Submitted, 2003 European Control Conference
http://www.cds.caltech.edu/~murray/papers/2002r_csm03-ecc.html

Nonlinear Trajectory Generation for the Caltech
Multi-Vehicle Wireless Testbed

Jonathan Chauvint, Laure Sinegret, Richard M. Murrayi
TCentre Automatique et Systemes
Ecole des Mines de Paris
60, bd St Michel

75272 Paris, France
TControl and Dynamical Systems
California Institute of Technology

Pasadena, CA 91125.

{chauvin,laure,murray}@cds.caltech.edu

Abstract

The Caltech Multi Vehicles Wireless Testbed (MVWT)
is a platform designed to explore theoritical advances

i multi-vehicle coordination and control, networked
control systems and high confidence distributed
computation. The contribution of this report is to

present simulation and experimental results on the
generation and implementation of optimal trajectories
for the MVWT wvehicles.
and spatially contrained with bounded input control.

The wvehicles are nonlinear

The trajectories are generated using the NTG software
package developed at Caltech. Minimum time trajectories
and the application of Model Predictive Control (MPC)
are tnvestigated.

keywords: Trajectory planning, optimal control,
nonlinear control, Model Predictive Control,

real-time

1 Introduction

In this article, the problem we are interested in is
relative trajectory generation for flight control systems.
As the vehicles have second order dynamics and are
underactuated we cannot rely on Al style planning.
We have to call on to optimization based trajectory
generation and advanced control techniques. Like in the
case of the Caltech Ducted Fan experiment [9] we use the
Nonlinear Trajectory (NTG) software package. Our goal

is also the same: being able to generate and to implement
trajectories as aggressive as possible that the vehicles
can actually follow i.e. trajectories that satisfy every
constraint of the testbed. Those constraints can either
be linear, like the boundaries of the testbed or nonlinear
like the constraints on the input. The main difference and
also difficulty in our case is that the system is not linearly
controllable around its equilibrium.

In Section 2 we will give a quick description of the systems
properties and in Section 3 and 4 we will describe the
progression which led us from the optimization problem
to the implementation on the real vehicles. In Section
5 other optimization problems such as minimum time
trajectory generation and model predictive control are
investigated.

2 Description of the System’s
Properties

The vehicle we are working on consists of a laptop
mounted on three low-friction, omni directional caster
[1]. Two ducted fans are mounted on the top of the
vehicle,each of them capable of producing from 0 to 4.5 N
of continuous thrust, as shown on Figure 1. The vehicle
has three degrees of freedom, two of translation: x and y
and one of rotation: 6, as shown on Figure 2. The second

Richard Murray
Submitted, 2003 European Control Conference
http://www.cds.caltech.edu/~murray/papers/2002r_csm03-ecc.html

order dynamics, assuming viscous friction, is:

mZ =nz + (Fs + Fp) cos
my = m} + (Fs + Fp)sinf
JO =0+ (Fs — Fp)ry

Notice that the system is not linearly controllable

Figure 1: picture of the vehicle

around any equilibrium point, corresponding
to (z,y,0,1,9,0) = (c1,c2,¢3,0,0,0) for any
(c1,c2,¢3) € R?* x S' with equilibrium inputs

(Fs,F,) = (0,0). Besides the system is differentially
flat [2, 3], i.e the whole state and the inputs can be
parameterized by two flat outputs. Let z1 be x and z2
be y, we have:

(3)

(o157, 22, 29, 50 g 280 o, 29, 449) =

¢(x7y707i7y70.7F57Fp)
As we would like to have those two sets of coordinates

Figure 2: schematic of the vehicle

linked by a diffeomorphism, we have to add two
more parameters in the first set, for examples
d(Fs + Fp)/dt and d*(Fs + F,)/dt*. Let ¢ denote
this linking function. The determinant of its jacobian

is: det(Jac(¢)) = —2%. So ¢ defines a
diffeomorphism as long as F, or Fj, remain striclty
positive, (equilibrium points are always the causing
problem points). Given that (Fs, Fp,) € [0,4.5)%, instead
of trying to generate a trajectory from an equilibrium
point to an another equilibrium point, we generate a
trajectory starting from a point on a given circular
trajectory and ending at a given point on an another
circular trajectory [1]. This makes sense because we
already know how to stabilize the error dynamics around
a circular trajectory with an LQR controller and also
because in some contexts it is more useful to have a
vehicle circling instead of staying in one position.

