures that the agent does
not violate its safety constraint by forcing the environment to violate its assumption
in the future.

2.2 Complexity for Synthesis

The GR(1) fragment is often used for high-level reasoning because of the polynomial-
time symbolic algorithms available for the synthesis of strategies for this frag-
ment. Symbolic algorithms allow for reasoning about problems with very large state
spaces because they construct strategies by manipulating sets of states, as opposed
to an enumerative approach where all the states are stored and searched. For the
algorithm outlined in [3] for GR(1) synthesis, the sets are stored and manipulated as
binary decision diagrams (BDDs). BDDs serve as compact representations of sets,
but the variable ordering can have a significant effect on their size [2].

The complexity for reordering of BDDs is often not taken into account while
analyzing the complexity of symbolic synthesis algorithms [3]. Finding the optimal
variable ordering that minimizes the size of reduced order BDDs is NP-hard [4]. For
a brief introduction to BDDs and their use in symbolic model checking we refer the
reader to [2].

The synthesis algorithm outlined in [3] and its implementation in modern solvers
[8] results in cubic time algorithms for solving the nested fixpoints. However, using
ideas from [5], the nested fixpoints can be solved in quadratic time but this also
results in the storing and reordering of nm|S |2 BDDs (in the worst case).



Parallelizing synthesis by identifying equicontrollable states 5

Problem Statement 1. Synthesize a strategy that is winning for a GR(1) formula j

in a scalable manner, where sub-strategies are computed in parallel and a strategy
to compose them in a manner that satisfies the GR(1) formula is synthesized.

Besides the obvious gain from parallelization, the decomposition-based approach
presented here also allows us to compute, reorder, and store the BDDs for the sub-
strategies separately, leading to gains in performance.

3 Example

In this section we introduce a simple instance of planning for a domestic mobile
robot that we use to illustrate and develop ideas presented in the paper. Consider the
workspace shown in Figure 1. The door is controlled by the environment. Rooms
with charging stations have a lighting sign to indicate the same.

Door Open is the proposition that indicates whether the door is open. The robot’s
position is controlled by us and the robot can transition from its current position
through an open slit to any of the adjacent rooms. The movement between the Cor-
ridor and the Living Room is controlled by the Door Open guarding the slit:

(Door Open^Corridor)!�(Living Room_Garage_Corridor),

(¬Door Open^Corridor)!�(Garage_Corridor),

(Door Open^Living Room)!�(Living Room_Corridor),

(¬Door Open^Living Room)!�(Living Room).

Fig. 1 Workspace for ex-
ample in Section 3. Slits
represent pathways for the
robot. A door guards the path
between the corridor and the
living room. Lighting sign in
a room indicates the presence
of a charging station.

Music
Room

Office

Living
Room

Corridor
Garage

Dining Room

Door



6 Sumanth Dathathri, Ioannis Filippidis and Richard M. Murray

4 Separation into Sets of Equicontrollable States

Let j

e be the assumption on the behavior of the environment and r

a be the set of
transition rules for the controlled agent. Note that for a GR(1) game, j

e has the form

j

e := q

e ^2r

e ^
m̂

j=1
23y

e
j .

Definition 1. For a set of states B ✓ S , we denote the set of winning states for the
condition in equation (4) as WinSet(B), or alternatively as WinSet of B.

j

e !2r

a ^
 

_

s2B

3s

!

. (4)

In other words, WinSet(B) for a set B is the set of states from where the agent
can force the system to transition into B for all admissible behavior for the envi-
ronment. Computing the WinSet for B ✓ S takes at most O(m|S |2) symbolic steps
[10]. We will sometimes refer to synthesis problems with winning conditions simi-
lar to that in equation (4), where the objective is to force the execution to a reach a
given set of states, as reachability games.

Definition 2. s1,s2 2 S are equicontrollable if and only if s1 2 WinSet(s2) and s2 2
WinSet(s1) .

