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Abstract— This paper considers the problem of estimation
over communication networks. Suppose a sensor is taking
measurements of a dynamic process. However the process
needs to be estimated at a remote location connected to the
sensor through a network of communication links that drop
packets stochastically. We provide a framework for computing
the optimal performance in the sense of expected error covari-
ance. Using this framework we characterize the dependency
of the performance on the topology of the network and the
packet dropping process. For independent and memoryless
packet dropping processes we find the steady-state error for
some classes of networks and obtain lower and upper bounds
for the performance of a general network. We also illustrate
how this framework can be used in the synthesis of networks
for the purpose of estimation. Finally we find a necessary
and sufficient condition for the stability of the estimate error
covariance for general networks with spatially correlated and
Markov type dropping process. This interesting condition has
a max-cut interpretation.

I. INTRODUCTION AND MOTIVATION

In recent years, systems comprising of multiple sensors
cooperating with each other have received wide-spread
interest (see, e.g., [1], [2]). Although such systems ad-
mittedly have a higher complexity than the strategy of
using only one sensor, the increased accuracy often make
these systems worthwhile. From an estimation and control
perspective, such systems present many new challenges,
such as dealing with data delay or data loss imposed by
the communication links, fusion of data emerging from
multiple nodes and so on. Most of these issues arise because
of the tight coupling between the estimation and control
tasks that depend on the sensed data and the communication
channel effects that affect the transmission and reception
of data. Communication links introduce many potentially
detrimental phenomena, such as quantization error, random
delays, data loss and data corruption to name a few. It is
imperative to understand and counteract the effects of the
communication channels.

Motivated by this, there has been a lot of work done
on estimation and control over networks of communication
links (see, e.g., [3], [4] and the references therein). Begin-
ning with the seminal paper of Delchamps [5], quantization
effects have been variously studied both in estimation and
control context by Tatikonda [6], Nair and Evans [7],
Hespanha et al [8] and many others. The effect of delayed
packet delivery using various models for network delay has
also been considered by many researchers.

In this work, we focus on estimation across a network
of communication links that drop packets. We consider a
dynamical process evolving in time that is being observed

by a sensor. The sensor needs to transmit the data over a
network to a destination node. However the links in the
network stochastically drop packets. Prior work in this area
has focused on studying the effect of packet drops by a
single link in an estimation or control problem. Assuming
certain statistical models for the packet drop process, stabil-
ity of such systems was analyzed, e.g., in [10], [11] and the
control performance by Seiler in [10] and by Ling and Lem-
mon in [12]. Approaches to compensate for the data loss
were proposed by Nilsson [9], Hadjicostis and Touri [13],
Ling and Lemmon [12], [14], Azimi-Sadjadi [15], Sinopoli
et al. [16] and Imer et al. [17]. Sinopoli et al. [18] also
considered the problem of optimal estimation across a
packet-dropping link that drops packet in an i.i.d. fashion
and obtained bounds on the expected error covariance.
Most of the above designs aimed at designing a packet-loss
compensator. The compensator accepts those packets that
the link successfully transmits and produces an estimate
for the time steps when data is lost. If the estimator is
used inside a control loop, the estimate is then used by
the controller. A more general approach is to design an
encoder and a decoder for the communication link. This
was considered for the case of a single communication
link in [19]. It was demonstrated that using encoders and
decoders can improve both the stability margin and the
performance of the system.

For general networks, the problem is much more com-
plicated than the case of a single communication link since
potentially there are multiple paths from the source to the
destination. Recent work [20] identified optimal information
processing schemes that should be followed by the nodes
of the network to allow the sink to calculate the optimal
estimate at every time step. That work also identified the
condition on the network for the estimate error covariance
to be stable under this algorithm. In this paper, we calculate
the performance of such a strategy. This performance also
provides a lower bound on the performance that can be
achieved by any other scheme (e.g., transmitting measure-
ments without any processing). We also generalize the
condition for stability of the estimate error covariance from
the independent and memoryless packet drop processes to
ones that are described by Markov chains or are spatially
correlated across the network. We provide a mathematical
framework for evaluating the performance for a general
network and provide expressions for networks containing
links in series and parallel. We also provide lower and upper
bounds for the performance over general networks. As an
example of how such results can be used for synthesis of



networks to improve estimation performance, we provide a
simple example in which the optimal number of relay nodes
to be placed is identified. Simulation results are provided to
illustrate the results. The better estimation performance can
also translate to better control performance if the estimate
is used for control purposes [19], [16], [17].