3 Trajectory Generation

The goal of this section is to describe the optimization
problem whose resolution will give us an admissible
trajectory that will be applied to the vehicle. We
would like to generate a trajectory that satisfies the
environmental contraints: the limits of the tesbed, the
presence of an obstacle in the middle of the tesbed
linked to an unrelated experiment and also the physical
constraints due to the fact that the thrust produced by
the fans is limited. So we will describe two optimization
problems, one which is using the flat coordinates and
one which is not and we will discuss the advantages and
disadvantages of each parameterization.

3.1 Optimization problem in wusual

coordinates

We would like to minimize:

ng%n/0 q(X (1), w(X(t))dt + V (X(T), w(X(T))

under the constraints:

X(0) = Xo initial constraints
te(X(t),u(t)) =0,Vt € [0,T] trajectory constraints
X(T)=Xr final constraints

Where X is the state (x,y,0,%,9, é), X an extension of
the state (x,y,0,%,y,0,%,4,0) and w is the input, u =
(Fs, Fp). The cost functions in this case are :

q(X,u) = (X = Xr)'Q(X — Xr) + (u — ur) R(u — ur)
V(X,u) = (X — X7)'Q'(X — X7)

With @, Q’, R some definite positive diagonal matrices
and:
u(X)

(Q(x) cos 0 + Q(y) sin 6 + (JG + 1/)9:)77)
Qx) cos 6 + Qy) sin 6 — (JO + ¢0)ry

N~

where Q(x) = m& + n.

Explicitly, the trajectory constraints can be divided into
two categories. A linear constraint that corresponds to
staying on the tesbed means that we have to satisfy :

vVt € [O, T] 0< (L'(t) < Tmaz and 0< y(t) < Ymaz

The nonlinear constraints are:

(mZ + nz)sinf — (my + ny) cosf® =0 dynamics
(mpost) (y - ypost) > Rpost pOSt
0< Fs < Fnaz and 0< F, < Fpas forces

3.2 Optimization problem in flat

coordinates

In this case what we would like to minimize is:

/OT q(Z1(t), Z2(t))dt + V(Z1(T), Z2(T))

min
Z1,Z2

under the constraints :

Z(0) = Zo initial constraints
te(Z1(t), Z2(t)) = 0,Vt € [0,T] trajectory constraints
Z(T) = Zr final constraints

z§4)) and

. The cost functions in this

Where Z = (Z1,%22), Z1 = (z17z£1)7z§2),z£)
2y = (Z27Zé)7Z52)7 55)72;54))

case are :

q(Z1, Z2) = (X (21, Z2) — X(Z1)' Q(X (%1, Z2) — X (Z1))
+(u(Z1, Z2) —U((ZZT))t)(U(ZhZ?) —u(Zr))

With @ and R some definite positive diagonal matrix.
The trajectory constraints are given by:

0< 21(t) < ZTmaz and 0 < 22(t) < Ymaz, Vt € [0, 7]

And the nonlinear constraints are :

{ (21 — xpost)z + (22 — ypost)2 > Rgost post

0< Fs < Fraz and 0 < Fp < Frraz forces

The fact that we are now using a system of coordinates
with no obvious physical meaning makes the equations,
and particularly the expression of the forces much
more complex than previously. That is why we have
not explicitly written the link between the forces and
Z in this paragraph. Moreover, losing some of our
physical intuition sounds like an argument in favor of the
usual coordiantes. Nevertheless this method has some
considerable advantages: there is no more dynamical
constraint and the trajectory generated will necessarly
match the dynamics of the system automatically. As a
result, the computation times are generally shorter, which
explaines why we chose to use the flat coordinates.