In other words, two states are said to be equicontrollable if bidirectional reachability
holds.
Definition 3. Given transition rules for the controlled agent (ra) and the environ-
ment transition (re), the set of reachable states (S reach) is the set of states in S that
can be visited through any sequence of valid actions for the environment and the
controlled agent.
Formally,

S

reach
G = {v|9X 2 S

⇤
e ,9Y 2 S

⇤
a such that (X0,Y0) |= q ,v = (X�1,Y�1), |X |= |Y | and

8k < |X |�1.(Xk,Yk,Xk+1) |= r

e,(Xk,Yk,Xk+1,Yk+1) |= r

a},

where S

⇤
a is the Kleene closure of Sa and |X | is the length of the sequence X . The

set of reachable states can be computed in at most O(|S |) symbolic steps. For the
example in Section 3, the state {Office,Garage} is not reachable because the robot
can be present in either the office or the garage, but not both.

4.1 Parameterized Reachability Games

The reachability games are parameterized in a manner similar to that in [1]. How-
ever, in contrast to [1], we allow for liveness properties in addition to assuming
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safety constraints for the environment. Let PAP be a set of atomic propositions
introduced such that |PAP| = |AP| and PAP \AP = /0. Define a one-to-one and
onto function fparam : AP ! P

S

. Consider some subset of AP over which we want
to parameterize the reachability game. Denote this subset as T . For a set T ✓ AP,
define PT := {t : 9x 2 T, t = fparam(x)}. The augmented set of variables now is
APPT = PT [AP. We assume the new variables introduced are controlled by the
agent i.e. APPT

a = APa[PT and APPT
e = APe. Define the new transition rule for

the agent:
r̄

a = r

a ^
^

p2PT

(p $�p).

The parametric propositions introduced are constrained to stay fixed during execu-
tion, in addition to the original constraints on the agent’s behavior. The transition
rules for the environment stay unaltered.

Consider a reachability game with the winning condition:

y f := j

e !2r

a ^3
^

t2T

�

t $ fparam (t)
�

(5)

Solving for the set of winning states for this reachability game returns the set of
admissible parameters and the corresponding states in S that, in combination with
the admitted parameters, are winning for condition (5). If s 2 S and and r 2 2PT

are winning for condition (5), then what this implies is that starting from s, the
controlled agent can force the execution to transition into a state satisfying f�1

param(r).
Note that f�1

param(r)✓ T may only partially constrain the propositions in AP. Hence,
f�1
param(r) can be satisfied by multiple states in S .

Remark 1. The set of winning states for condition (5) can be computed in O(|S |2)
symbolic steps in the worst case.

This follows as a direct consequence of Lemma 9 from [10]. From the µ-calculus
formula in [10], we note that the non-parameterized reachability game takes worst
case O(|S |2) steps. For a valuation of the parameters (r), the parameterized reach-
ability game corresponds to solving a reachability game with f�1

param(r) as the set of
states to be reached. Thus, the symbolic set operations can be seen as operating on
copies of the same transition system for different valuations of the parametric propo-
sitions in parallel [1]. Since the parameters stay fixed during execution, adding the
parameters does not result in an increase in the number of symbolic steps needed
for solving a non-parameterized reachability game. However, the symbolic steps
themselves are more expensive because of the added parameters.

Example 1. Consider a system with AP= {a,b,c} and S = 2AP. PAP = {pa, pb, pc}
and for r 2 AP, fparam is defined as fparam(r) = pr. We seek to parameterize the
WinSet computation over T = {b,c}, therefore we set PT = {pb, pc}. The state
{a,b} is in WinSet of the states satisfying (b ^ c) if and only if {b, pb, pc} is a
winning state for the condition in equation (5). This implies that with {b} as the
initial state, the agent can force the execution to a state satisfying (b^ c).
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4.2 Partitioning a Set into Equicontrollable Sets

Problem Statement 2. Partition the set of states in S satisfying the Boolean for-
mula x over propositions in AP into equicontrollable classes over the set of propo-
sitions X .

By partitioning over X , we imply that for any x1,x2 ✓ X with x1 6= x2, the sets
of states S1 = {s|s 2 S ,s|X = x1} and S2 = {s|s 2 S ,s|X = x2} are in the same
equicontrollable class if and only if from every s 2 S1, the agent can force the exe-
cution into S2 and vice versa. We slightly abuse the definition of an equicontrollable
class by allowing for the states associated with x ✓ X to be in the same class even
though every pair of states s1,s2 2 {s|s 2 S ,s|X = x} may not be equicontrollable.
This is done since we are interested in partitioning over X .