The paper is organized as follows. In the next section,
we set up the problem and state the various assumptions.
Then, we provide the mathematical framework needed to
calculate the steady-state performance and introduce the
concept of latency. We show how to evaluate latency for
series and parallel networks. We then provide bounds for
the performance for a general network. We conclude with
some remarks and avenues for future work.

II. PROBLEM SETUP

Consider a process evolving in discrete-time as

xk+1 = Axk + wk, (1)

where xk ∈ Rn is the process state and wk is the process
noise modeled white and Gaussian with mean zero and
covariance matrix Q. The process is observed using a sensor
that generates measurements of the form

yk = Cxk + vk, (2)

where vk ∈ Rm is the measurement noise also assumed
to be white, Gaussian with mean zero and covariance R.
Furthermore, the noises vk and wk are assumed to be
independent of each other. We consider the scenario in
which the process needs to be estimated in the minimum
mean square error (MMSE) sense at a remote point denoted
by a destination node d. We assume that the sensor (denoted
by s) and the destination node d are connected via a commu-
nication network. The communication graph is represented
by a directed graph G with node set V (that contains, in
particular, s and d) and link set E ⊆ V × V . The link
e = (u, v) models a communication channel between node
u and node v. For any node i ∈ V , the set of outgoing edges
corresponds to the links along which the node can transmit
messages while the set of incoming edges corresponds to the
links along which the node receives messages. We denote
the set of in-neighbors of node v by N (v).

The communication links are modeled using a packet
erasure model. The links take in as input a finite vector of
real numbers. For every link, at each time-step, a packet is
either dropped or received completely at the output node. In
this paper, we assume independent and memoryless packet
drop processes, i.e., the probability of dropping a packet
on link e ∈ E is given by pe independent of other links
and time. We ignore quantization issues, data corruption or
random delays. We also assume a global clock so that each
node is synchronized. We further assume that each node
can listen to all the messages over the different incoming
links without interference from each other.1

1This property can be achieved by using a division multiple access
scheme like FDMA, TDMA, CDMA etc.

The operation of different nodes in the network at every
time-step k can be described as follows:

1) Each node computes a function of all the information
it has access to at that time.

2) It transmits the function on all the outgoing edges. We
allow some additional information in the message that
tells us the time step j such that the function that
the node transmits corresponds to the state xj . The
destination node calculates the estimate of the current
state xk based on the information it possesses.

3) Every node observes the signals from all the incoming
links and updates its information set for the next time
step. For the source node, the message it receives at
time step k corresponds to the observation yk.

The timing sequence we have specified leads to strictly
causal estimates. At time step k, the function that the source
node transmits depends on measurements y0, y1, · · · , yk−1.
Further even if there were no packet drops, if the destination
node is l hops away from the source node, its estimate for
the state xk at time k can only depend on measurements
y0, y1, · · · , yk−l−1 till time k − l − 1.

In [20], the optimal information processing strategy at
each node in the network that results in MMSE estimate at
the destination node was identified. We restate the algorithm
in this paper for the sake of completeness. We derive
the necessary and sufficient condition for stability of the
expected estimate error covariance for the algorithm using
an alternate method. The chief contribution of this paper
is to find the MMSE steady-state error at the destination
node and to identify its dependency on the topology of the
network and the packet drop probabilities. The framework
developed here also allows us to generalize the condition
for stability of the estimate error covariance to more com-
plicated packet dropping models.