— phi=0, T—lOs

phi /3
—— phi=pi, T=9s

— phi=4pi/3, T=8s
phi=5pil3, T=9s

Y position
w
:

0 L L L L L L L

X position

Figure 3: Six of the twelve trajectories we run on the
vehicle -to go-

3.3 Problem set-up

We are using NTG (Nonlinear Trajectory Generation)
[4, 5], which is a software package used for trajectory
generation that combines elements of geometric control
and B-splines [11]. The two inputs, Z1 and Zs, are
projected on a basis of 26 7" order B-splines and we are
looking for their coefficients. What remains to define is
the time 7', the initial and final position of the vehicle and
the initial guess for the coefficients. We note that some of
those parameters are very sensitive, particularly the time
horizon T'. If for some T' NTG is not able to find a solution
it can be because the horizon is to short but also because
it is to long. We want to reach a non equilibrium point, so
if it is possible to reach the final point in a certain amount
of time ¢t1, NTG may not converge for ¢1 + § as going to
the final point in ¢; and staying at this position during ¢
is not a valid solution. A straight line linking the starting
and ending point is initial guess good enough for this
problem. So, what we decided to implement on the real
vehicles is a program which lets the user choose between
twelve different trajectories to go from one predefined
circle to another predefined circle. These trajectories are
not precomputed. NTG is generating the coefficients in
real time. The only thing NTG already knows is the
amount time a specific trajectory can take.

— phi=0, T=9s

— phi=pi/3, T=10s

sF — phi=2pif3, T=10s
— phi=pi, T=8s

— phi=4pi/3, T=9s

phi=5pil3, T=9s

IS
T

Y position
w
:

X position

Figure 4: Six of the twelve trajectories we run on the
vehicle -return-

4 Implementation on the

Experimental Testbed

4.1 Finding an appropriate controller

As the dynamic equations we are using cannot fully
describe the real vehicle, it is important to find a way to
stabilize the system around the trajectory generated by
NTG. The first idea was to approximate the trajectory by
the tangent circle at each point and to stabilize the system
with an LQR controller around the corresponding circular
trajectory. But what if the portion of the trajectory
we are trying to approximate by a circle is almost a
straight line? Also, following a circular trajectory means
having one’s acceleration orthogonal to one’s velocity
which is not necessarly the case for any point on the
nonlinear trajectory. Let us rather have a look at the
error dynamics:

é= A€+B(F5Tej +F;ef79ref)(u - uref)

where e = X — X5

Moreover, ¥(0,cp, F7¢ + Fef) € S* x R* the pair (A, B)
is controllable. So assuming that FI + F;/ and 6.,
are known, which is the case since these parameters are
given by NTG, it is possible to design an LQR controller
for this problem. On the real system it is not possible to
compute the gain matrix K on-line, so we made a gain
scheduling for 16 values of 6,5 (linearly spaced between 0
and %) and for 24 values of F]“/ + F;*/ (linearly spaced
between 0 and 12), where the other values for 6,.f, in
[, 2m], are obtained by symmetries.

4.2 Implementation

The program is written in C++ and is running under the
QNX real time operating system. It is also using the
RhexLib robot programming suite [6] which facilitates
a modular programming style. This has been very
useful since this has let us use a controller that had
already been programmed in order to stabilize a vehicle
around a circular trajectory. The structure we set up
consists of one thread running NTG in real time and two
controller modules: modulecontroller, one stabilizing
the vehicle around a circular trajectory and one around
the trajectory generated by NTG. On top of that we
have one module called SwitchController which switches
between the two controller modules,by activating one
and deactivating the other. So by default, when the
programm is launched, the vehicle tries to follow a certain
predefined circular trajectory. It keeps on following this
trajectory until a key is pressed. At this moment we know
the grid number which corresponds to the vehicle position
on the circle, NTG computes the trajectory starting two
grids number ahead, so that when the vehicle reaches
the starting point the nonlinear trajectory has already
been generated. The circular controller is deactivated
and the reference trajectory becomes the nonlinear one.
After following the trajectory generated by NTG during
a certain time, we switch back to the first controller,
which has now been set up so that the vehicle aims at
following the second predefined circle. We could have
defined the second condition differently, for example as
the first one, as a space condition, X — Xfina < €, but as
the controller stabilizing around the nonlinear trajectory
is gain scheduled we fear it may not bring the vehicle close
enough to the final point. In fact we tried both solutions
and even if both worked, the first one seems to be more
efficient.