In this paper, we set X to be the set of support propositions for the formula x ,
where [[x ]] is the set of states to be separated into equicontrollable classes. For a
specific application, domain knowledge could guide the selection of the set of the
propositions X to be different from the support variables for the formula x .

Algorithm 1 formally describes the procedure for solving the partitioning prob-
lem. Let X be the propositions over which we want to separate the equicontrollable
classes. First, consider the following formula:

j

e !2r

a ^3

 

x ^
^

t2X

�

t $ fparam (t)
�

!

. (6)

Solving for the winning states of the above parameterized reachability game gives
us a set of states of the form (s,r) with s 2 S and r ✓ PX . By construction, these
states have the property that f�1

param(r) |= x and from the state s, the controlled agent
can force the execution to reach the set of states {s 2 S : s|X = f�1

param(r)}.
Following this construction, we iterate through the values for the parameters (re-

call that the parametric propositions have a direct correspondence with the variables
in X ) and split them into equicontrollable classes as in Algorithm 1. This requires
us to perform at most O(k|SX |) evaluations once we have computed the winning
set for (6), where k is the number of classes. Furthermore, while iterating over sets
of states, we can eliminate spurious classes by ignoring those sets that have no ele-
ments in common with Sreach.

Example 2. For the workspace in Section 3, we want to partition the set of states
where the robot is in a room with a charging station into equivalence classes. x has
the form:

x = Office _ Living Room _Garage.

This specification specifies whether the room the robot is in has a charging station.
And we set

X = {Office, Living Room, Garage},

the supporting propositions for x .
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Suppose j

e = True i.e the behavior of the door is unconstrained. This yields
that Garage, Office are in the same equicontrollable class while Living Room is
in a different class. When we assume that the door opens infinitely often (je =
23Door Open) as a model for the environments behavior, the states corresponding
to Garage, Office and Living Room are in the same equicontrollable class.

Algorithm 1 Separating into equicontrollable Classes
Input: • Environmental Behavior j

e, System safety/transition rules r

a.
• Specification x representing the set of states to be separated ([[x ]]).
• BDD r

reach representing the set of reachable states for the system.
• Set of propositions X ✓ AP over which the states must be partitioned and the map fparam.

Output: • Equicontrollable classes a1,a2,a3, . . . ,ak s.t. ai \a j = /0 for i 6= j ,
k
S

l=1
ai = [[x ]].

1: Define j

param
x

:= j

e !2r

a ^3

✓

x ^
V

t2X

�

t $ fparam (t)
�

◆

2: Compute winning states (W
j

param
x

) for j

param
x

3: Equicontrollable Classes = /0
4: for x ✓ X do
5: t1 = f�1

param(x); EquivFlag = 0
6: for p 2 Equicontrollable Classes do
7: t2 = f�1

param(p)

8: if
✓

9s.s|X = x^ (s, t2) 2W
j

param
x

^9s.s|X = p^ (p, t1) 2W
j

param
x

◆

then

9: EquivFlag = 1
10: end if
11: end for
12: if EquivFlag = 0 and (9s 2 S .s |= r

reach ^ s|X = x) then
13: Equicontrollable Classes = Equicontrollable Classes [{s|s 2 S ,s|X = x}
14: end if
15: end for
16: return Equicontrollable Classes

5 Compositional Synthesis

This section describes an approach to build a transition system and a specifica-
tion such that the winning strategy for this system can be used to compose the
sub-strategies that are synthesized and stored in parallel to find a strategy winning
against a GR(1) specification.

Example 3. For the workspace from Section 3, consider a synthesis problem where
the robot has to patrol the dining room and the music room infinitely often, while
making sure to visit a room with a charging station infinitely often and the the robot
is initially in the dining room. The liveness guarantees to be satisfied are:

23 Dining Room , 23(Office_Garage_Living Room) , 23Music Room.
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We fix the ordering of liveness guarantees (Dining Room, Office _ Garage _
Living Room, Music Room). and build a new transition system as shown in Figure
2. For each liveness guarantee, there is state in the transition system correspond-
ing to a subset of equicontrollable classes arising from decomposition of the states
satisfying the liveness guarantee. We add transitions between these states if the pre-
decessor is in the WinSet of the successor.