III. OPTIMAL ENCODING AND DECODING

We now describe an algorithm A, originally developed
in [20], that achieves the optimal performance at the ex-
pense of constant memory and transmission (modulo the
transmission of the time stamp). At each time step k, every
node v takes the following actions:

1) Calculate its estimate x̂v
k of the state xk based on

any data received at the previous time step k− 1 and
its previous estimate. The estimate can be computed
using a switched linear filter as follows. The source
node implements a Kalman filter and updates its
estimate at every time step with the new measurement
received. Every other node checks the time-stamps on
the data coming on the incoming edges. The time-
stamps correspond to the latest measurement used
in the calculation of the estimate being transmitted.
Let the time-stamp for node u ∈ V at time k be
tu(k). Also let Duv(k) be the binary random variable
describing the packet drop event on link (u, v) ∈ E at
time k. Duv(k) is ‘0’ if the packet is dropped on link



(u, v) at time k and ‘1’ otherwise. For a network with
independent and memoryless packet drops, Duv(k)
is distributed according to Bernoulli with parameter
puv . We define Duu(k) = 1. Node v updates its time-
stamp using the relation

tv(k) = max
u∈N (v)∪{v}

Duv(k)tu(k − 1). (3)

Note that for the source node s, ts(k) = (k − 1) for
all k ≥ 1. Suppose that the maximum of (3) is given
by node n ∈ N (v) ∪ {v}. The node v updates its
estimate as x̂v

k = Ax̂n
k−1.

2) Affix a time stamp corresponding to the last mea-
surement used in the calculation of its estimate and
transmit the estimate on the outgoing edges.

3) Receive any data on the incoming edges and store it
for the next time step.

Proposition 1: (Optimality of Algorithm A): The algo-
rithm A is optimal in the sense that it leads to the minimum
possible error covariance at any node at any time step.
The proof of the above theorem is provided in [20]. We
should remark that the above result holds for any packet
drop sequence. Thus the algorithm A is optimal for any
packet drop pattern, i.e., irrespective of whether the packet
drops are occurring in an i.i.d. fashion or are correlated
across time or space or if packet drops are time-varying
or even adversarial in nature. The algorithm also does not
assume any knowledge of the statistics of the packet drops
at any of the nodes.

IV. STEADY-STATE ERROR COVARIANCE CALCULATION

In this section we calculate the steady-state estimate error
covariance at any node using the algorithm A. For node v

and time k, tv(k) denotes the time-stamp of the most recent
observation used in estimating xk . This time-stamp evolves
according to (3). The expected estimation error covariance
at time k at node v can be written as

E |xk − x̂k|tv(k)|2

=

k
∑

l=0

Pr (tv(k) = k − l − 1)E |xk − x̂k|k−l−1|2

=

k
∑

l=0

Pr (lv(k) = l)

[

AlPk−l−1A
l +

l−1
∑

j=0

AjQAj

]

,(4)

where Pk is the estimation error covariance of xk based
on {y0, y1, . . . , yk−1} and lv(k) = k − 1 − tv(k) is the
latency for node v at time k. Pk evolves according to a
Riccati recursion. The above equation gives the expected
estimation error covariance for a general network with any
packet dropping process. The effect of the packet dropping
process appears in the distribution of the latency lv(k). We
consider the steady-state error covariance in the limit as k

goes to infinity, i.e.,

P∞ = lim
k→∞

E |xk − x̂k|tv(k)|2.

If P∞ is bounded, we will say that the estimate error is
stable; otherwise it is unstable. As we can see from (4), the
stability of the system depends on how fast the probability
distribution of the latency decreases.

For now we focus on an i.i.d. packet drop model. At any
time and for any link e = (u, v), the packet is dropped with
probability pe independent of time k and of other links of
the network. From (3), Duv(k) indicates the event of packet
drop for link e = (u, v). For each link e and time k let Ze(k)
be the difference between k and the most recent successful
transmission on link e preceding time k., i.e.,

Ze(k) = min{j ≥ 1|Duv(k + 1 − j) = 1}
Using the definition of Ze(k), the last time that any message
is received at node v from link (u, v) is k−Zuv(k)+1 and
that message has time-stamp tu(k−Zuv(k)). Then (3) can
be written in terms of Ze(k) as

tv(k) = max
u∈N (v)

tu(k − Zuv(k))

