
Motion planning in observations space

with learned diffeomorphism models

Andrea Censi Adam Nilsson Richard M. Murray

Abstract— We consider the problem of planning motions in

observations space, based on learned models of the dynamics

that associate to each action a diffeomorphism of the obser-

vations domain. For an arbitrary set of diffeomorphisms, this

problem must be formulated as a generic search problem. We

adapt established algorithms of the graph search family. In

this scenario, node expansion is very costly, as each node

in the graph is associated to an uncertain diffeomorphism

and corresponding predicted observations. We describe several

improvements that ameliorate performance: the introduction of

better image similarities to use as heuristics; a method to reduce

the number of expanded nodes by preliminarily identifying

redundant plans; and a method to pre-compute composite

actions that make the search efficient in all directions.

I. INTRODUCTION

The “verification principle” [1] applied to robotics says
that we will not be able to create robust robotic systems,
unless we make them “aware” of their goals and assumptions,
by providing them with the ability to learn, falsify, and re-
learn models of themselves and the world. Clearly, there is a
wide spectrum of initial knowledge levels that is interesting
to explore: the less an agent assume, the more it is robust,
but the more arduous the learning problem becomes. In the
bootstrapping scenario, we want to design agents that have no
prior assumptions, except that they are embodied in a robot.

Previous work [2–4] has shown that it is possible to learn
very low-level model of robotic sensorimotor cascades that
are flexible enough to represent completely different sensors,
such as range-finders and cameras, though we are far from
the goal of capturing the entire set of all possible robots.
Models are only as good as the task that they enable. So far,
we have shown that using these models it is possible to solve
tasks, such as fault detection, that only require “instantaneous”
models. In this paper, we show that these models can be used
for prediction over long-time horizons, and thus can be used
for solving planning problems in observations space.

By planning in “observations space”, we mean the problem
of planning the motion based on models that act directly in
the observations space (in this case, the set of images), as
opposed to methods that work in the state space. This implies
that there is a 1-to-1 map between state space and observation
space, which means that there must not be hidden states, or
that those hidden states can be neglected for the purpose of
planning. In particular, we use models that associate to each
action a diffeomorphism of the observations domain. These
models capture the dominant dynamics of sensors such as
cameras and range-finders [4].

A. Censi and R. M. Murray are with the Control & Dynamical
Systems department, California Institute of Technology, Pasadena, CA.
E-mail: {andrea, murray}@cds.caltech.edu. A. Nilsson is with the de-
partment of Automatic Control at Lund University, Sweden. E-mail:
adam.nilsson.49@student.lth.se

Related work: Our goal is to formulate and solve the
problem in full generality, with no assumptions about the set
of diffeomorphisms, or the statistics of the observations. If
one has more prior information about the system, then in
the robotics literature and related fields there is a massive
body of work addressing special cases of the problem. Visual
servoing [5] techniques work with point/line features extracted
from the images. This assumes that it is possible to define
stable features that can be tracked from an image to the
next. Visual odometry [6] can be seen as a formally very
similar problem, though the use-cases are different enough to
warrant different approaches. Most recently, there have been
techniques that can work directly with pixel intensities [7–10].
These still assume that the transformation from world to image
space is known.

If the diffeomorphisms are small, then techniques from
the medical image processing literature might be applicable
(e.g., [11]). These techniques assumes that the deformation
is small enough to be parametrized by infinitesimal vector
fields, and do not cope well with uncertainty.

Paper outline: Section II recalls from [4] the techniques
to represent and learn generic diffeomorphism models of
robotic sensorimotor cascades. Section III formulates the
planning problem, recalls established graph search techniques,
and comments on the importance of the choice of the
heuristics function. Section IV shows how planning efficiency
is improved if explored plans are first reduced through an
equivalence relation that can be inferred from the data.
Section V shows the improvements following a principled way
to choose a “basis” of composite actions that guarantee that
all directions of the state spaces are uniformly explored. This
dramatically improves the performance for nonholonomic
systems. In the spirit of reproducible research, the source
code, raw data, processed logs, learned models, and more
complete statistics of the benchmarks can be found at the url
http://purl.org/censi/2012/dptr1.