4.3 Experimental results

Figure 5 and Figure 6 show data that has been taken from
an experiment conducted on the MVWT testbed. What
we can notice is the fact that the controller is tracking
0 very well. This is due to the fact that the dynamics
of 6 is linear and independant from the other outputs,
so the controller that we apply on 6 is a normal LQR
one without any gain scheduling. This is a first step but
this is still far from what is needed. Actually it is not
acceptable to have to know the time that the trajectory
will take before computing it. We should be able to
compute trajectories in reconfigurable environments with
the minimum knowledge of what will happen in the
future, so we should not have to make assumption for the
duration of the trajectory. Furthermore, what we have

— th

ref

-10 -1
0

Figure 5: data from the experiment

implemented yet does not take into account the fact that
the environnement can change as soon the trajectory has
been computed. So the next section presents an overview
of what could be the future research directions.

— Vehicle Path
Desired Path

6F B

IS
T

|

0 I I I I I I I
0 1 2 3 4 5 6 7

X position (meters)

y position (meters)
w
T
Py

Figure 6: comparison between the trajectory followed
by the real vehicle and its reference

5 Other Trajectory Generation
Parameterizations

5.1 Minimum time

generation

trajectory

A way to fix the time problem is to incorporate it in the
optimal problem, not as a constant but as a new variable.
Let us pose: 7= t/T, (#(7),5(7),0(7)) = (x(t),y(t),0(t))
and (Fs(7), Fp(7)) = (Fs(t), Fp(t)). As 7 is the new time
variable the dynamics become:

miT(g) :77%2“7) + (s + Fp) cosb(r
mi = I 4 (F + F,) sin ()
T = %0 4 (B, — Fp)rs

Notice that the problem is still flat with the 3 outputs Z,
g and T'.

5.1.1 Optimization problem

We would like to minimize:

1
/ Tdr
0

under the constraints:

Vt€[0,7] 0< z1(t) < Tmaz and 0 < 22(t) < Ymax
(Zl _~IPost)2 + (22 - ypost)2~> R12708t post
0< Fs < Frpaz and 0 < Fp < Fraz forces

The main difference between this problem and the one we
previously solved is that, in this case, 16 of the 20 initial
and final position constraints are nonlinear which make
the problem much more difficult.

5.1.2 Problem set-up in NTG

We solved this problem using NTG with 9** order B-
splines for £ and g to be able to have a very aggressive
trajectory and we set a 1°' order B-splines to have T as
a constant. The first idea was to set the coefficients for &
and g linearly spaced between their initial and final point.
These initial guess for the coefficients worked sometimes
depending on the initial guess on the final time we gave
to NTG. It seems that there are a lot of local minima
with relatively small basin of attraction. This problem
comes from the fact that, as the vehicle are running on the
horizontal plane, there is no gravity term in the dynamics.
As the two directions z and y are equivalent,there are
a lot of local minima which do not necessarly satisfy
the constraints. Therefore different initial guess for the

time can lead to very different trajectories not always
admissible. Since, a priori, we have no idea of what the
optimal time should be, we decided to give a better initial
trajectory. Instead of taking the straigt line between the
initial and final z we compute a 9" order polynomial
which verifies:

P(0) = 2, PO (0) = 2, PP (0) = 2, PO (0) = 2,
P(4) (0) _ Ig4)7 PQ(TpOl,y) =xy, P(l)(g—’poly) = I;1)7 .
p®@ (Tpoly) _ 1,5)7 P(d)(Tpoly) = x(f)7 P@ (Tpoly) = 1’5)

Where Tpoy is a constant and [0, Tpory] the domain of
definition of the polynomial. We make the projection of
our polynomial on the B-splines basis. So we have now the
coefficients of = and &, as they have the same projection
on the B-splines basis.

5.2 Simulation results

— phi=0, T=9.376460s
— phi=pil3, T=6.676137s
= — phi=2pif3, T=8.017962s
—— phi=pi, T=7.126465s
— phi=4pi/3, T=5.785969s
\‘ phi=5pil3, T=7.532198s
=)

IS
T

¥ position

w
T

.
) 1 2 3 4 5 6 7
X position

Figure 7: Six of the twelve trajectories NTG
computes with minimum time -to go-

Figure 7 and Figure 8 show the new trajectories
computed by NTG. They satisfy the same constraints as
previously. In order to find the polynomial that is used
as initial guess, we have set T,y to 10s. The initial
guess for the last coefficient, which determined the value
of the duration of the trajectory has been also set to
10s. Let us call this initial guess Th¢y and the final value
of the coefficient T5,p¢. In fact it is not always as easy
as in this case to find a solution. The different times,
Topt, Tpoly and Ty are not necessarly equal. Figure 9
and Figure 10 show the influence of these parameters on
the final trajectory. In the case of Figure 9 just Tpory is
varying. There are two sets, one for each value of Tyoiy
of two curves, one is the initial guess (magenta and cyan)