If the environments behavior is modeled as j

e = True, we get the abstracted
supervisory transition system shown in Figure 2a. For the liveness guarantee Office
_Garage_Living Room, the classes are {Office_Garage,Living Room}. The tran-
sition system in Figure 2a has states corresponding to all non-empty subsets of these
classes. If we assume that the door infinitely often opens, the supervisory transition
system is that shown in Figure 2b. Both transition systems have a cycle that can be
used to compose the sub-strategies.

Living 
Room

Living Room
OR Office
OR Garage

Office
OR Garage

Dining 
Room

Music
Room

(a) Door need not open infinitely often

Living Room
OR Office
OR Garage

Dining 
Room

Music
Room

(b) Door opens infinitely often

Fig. 2: Supervisory transition system for different environment behavior

The construction of the transition system and the composing of the sub-strategies
is formally described below.

5.1 Synthesizing a Composite Controller

Consider the GR(1) formula in equation (2). The states corresponding to the live-
ness guarantees for the agent (ya

i ) are partitioned into equicontrollable classes as
described in Section 4. For each i 2 {1,2, . . . ,n}, let ki be the number of classes
y

a
i be partitioned into. Let Li = {ai,1,ai,2, . . . ,ai,ki} be the set of classes associated

with y

a
i . Define Wi to be set of all subsets of Li except the empty set ( /0). Note that

|Wi| = 2ki � 1. Without loss of generality, we fix some ordering of the elements in
Wi such that Wi = {Wi,1,Wi,2, . . . ,Wi,2k j�1}. Denote by A

Wi, j the WinSet for Wi, j i.e
A

Wi, j = WinSet(Wi, j) For the case in Example 3 where the door is not assumed to
open infinitely often, the classes corresponding the specification where the robot has
to infinitely often visit a room with a charging station are

L2 = {Office_Garage, Living Room}
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and

W2 =
n

{Office_Garage} ,{ Living Room} ,{Office_Garage, Living Room}
o

.

Note that if |Wi, j| = 1 we can use the parametric WinSet computed for decom-
posing [[ya

i ]] into equicontrollable classes to obtain the WinSet for Wi, j by setting
values to the parametric propositions appropriately. For Wi, j with |Wi, j| > 1, we
compute WinSet(A

Wi, j ) by solving a reachability game with Wi, j as the goal to be
reached. As these computations are independent, they can be performed in paral-
lel. The symbolic steps here are less difficult than that for finding the WinSet set of
[[ya

i ]], because we are only considering a subset of the set of states satisfying the
liveness constraint [[ya

i ]] and hence there are fewer transitions to be accounted for in
each symbolic step.

Following this setup, the hierarchical game is constructed as follows. The set of
atomic propositions are:

AP = {ri, ji : i 2 {1,2, . . . ,n}, ji 2 {1,2, . . . ,2ki �1}}.

The transition rule is specified as:

r

compositional =
_

v
v2AP

^
^

|{z}

i 2 {1,2, . . . ,n}
j 2 {1,2, . . . ,2ki �1}

0

B

B

B

B

B

B

B

B

B

@

ri, j !�
_

|{z}

Wi, j ✓ A
Wk,l

k 2 {i, i�1}
l 2 {1,2, . . . ,2ki �1}

rk,l

1

C

C

C

C

C

C

C

C

C

A

. (7)

Here
W

is the XOR operator. In equation (7), we allow for a transitions between
the states {ri, j} and {rk,l} only if the current Wi, j is in the WinSet for the Wk,l
corresponding to the successor state. For the transition system in Figure 2a, the
Dining Room is in the WinSet of Living Room_Office_Garage but Living Room_
Office_Garage is not in the WinSet of Music Room. The transition relations reflect
the same. Similarly, transition relations are constructed between the other states.