Now Ze(k) is distributed as a truncated geometric random
variable with Pr (Ze(k) = i) = (1− pe)p

i−1
e ∀ k > i ≥ 1

and Pr (Ze(k) = k) = 1 − ∑k−1
i=1 Pr (Ze(k) = i). We

can get rid of the truncation by extending the definition
of tu(k) for negative k′s as well. For k < 0 we define
tu(k) = 0. Then, for instance, for the source node s we
have ts(k) = (k−1)+, where x+ = max{0, x}. In general,
we have

tv(k) = max
u∈N (v)

tu(k − Zuv),

where Ze’s are independent random variables distributed
according to a geometric distribution, i.e., Pr (Ze = i) =
(1−pe)p

i−1
e ∀i ≥ 1. Further note that Ze’s do not depend

anymore on k. Solving the above recursive formula, we can
write tv(k) in terms of the time-stamp at the source node
(i.e., (k − 1)+) as

tv(k) = max
P :an s-v path

(k − 1 −
∑

e∈P

Ze)
+, (5)

where the maximum is taken over all paths P in the graph
G from source s to the node v. Therefore the latency at
node v can be written as

lv(k) = k − 1 − tv(k) = min{k − 1, min
P :an s-v path

(
∑

e∈P

Ze)}.

From the above equation it can be seen that as k → ∞
the distribution of ld(k) approaches the distribution of ld
defined as

ld = min
P :an s-d path

(
∑

e∈P

Ze). (6)

We refer to ld as the steady-state latency of the network.
Therefore, the steady-state error covariance can be written
as

P∞ =
∞
∑

l=0

Pr (ld = l)



AlP ?Al +
l−1
∑

j=0

AjQAj



 , (7)



where P ? is the steady-state estimation error covariance of
xk based on {y0, y1 · · · , yk−1} and is the solution to the
Discrete Algebraic Riccati Equation (DARE)

P ? = AP ?AT + Q − AP ?CT (CP ?CT + R)−1CP ?AT .

We assume that the system {A, Q
1

2 } is stabilizable. Hence
the rate of convergence of Pk to P ? is exponential [21] and
the substitution of P ? for Pk−l in (4) does not change the
steady-state error covariance.

Let us define the generating function of the complemen-
tary density function G(X) and the moment generating
function F (X) of the steady state latency ld

G(X) =

∞
∑

l=0

Pr (ld ≥ l + 1)X l (8)

F (X) =

∞
∑

l=0

Pr (ld = l)X l,

where X is a matrix. On vectorizing (7) we obtain

vec (P∞) = F (A ⊗ A)vec (P ?) + G(A ⊗ A)vec (Q),

where A ⊗ B is the Kronecker product of matrices A and
B. Using the fact that F (X) = (X − I)G(X) + I yields

vec (P∞) = ((A ⊗ A − I)G(A ⊗ A) + I) vec (P ?)

+ G(A ⊗ A)vec (Q). (9)

We can see from (9) that the performance of the system
depends on the value of G(X) evaluated at X = A ⊗ A.
In particular, the system is stable if and only if G(X) is
bounded at A ⊗ A. Since G(X) is a power series, this
is equivalent to the boundedness of G(x) (evaluated for
a scalar x) at the square of the norm of the eigenvalue of
A with the largest norm. We summarize the result of the
above arguments in the following theorem.

Theorem 1: Consider the system model described in
Section II. Let the packet drops are independent from one
time step to the next and across links. Then the minimum
expected steady-state estimation error covariance is given
by (9). Furthermore, the error covariance is stable, iff
|λmax(A)|2 lies in the region of convergence of G(x) where
λmax(A) is the maximum-norm eigenvalue of A.
The above theorem allows us to calculate the steady state
expected error covariance for any network as long as we can
evaluate the function G(X) for that network. We now con-
sider some special networks and evaluate the performance
explicitly. We start with a network consisting of links in
series, or a line network.

1) Line Networks: In this case, the network consists of
only one path from the source to the destination. Since the
drops across different links are uncorrelated, the variables
Ze’s are independent. Thus

F (X) = E [X ld ] = E [X
P

e
Ze ] =

∏

e

E [XZe ].