— phi=0, T=7.311531s
— phi=pil3, T=7.346385s
6L — phi=2pi/3, T=9.560876s
—— phi=pi, T=7.871747s
— phi=4pi/3, T=6.394639s
phi=5pi/3, T=6.630654s

Y position
w
:

X position

Figure 8: Six of the twelve trajectories NTG
computes with minimum time -return-

and the other is the computed trajectory (respectively
red and blue). On this figure little crosses can also been
seen, these are the coefficients that are actually given to
NTG, they can be blue, which means that at these points
the constraints on the forces are verified or red which
means the contrary. What is interesting to notice on this

=

¥ position

©

Ty
T0°%8.2585
o To

T =158
poly
T,,=8.268s
— Topr

4
X position

Figure 9: computed trajectories for different values
of Tpoly

figure is that the computed trajectory stays very close to
the initial guess, this is an illustration of the important
number of minima in this problem. Figure 10 shows
the influence of Thiy. The trajectories that are in blue
are those which satisfy the constraints, those which are
in red do not satisfy the constraints. The green one is the
initial guess. The good value of T,y may not be Tpoy
since the initial guess may not satisfy the constraints at

all. As previously we notice that whatever the value of
Tty is the general shape of the computed trajectory is
never far from the shape of the initial guess.

As the vehicle is running on the horizontal plan there is

6F [1- T, =55 T =507s

2- T =645 T =827s
nig’ opt

3- T =785 T =11.38s
nig’ opt

4- T =925 T =935s
i opt

5 |s- T, =106s T _=1031s
nig opt

initial guess

=

¥ position

©

X position

Figure 10: computed trajectories for different values
of Tntg

no gravity term in his dynamics. Therefore the x and y
axis are equivalent, which explains partially the existence
of a lot of local minimas. In order to be sure to converge to
a minimum which satisfies the constraints we could either
find a way to figure out a better initial guess or set the
problem differently. One of the only parameter left to play
on is Tpory, and we have seen the importance it can have.
Experimentally we have noticed that for Tpoy = 10s

3000000000006,06000000000 oooax X X23600000050000005 X 300006

wwwwwwww

Figure 11: T,y = f(Tntg) for Tpory = 10s

NTG was converging to a proper solution almost every
time (cf Figure 11, T,p: = —1 means that NTG has not
been able to find a proper solution). This sounds logical
since 10s can be considered as a characteristic time for

the system and the testbed. So a solution could be to
figure out what this characteristic time is for a given
situation. But another one could also be to add a term
to the cost function so that the system is not symmetric
anymore. Anyway in both cases it lacks the capacity of
facing changing environments, the MPC will fill this lack.

Figure 12:
coefficients

Topt = f(Tneg) for linearly spaced

5.3 Model Predictive Control

In Model Predictive Control, the current control action
is determined by solving a finite horizon open-loop
optimal control problem on-line ([9] and [10]). Each
optimization yields a control law that is applied to
the plant until the next sampling instant. MPC is
traditionally applied to plants with dynamics slow enough
to permit computations between samples. It is also
one of few suitable methods in applications that can
impose constraints on the states and or inputs, as the
constraints are directly enforced in the on-line optimal
control problem. With the advent of faster modern
computers, it has become possible to extend MPC to
systems governed by faster dynamics that warrant this
type of solution. An example of such a system was
the Caltech ducted fan, a thrust-vectored flight control
experiment where actuation and spatial constraints are
present|[8].

5.3.1 MPC used as a controller

The first controller used to follow a circle was a LQR
controller, as the error system is controllable around zero
and is easy to implement in polar coordinates. Before
trying to use the MPC to go from one circle to an other

circle, let us try to use this technic as a simple controller
to follow a circle. Besides when we will be able to generate
a trajectory from one point on a circle to an other point
on another circle, we will only have to switch controller
as we made for the LQR controllers.

Optimization problem Stabilizing the vehicle
around a circular trajectory is equivalent to stabilizing
the error of the state around zero. So we pose the problem
as :

min
Xe

/tﬁT()_{e(t)tQXe(t))dt + V(X (T + to))

to

Under the constraints :
X(to) =)_(tg

where X. = X — me ,with X the e_xtended state, Xref
the extended reference’s state and X;, the real state of
the vehicle.