Note that we restrict k 2 {i, i�1}, ensuring that only those transitions are chosen
that either stay in the same liveness guarantee or lead to the next liveness guarantee.
This way we do not cycle back to a liveness guarantee that was visited earlier in
the current cycle. This makes the transition rules sparse, keeping the BDD small,
reducing the time required for synthesizing the composite controller.

The liveness guarantees ensure that infinitely often for each i 2 {1,2, . . . ,n}, ri, j
for some j is satisfied. The liveness guarantees can be formally written as:

y

compositional
i :=

_

j2{1,2,...,2ki�1}

ri, j. (8)
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This ensures that at least one of the classes corresponding to a liveness guarantee is
visited in each cycle through the liveness guarantees. For a particular i, satisfying
y

compositional
i is equivalent to satisfying y

a
i in the original system.

Note that here there is no environment here and we only need to search for a cycle
passing through all the liveness guarantees for a given set of initial states. Consider
some i 2 {1,2, . . . ,n}. The set of valid initial states are the nodes corresponding to
the elements in Wi for which [[q a^q

e]] lies in their WinSet. The initial condition can
be written as (for some i):

q

compositional := _
q2A

Wi, j

ri, j . (9)

Composing the specifications above, we need to find a controller for the condition:

q

compositional ^2r

compositional ^
n̂

i=1
23y

compositional
i . (10)

Finding a winning strategy f compositional : AP⇥Msup ! AP⇥Msup for the above
specification gives the compositional controller for composing the strategies for the
reachability games.

5.2 Composing the Sub-strategies

Define f k,l
i,l : Se ⇥S ⇥Mk,l

i,l ! Sa ⇥Mk,l
i,l to be the strategy that takes the agent from

a state in Wi,l to Wk,l . Let mk,l
i, j be the initial memory value for Mk,l

i,l . Without loss of
generality, assume Mk1,l1

i1,l1
\Mk2,l2

i2,l2
= /0 when (i1, j1,k1, l1) 6= (i2, j2,k2, l2).

Define kmax := max{ki : i 2 {1,2, . . . ,n}}, i.e. kmax is the size of the largest num-
ber of equicontrollable classes for any of the liveness classes. Let M := Msup ⇥
\

i, j,k,l
Mk,l

i, j and xcomp := {1,2, . . . ,N}⇥{1,2, . . . ,kmax}⇥{1, . . . ,N}⇥{1, . . . ,kmax}.

We construct a strategy

f compose : Se ⇥S ⇥xcomp ⇥M ! Sa ⇥xcomp ⇥M

that uses f compositional to compose the strategies for the reachability games ( f k,l
i,l ):

f compose(x,s, i, j,k, l,w,wsup) = (y, i0, j0,k0, l0,w0,w0
sup), (11)

where if s 62 Wk,l , then

(y,w0) = f k,l
i, j (x,s,w),

(i0, j0,k0, l0) = (i, j,k, l),
w0

sup = wsup,

(12)
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and if s 2 Wk,l , then

(y,w0) = f k,l
i, j (x,s,m

k,l
i, j),

({rk0,l0},w0
sup) = f compositional({rk,l},wsup),

(i0, j0) = (k, l).

(13)

In equation (12), while we are moving towards Wk,l , the values are updated accord-
ing to the strategy f k,l

l, j . Once we reach Wk,l (equation (13)), the next goal is updated
according to f compositional and we continue towards the next goal, switching goals
again once the next goal is reached.

Theorem 1. Strategy f compose is sound. Solving equation (10) takes in the worst
case O((2kmax)2n3) symbolic steps.

Proof. By construction, a winning strategy in the original system was computed
corresponding to every transition in the abstracted system i.e the agent can either
force the execution to the next liveness guarantee or block the environment from
satisfying the assumption on its behavior. A winning strategy for the abstracted sys-
tem finds an execution that cycles through the liveness guarantees. Cycling through
the liveness guarantees in the abstracted system correspond to cycling through live-
ness guarantees in the original system. Hence, composing the strategies from the
reachability games in accordance with the composite controller ensures satisfaction
of the original GR(1) formula.