Since Ze is a geometric random variable, E [XZe ] =
(1 − pe)X(I − peX)−1 provided that λmax(X)pe < 1.
Therefore,

F (X) = E [X ld ] =
∏

e

[

(1 − pe)X(I − peX)−1

]

.

Using partial fractions, we can easily show that

G(X) =
n−1
∑

i=0

X i + Xn
∑

e

ce

pe

1 − pe

(I − peX)−1,

where ce = (
∏

e′ 6=e(1− pe

p
e′

))−1. Therefore the cost can be
written as

vec (P∞) =
∏

e

[

(A ⊗ A)(
I − pe(A ⊗ A)

1 − pe

)−1

]

vec (P ?)

+ G(A ⊗ A)vec (Q). (10)

Remark 1: We can see from the above argument that the
system is stable if for every link e we have pe|λmax(A)|2 <

1 or equivalently maxe pe|λmax(A)|2 < 1. This matches
with the condition in [20]

Remark 2: For the case that some of pe’s are equal, a
different partial fraction expansion applies. In particular
for the case when there are n links all with the erasure
probability p, we obtain

vec (P∞) = (A ⊗ A)n(
I − p(A ⊗ A)

1 − p
)−nvec (P ?)

+

n−1
∑

i=0

[

p

1 − p
(A ⊗ A)n(

I − p(A ⊗ A)

1 − p
)−i−1

]

vec (Q)

+
n−1
∑

i=0

(A ⊗ A)ivec (Q).

When there is only one link between the source and the
destination the steady state error covariance will be the
solution to the Lyapunov equation

P∞ =
√

pAP∞√
pA + (Q + (1 − p)AP ?A).

This matches with the expression derived in [19] using
Markov jump linear system theory.

2) Network of Parallel Links: Now consider a network
with one sensor connected to a destination node through
n links with probabilities of packet drop p1, . . . , pn. In
this case the steady state latency is given by ld =
min1≤i≤n(Zi). Since the minimum of independent geomet-
rically distributed random variables with parameters {pi} is
itself geometrically distributed with parameter peq =

∏

i pi,
G(X) can be written as

G(X) = (I −
∏

i

piX)−1

Thus the steady-state error can be evaluated using (9).
Note that the region of convergence of G(X) enforces
∏

i pi|λmax(A)|2 < 1 for stability which again matches
with the condition in [20].
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Fig. 1. Example of a network of combination of parallel and serial links

3) Arbitrary Network of Parallel and Serial Links: Using
similar arguments as in previous sections, we can find the
steady-state error covariance of any network of parallel and
serial links. These networks are derived from the parallel
and serial concatenations of sub-networks. The following
two simple rules can give the steady state error of any
network of parallel and series links. Let ld(G) denote the
steady-state latency function of network G. Also given two
subnetworks G1 and G2, denote their series combination by
G1 ⊕ G2 and their parallel combination by G1‖G2.

1) For series connection, we have ld(G1⊕G2) = ld(G1)+
ld(G2). Using the independence of latency functions
of the two sub-networks, the generating function of
the network is given as

G(X) = (X − I)G1(X)G2(X) + G1(X) + G2(X).

2) For parallel connection, we have ld(G1‖G2) =
min{ld(G1), ld2

(G2)}. Using the independence of
ld(G1) and ld(G2), the complementary distribution
function of ld(G) can be written as the product of
the functions for G1 and G2.

As an example consider the network depicted in Fig. 1. In
this case the network G can be written as (((G0⊕G1)‖G2)⊕
G3)‖G4) where each of the sub-networks Gi is just a link
with probability of packet drop p. Using the above rules
and denoting the moment generating function of the parallel
combination of any network (with G(X)) and a link with
probability of packet drop p by Lp(G)(X), the generating
function of the network can be written as

G(X) = Lp(Lp(G0 ∗ G1) ∗ G3)(X)

where Gi(X) = (I − pX)−1, i = 0, 1, 3 is the generating
function for the i-th link and for each function F (·), Lp is
an operator that such that Lp(F )(X) = F (pX). The steady
state error covariance can thus be evaluated.