Resolution We solve this problem using the semi-flat
system (3 outputs: x,y and 6). For that we use 57 7" B-
splines whith 21 breakpoints. The semi-flat system seems
to be the simplest and fastest way to implement it. The
semi-flat system has simpler expression than the flat one,
because we want quadratic costs (unintegrated and final)
to assure the stability around the circle. Indeed, the error
dynamics is C*° and controllable around any equilibrium
point, the unintegrated cost is C'*° and convex for both
X and u, and we use a final cost such that :

VX # X; | min [V +q(X,u) <0

By using the Riccatti solution for the error dynamic, we
are guaranteed to converge([9] and [10]).

With the flat system, we would have 4 nonlinear initial
constraints (6, é,Fs and Fp) and the two last one are very
difficult to compute. Instead we have only 2 nonlinear
constraints (Fs and Fj), and one nonlinear constraint (the
dynamic constraint) which seems to be easier.

Moreover, the MPC controller is in theory better than
the LQR controller because the MPC controller looks
at the future of the trajctory and tries to minimize the
error along the trajectory, contrary to the LQR controller
which is “blind”, it only tries to minimize the error at each
point without taking the future error into account.

5.3.2 Generation and control of nonlinear

trajectories with MPC

The quality of the MPC is not only to be a very good
controller. We can use it as a way to generate a

8

trajectory from one point to an other one, without adding
a controller. A feasible trajectory is computed from the
current position to the desired position over a finite time
horizon T, used for a short period of time 6 < T, and
then recomputed based on the new position. The main
advantage of this technique is that the system can react
to new situations (presence of an obstacle,movement of
this obstacle, changement of the capacity of a vehicle (a
fan can be dammaged and have a lost of thrust, ...).
However to be able to use that, we must garantee the
convergence of the algorithm at each computation, and
garantee the fastness of the convergence (How can we
face a varying environment if we need 5s to compute a
trajectory 7).

the

Optimization problem In current

optimal control

MPC,

min
Z1,Z3

/THO q(Z1(t), Z2())dt + V(Z1(T + to), Z2(T + to))

to

under the constraints:

{

No terminal constraint is enforced in this study. In theory,
the resulting control w7 (-) is instantaneously applied until
a new state update occurs, usually at a prespecified
sampling interval of time & seconds. Repeating these
computations yields a feedback control law.

Z(to) = Zu,
Vt € [to, T + to]

initial

te(Z1(t), Z2(t)) =0 trajectory

Resolution We solve this problem using flat
coordinates with 26 7" order B-splines and with 31
breakpoints. The horizon time is T' = 12s, and we apply
it during § = .5s. Unfortunately we can not garantee the
convergence of this technique in a finite time because
the system’s dynamics is not controllable around any
equilibrium point.

Moreover, if the algorithm does not converge to an
optimal solution (it can find a local minima, or no
admissible solution), we stay on the previous trajectory.

Simulation Results Figure 13, Figure 14 and Figure
15 represent all the results of the computations (a new
color represents a new computation). One important
thing to notice is the continuity of x and the discontinuity
of F},. These come from the initial constraint we impose.
We only impose the new trajectory to have the same
position (z and y) and the same velocity (¢ and)
as the previous one after 4. This allow the vehicle to
have a smooth trajectory, but this does not guarantee
the continuity of the forces. That is why we want

X Position (m)
> @ ° ~
T T :

©
T

~
T

-
T

5
Time (s)

Figure 13: evolution of z with the MPC method

5
Time (s)

Figure 14: evolution of F, with the MPC method

trajectory
T

¥ position

©

X position

Figure 15: evolution of trajectories with the MPC
method

to recompute it as often as we can in order to have
admissible jumps on the forces. Besides we can see on
Figure 16 (each arrow represents the position where we
begin of a new computation) that we do not converge on
the circle. Even if we try a longer simulation time, we
will not go to the circle, but we will get closer. As we
showed previously that we have a robust controller to
track a circle, the idea is to switch the two MPC as soon
as we are close enough to the circle.