The specification resulting in equation (10) is a GR(1) formula without an envi-
ronment i.e it is not reactive, hence the innermost fixpoint associated with blocking
the environment from satisfying its assumptions does not add to the number of sym-
bolic steps to be performed. The total number of states is (n2kmax) and there are n
liveness guarantees, resulting in O((2kmax)2n3) symbolic steps [9]. ut

For applications where the number of liveness guarantees and the number of
equicontrollable classes are much smaller than the total number of states, i.e n⌧ |S |
and k ⌧ |S |, the parallelized approach presented here is well-suited and should
result in performance gains in term of computation time. We expect such behavior
in multi-agent systems with large state spaces where the agents’ dynamics are not
closely coupled.

Limitations

There can be potential corner cases where the algorithm presented above is not com-
plete1 as we lose certain transitions during abstraction into the supervisory transition
system. Besides completeness another limitation of the approach is that if we end
up with a large number of equicontrollable classes, the computation of the compo-
sitional strategy can become intractable.

1 See https://dathath.github.io/papers/appendix.pdf for example demonstrat-
ing incompleteness of the approach.
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Fig. 3 Workspace with
shaded obstacles (black) and
critical sections (green and
red).

6 Experiments

We consider a multi-agent robot motion planning problem where the objective is to,
for a set of robots, schedule access to critical sections of a given workspace in a safe
manner. The environment consists of an uncontrolled adversarial mobile robot that
is functioning in the same workspace as the controlled robots and requires access to
certain critical sections of the workspace. An example instance is shown in Figure 3.
Both the controlled robots and the uncontrolled robot have to visit cells shaded with
each of the three colors (red and green) infinitely often. The problem instances are
parameterized in terms of the size of the workspace, the number of critical sections
and the number of controlled robots. The colored cells represent critical sections of
the workspace that must be accessed in a mutually exclusive manner and each color
represents a critical resource of a type. While the adversarial robot is accessing a
critical section, the controlled robots must not access the same critical section. Sim-
ilarly, no two controlled robots can access a critical section at the same time. The
adversarial robot’s access to the critical sections is prioritized over the controlled
robots. When the adversarial robot attempts to access a critical space, the controlled
robots as a part of their safety requirement must allow the adversarial robot to gain
access by vacating the critical section. The regions shaded black (density=5%) rep-
resent static obstacles and both the uncontrolled and controlled robots must avoid
the obstacles. The robots are allowed to transition to any of their non-diagonally ad-
jacent cells in a single step. The uncontrolled robot is allowed to pursue a trajectory
of its choice and the only assumption on its behavior, in addition to the constraints
on its motion, is that the uncontrolled robot will access cells shaded with each of the
colors infinitely often.

Figures 4a, 4b report performance over problem instances of varying size. The
mean time over 50 problem instances is reported. For each of these instances the
initial positions of the robots, the positions of the obstacles and the critical sections
are randomized. The computations were performed on a 32 core AMD Opteron
machine at 2.4GHz with 96 GB of RAM, and and we see considerable gains in
computation time for the parallelized approach.
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Fig. 4: Performance on benchmark experiments – mean runtimes over 50 random-
ized problem instances are reported, error bars indicate standard deviation.

7 Conclusion and Future Work

A major challenge to the widespread adoption of formal methods is their scalabil-
ity. As systems get larger and complex, scalable algorithms that can deal with the
size and complexity of the systems are necessary. In this regard, we present an ap-
proach that allows us to decompose and parallelize the synthesis algorithm for the
GR(1) fragment of linear temporal logic. The approach relies on the construction of
a composite strategy that is used to compose local strategies to ensure satisfaction
of the GR(1) specification. However, the approach comes with certain drawbacks
as outlined earlier. Empirical evidence demonstrating the resulting gains in perfor-
mance is presented for a robot motion planning problem, where in addition to path
planning, safe access to certain critical sections of the workspace is scheduled.

Future work would be to explore if a similar approach can be used to synthesize
policies that can handle uncertainty, because some local uncertainty can be tolerated
without a resynthesis of the entire strategy by applying a local correction. Some un-
expected disturbances can be handled locally, without the need for global synthesis.
A hierarchical framework as presented here could be used in such settings. Another
direction for future work includes exploring the possibility of a symbolic approach
for decomposition of sets into equicontrollable classes as opposed to the enumera-
tive approach considered here.
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