4) Networks with Arbitrary Topology: Finding the distri-
bution of the steady-state latency ld of a general network is
not an easy task. However, we can provide upper and lower
bounds on the performance. We first mention the following
intuitive lemma without proof.

Lemma 1: Let P∞(G, {pe, e ∈ E}) denote the expected
steady-state error of a system with communication network
represented by graph G = (V , E) and probabilities of packet
drop pe, e ∈ E . Then the expected steady-state error is non-
increasing in pe’s, i.e., if pe ≤ qe ∀ e ∈ E

P∞(G, {pe, e ∈ E}) � P∞(G, {qe, e ∈ E}),

where A � B means that A − B is positive semi-definite.
Using the above lemma we can lower bound the steady-

state error by making a subset of links erasure free. In
particular, consider any source-destination cut in the net-
work (which is simply a partition of the nodes in two sets
one containing the source node (the source set) and the
other containing the destination node (the destination set)).
Setting the probability of erasure equal to zero for every
link except those crossing the cut gives a lower bound on
the error. Therefore,

P∞(G, {pe, e ∈ E}) � P∞(G, {qe, e ∈ E})
where qe = pe iff e is in the cut and zero otherwise. Now
the left side of the above equation can be calculated easily
using the results from Section IV-.3. In particular, it can be
shown that for stability we require that

max
C:s-d cut

(
∏

e∈C

pe)|λmax(A)|2 < 1

We refer to pmc(G) = maxC:s-d cut(
∏

e∈C pe) as the max-
cut value of the network.

One way to upper bound the steady-state error is by
setting the probability of packet drop of some of the edges
equal to one. In [20], it is shown that the performance of the
network G is lower bounded by the performance of another
network G′ with the following properties:

• G′ has the same node set.
• G′ is the combination of edge-disjoint paths from the

source to destination.
• Along each path the links have the same probability

of dropping packets equal to the probability of packet
drop of one of links in the max-cut of the original
network G.

• Based on the previous property the value of the max-
cut in G′ is the same as the original network G.

Now G′ is a network with series and parallel links only.
Thus its performance can be computed and provides an
upper bound on the steady-state error covariance of G. In
particular, since all the paths from s to d are disjoint,

Pr (ld(G′) ≥ l + 1) =
∏

i

Pr (ld(Pi) ≥ l + 1)

where ld(Pi) is the steady-state latency of path Pi. But for
any path with n links,

Pr (ld ≥ l + 1) =
n−1
∑

i=0

(

i + l − n

l − n

)

(1 − p)ipl−n+1

Using the Stirling formula for large l, we obtain

c1 ≤ Pr (ld ≥ l + 1)

( 1
p
− 1)n−1(l − 1)n−1p l

≤ c2 (11)

where c1, c2 are two positive constants independent of l.
Therefore, for large l, Pr (ld(G′) ≥ l + 1) behaves like

f(l)(
∏

i

pi)
l = f(l)(pmc(G′))l = f(l)(pmc(G))l



where f(l) grows polynomially in l. Thus it is easy to verify
that for network G′ the system is stable if pmc(G) satisfies

pmc(G)|λmax(A)|2 < 1.

Therefore the above condition is both necessary and suffi-
cient for stability.

5) Synthesis of a Network: One can use the results on
the performance of networks to design networks that result
in minimal error covariance. To consider a simple example,
consider a scalar system observed by sensor s. Assume that
the destination is located at distance d0 from the sensor.
The probability of dropping a packet on a link depends
on its physical length. A reasonable model for probability
of dropping packets is given by2 p(d) = 1 − exp(−βdα),
where β, α are positive constants. α denotes the exponent of
power decay in the wireless environment. We are interested
in the optimal number n of relay nodes between sensor and
the destination so as to minimize the expected steady-state
error covariance. Assuming that the sensor are uniformly
placed, P∞ satisfies

P∞ =

(

a2(1 − p)

1 − pa2

)n+1

(P ? +
Q

a2 − 1
) − Q

a2 − 1

Thus the optimal n (assuming that a2 > 1) is the solution
to the problem

min
n

(

a2(1 − p( d0

n+1 ))

1 − p( d0

n+1 )a2

)n+1

If a2 < 1 then minimization is replaced with maximization.