With this method, we are sure that we will get closer
and closer to the circle, but we have no guarantee that it
will converge to the point we want to reach. We would
have better results if we had a very small time horizon T’
(2s for example), so that even if the vehicle is close the
optimization problem still makes sense. A way to solve

real trajectory
T

=

¥ position

©

X position

Figure 16: trajectory of the vehicle with the MPC
method

this problem can be to have a varying time horizon.
Thanks to the optimal principle,we know that if we
have a solution for a time horizon T, by following this
trajectory during Js, we will have a solution for the new
problem with a time horizon 71 = T — § which will be
the same trajectory on [,T]. As we are fixing the time
horizon, we do not take the distance we must do into
account. It seems more logical to have a time horizon
proportionnal to to distance to the final point.

6 Conclusion and Future work

The contents of this report summarize the evolution of the
trajectory generation on one vehicle. Due to the nonlinear
controllability, we realized in Section 3 trajectories from
one circle to an other circle. We implemented this type of

trajectories in Section 4 but for each trajectory, we need
to fix by hand a parameter which needs to be solved by an
other formulation of the problem. Moreover we can not
face a varying environment. Section 5 exposes how we
tried to solve this problem. We first tried to implement
minimum time trajectories in order not to have to fix the
time’s parameter, and then Model Predictive Control to
be able to face a varying environment.

Distributed systems that are dynamic, particulary
multi-vehicle coordination problems, are becoming more
important in engineering applications. Many of these
systems are governd by constraints, e.g. network band-
width, control input saturation, and spatial limitations
on the state of the system. The MPC theory is very
attractive, thanks to improvements of computing power,
and seems to be a bright way to face a varying space.
The Caltech Ducted Fan showed us that it is possible
to recompute trajectories on-line for a dynamical fast
system. A part of the challenge of the MVWT project is
the extention of this success to a nonlinearly controllable
system.

The future of the project seems clear. It is the most
natural to continue the research on both themes that are
minimum time and MPC. Future work on minimum time
will consist in still searching to understand the problem
of the situation. The problem is to know precisely the
influence of each B-spline’s coefficients on the trajectory
and to have a better numerical conditionment for the
problem. This will answer the question: ”Do we have
to break the symmetry by using a final cost?”. Future
work on MPC consists in finding a good final cost for
the optimization problem in order to be able to have
the fastest solution we can. This will be linked to an
improvement on the theory on Model Predictive Control
when the system is not linearly controllable.

References

[1] L. Cremean and al. The Caltech multi-vehicle
wireless testbed. In Submitted: 2002 Conference on
Decision and Control, Las Vegas, NV, 2002

M. Fliess, J. Lévine, P. Martin, and P. Rouchon.
Flatness and defect of non-linear systems:
introductory theory and examples. International
Journal of Control, 61(6):1327-1360, 1995.

M. Fliess, J. Lévine, P. Martin, and P. Rouchon. A
Lie-Backlund approach to equivalence and flatness of
nonlinear systems.IEEE Trans. Auto. Cont., 44(5),
928-937.

Mark B. Milam, Kudah Mushambi, and
Richard M. Murray. A computational approach

2]

10

[5]

(6]

(7]

8]

[9]

(10]

(11]

to real-time trajectory generation for constrained
mechanical systems. In Proceedings of the 2000
Conference on Decision and Control, Sydney,
Australia, 2000.

Nicolas Petit, Mark B. Milam, Richard M. Murray.
Inversion based constrained trajectory optimization.

IFAC Symposium on Nonlinear Control Systems
Design, (NOLCOS),2001.

E. Klavins and U. Saranli. Object orient state
machines. Embedded Systems Programming
Magazine, 2002. In Press.

U. Saranli, M. Buehler, and D. E. Koditschek.
RHex: A simple and highly mobile hexapod robot.
The International Journal of robotics Research,
20(7):616-631, July 2001.

Ryan Franz, Mark B. Milam and John Hauser.
Applied receding horizon control of the Caltech
ducted fan.

William B. Dunbar, Mark B. Milam, Ryan Franz,
and Richard M. Murray. Model predictive control of
a thrust-vectored flight control experiment. In 2002
IFAC World Congress, Barcelona, Spain, 2002.

William B. Dunbar and Richard M. Murray.
Model predictive control of coordinated multi-
vehicleformations. In 2002 Conference on Decision
and Control, Las Vegas, NV, 2002.

A complete treatment of these functions can be
found in (de Boor, 1978)