V. EXAMPLES

In this section, we illustrate the above results using a
simple example. Consider a scalar process evolving as

xk+1 = 0.8xk + wk,

that is being observed through a sensor of the form

yk = xk + vk.

The noises wk and vk are assumed zero-mean, white and
Gaussian with covariances Q = 1 and R = 1 respectively.
Further, the two noises are assumed independent of each
other. To begin with, suppose that the source and the
destination node are connected using two links in series,
each with a probability of packet erasure p. Figure 2 shows
the performance of our strategy as the probability p is
varied. The simulation results refer to data generated by
a random run averaged over 100000 time steps while the
theoretical values refer to the value predicted by using (9).
We can see that the two sets of values match quite closely.

We also carried out a similar exercise for the source and
destination nodes connected by two links in parallel, with
packet erasure probability p each. The results are plotted in

2This expression can be derived by considering the probability of outage
in a Rayleigh fading environment.
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Fig. 2. Simulated and theoretical results for a line network.

Figure 3. We can once again see that the simulated values
match quite closely with the theoretical values.
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Fig. 3. Simulated and theoretical results for a parallel network.

As a final example, we consider the source and des-
tination nodes connected by a bridge network shown in
Figure 4. We assume all the links in the network to have
probability of erasure p. This network cannot be reduced
to a series of series and parallel sub-networks. We can
however, calculate the performance analytically in this
particular case and compare it to the upper and lower
bounds presented earlier. The networks used for calculating
the bounds are also shown in figure 4. Figure 5 shows a
comparison of the analytical and simulated values with the
lower and upper bounds. The simulated values do not fall
below the upper bound every-time because of numerical
issues; otherwise the bounds are tight. We also calculated
the optimal number of nodes to be placed between the
source and the destination node using our synthesis results.
The values we used are d0 = 5, α = 2, β = 1. In this case,
the optimal number of relays turns out to be n = 4.



p

pp

p

s d

p

p

pp

p

s d

p

0

0p

0

s d

Bridge Network Lower Bound

Upper bound

Fig. 4. Bridge network and the networks used for calculating lower and
upper bounds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Probability of packet drop

Ex
pe

ct
ed

 e
rro

r c
ov

ar
ia

nc
e

 

 
Simulated value
Analytical value
Lower bound
Upper bound

Fig. 5. Simulated values and theoretical bounds for the bridge network.

VI. GENERALIZATIONS

Correlated erasure events: The analysis so far assumed
that the erasure events are memoryless and independent
across different links in the network. We could thus for-
mulate the performance in terms of a generating function
of the steady-state latency distribution as defined in (6). We
now look at the effect of dropping these assumptions.

Markov events: If we assume that the drop events on
each link are governed by a Markov chain (but are still
independent of other links), we can obtain the performance
as follows. Let us assume that the packet drop event on link
(u, v), denoted by Duv(k) evolves according to a Markov
chain with transition matrix Muv . We further assume that
Muv is irreducible and reversible. Let us first consider the
case where the initial distribution of packet drop on each
link is the stationary distribution of the Markov chain on
that link. Then we can rewrite (3) as (5) as before, where
Zl is a geometric random variable with distribution

Pr (Zuv = l) =

{

αuvMuv(1, 2)Muv(1, 1)l−2 ∀ l ≥ 2

1 − αuv l = 1
,

with αuv as the probability of packet drop based on the
stationary distribution of link e = (u, v) and Muv(i, j) as
the (i, j)-th element of Muv . Therefore, all the previous

analysis goes through. In particular, the stability condition
is

( max
c:s-d cut

∏

e∈c

Me(1, 1))|λmax(A)|2 < 1.

Now, if the initial distribution is not the stationary distri-
bution, the variables Zuv(k) will not be time-independent
and the analysis does not goes through. However, since for
large k the chains approach their stationary distribution, the
stability condition remains unchanged.

Spatially correlated events: Suppose that the packet drop
events are correlated across the network but memory-
less over time. In other words, at each time step k,
the packet drop events occur according to distribution
Pr0(Duv, (u, v) ∈ E). Now Ze(k)’s are not independent
across the network and hence finding the steady-state error
covariance does not seem to be tractable. However, we
can find the condition for stability. For this, we define a
generalized notion of equivalent probability of packet drop
for correlated events. Consider a s − d cut c, and let B(c)
denote the set of edges crossing this cut. Then the equivalent
probability of packet drop for this cut is defined as

peq(c) = Pr (Duv = 0, ∀ (u, v) ∈ B(c)).

The value of the max-cut for the network is the maximum
of peq(c) over all the cuts, pmc(G) = maxc:s−dcut peq(c).
We can show that the condition for stability of the system
is

pmc(G)|λmax(A)|2 < 1.

To see this, consider the scenario when only one packet is to
be routed from the source to destination starting at time t0.
For each time-step t ≥ t0 let Vr(t) denote the set of nodes
that have received the packet at time t. Clearly Vr(t0) =
{s}. We want to bound the probability that at time t0 + T ,
destination node has not yet received the packet. Note that
for every time-step between t0 and t0 + T , Vr(t) clearly
forms a cut-set since it contains s and not d. Now the size of
Vr(t+1) does not increase with respect to time-step t iff all
the links that cross the cut generated by Vr(t) drop packets.
However by the definition of pmc(G) the probability of this
event is at most pmc(G). Therefore, we have

|Vr(t+1)|
{

≥ |Vr(t)| + 1 with prob. at most pmc(G)

= |Vr(t)| with prob. at least 1 − pmc(G)

Thus for large T , the probability that at time t0 + T

the destination node has not received the packet is upper
bounded by n(1− pmc(G))nT npmc(G)T−n, where n is the
number of nodes in the network. In the original scenario,
a new packet is generated at the source at each time step.
However, since the importance of the packets is increasing
with time, we can upper bound the error by considering that
the network is only routing packet generated at time k − l.
The probability that the latency is larger than l grows like
f(l)pmc(G)l, where f(l) is polynomial in l with bounded
degree and thus the sufficiency of the stability condition



follows. The necessity part involves similar ideas and is
omitted.

Unicast Networks: So far, we assumed that the topology
of the network was given and any node could transmit a
message on all the out-going links. If the network is unicast,
each node chooses one link out of a set to transmit its
message. The problem is to choose the optimal path for
the data to flow from the source to the destination node.
Clearly once the path is chosen the optimal operation at
each node on the path is given by algorithm A described
in Section III.

In order to choose the optimal path, we need to define a
metric for the cost of a path. If the metric is the condition for
stability of the estimate error covariance, then the problem
can be recast as choosing the shortest path in a graph with
the length of a path being given by its equivalent probability
of packet drop, i.e, for each path P , peq = maxe∈P pe. Thus
the shortest path problem is to find the path that has the
minimum equivalent probability of packet drop among all
the paths,i.e, minP :s-d path maxe∈P pe. The above problem
is well studied in the computer science society and can be
solved as a short-path problem over min-max semi-ring in
a distributed fashion [24]. If the metric is the steady-state
error then the problem is more complicated in general. For
the special case of a scalar system and no process noise,
from (10), we have for path q,

log P∞
q =

∑

e∈q

log(
(1 − pe)a

2

1 − pea2
)

Now the problem is equivalent to

min
q:s-d path

∑

e∈q

log(
(1 − pe)a

2

1 − pea2
)

This problem can also be solved in a distributed way [25].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of optimal
estimation across a network. We modeled the links as packet
erasure links. We provided a framework for computing
the optimal estimate error covariance and gave upper and
lower bounds on the performance of general networks. We
showed how to utilize this framework for the synthesis of
networks for the purpose of estimation. We also carried out
the stability analysis for arbitrary networks and for packet
erasure processes that are possibly correlated across time or
the network.

In this paper, we have ignored issues of quantization. One
interesting and challenging problem is to include constraints
of a limited bit rate into the framework. The work of
Sahai [22] and Ishwar et al [23] may be relevant to this
problem. In the future, we would like to explore these
connections.
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