II. DIFFEOMORPHISM DYNAMICAL SYSTEMS

Uncertain images and diffeomorphisms: Let S be a differ-
entiable manifold. An image y is a function from S to some
output space O. For an RGB camera, O = [0, 1]3. Call Im(S)
the set of all images. To have a minimal representation of
uncertainty, we define a set of “uncertain images” UIm(S),
which are tuples (y, z), with y 2 Im(S) being a normal
image, and z : S ! {0, 1} a binary “certainty” value. The
function vis : UIm(S) ! [0, 1] returns the percentage of the
image that is certain.

Let Di↵(S) be the set of diffeomorphism of S. As we
did with images, define an enlarged space of “uncertain”
diffeomorphisms UDi↵(S), which contains tuples (', �), with
' 2 Di↵(S) and � : S ! {0, 1}. It is possible to learn more

Submitted, 2013 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/cnm13-acc_s.html

http://purl.org/censi/2012/dptr1

(a) ystart (b) ygoal (c) p_to_d(p�) · ystart (d) p_to_d(p?) · ystart

Fig. 1. Visibility constraints, uncertainty due to learned models, and ambiguities are the main phenomena that we have to deal with in this planning
problem. Due to the limited field of view, our models must be able to represent the uncertainty in the predictions. The uncertainty is quantized into a
binary quantity (green: parts of the image that it is possible to predict). A problem instance is a pair of images ystart and ygoal. In this benchmark we have
available the ground truth trajectory that the camera underwent, which we call p� 2 Plans. Due to ambiguities of the image and uncertainty in the learned
models, sometimes the algorithms find solutions that are better than the ground truth. In this case, the ground truth p� corresponds to moving left, then
down, while the solution p? found corresponds to moving right, and gives a smaller error in image space.

detailed models of uncertainty for diffeomorphisms, but for the
purposes of this paper, it is sufficient to use binary uncertainty.
This is the simplest representation that allows reasoning on
constraints given by the field of view, and represent what is
possible to predict and what is not (Fig. 1c).

The sets UIm(S) and UDi↵(S) are meant to be tractable
slices of ProbMeasures(Im(S)) and ProbMeasures(Di↵(S)).

Diffeomorphism dynamics: Let U be a set of discrete
“commands” or “actions”. A DDS is a discrete-time dynamical
system with input in U and state space Im(S). For a given
command u 2 U, let p_to_d(u) 2 UDi↵(S) be a function
that associates a diffeomorphism to each action (mnemonics:
p-to-d as in plan to diffeomorphism). The state xk 2 Im(S)
evolves according to the dynamics

xk+1(s) = xk('k(s)),

'k = p_to_d(uk).

This can be written in a more compact way as

xk+1 = p_to_d(uk) � xk.

The observations are a function y : V ! O, where V ⇢ S is
the “viewport”, or the portion of the space S that is actually
observable. For compactness of notation, we assume that the
observations y are actually a function on the whole space S
by assuming that they are set to a null value in S\V .

Learning diffeomorphisms: The method in [4] learns
diffeomorphisms by estimating their point-wise values. The
viewport V is sampled in a grid at points {si}Ni=1 ⇢ S
(i.e., pixels). To represent a discretized diffeomorphism on
S , for each point si 2 S, the learning method estimates the
coordinates of the closest point to '(si). The estimation
is independent for each point. While we know that the
underlying dynamics is composed by diffeomorphisms, we
do not represent continuity/smoothness constraints in the
discretized representation.

In this paper, we focus explicitly on the planning problem
and that we are given the values p_to_d(u) 2 UDi↵(S), for
u 2 U. However, many considerations are explicitly meant
to deal with the fact that these diffeomorphisms are learned
from data. In particular, we have to deal with two main
problems: 1) these are noisy models; 2) they are described
nonparametrically, not symbolically.

III. PLANNING IN OBSERVATIONS SPACE

This section formally states the planning problem and gives
baseline results for graph-search methods.

A. Plans and induced diffeomorphisms
Define the set of plans as the set of all sequences of

elements of U, including the empty sequence:

Plans = ; [U [U2 [U3 [. . . .

Let p2 � p1 be the composition of two plans, where p1 is
executed before p2. (This right-to-left definition matches the
usual notation of function composition).

For a plan p 2 Plans and a given DDS, define p_to_d(p) 2
UDi↵(S) to be the uncertain diffeomorphism that is associated
to the plan. We define and compute p_to_d recursively as
follows. For the empty plan, let p_to_d(;) = IdS , where IdS
is the identity on S . For plans of length 1, we have assumed
to have been given p_to_d(u) for all u 2 U. For plans of
length 2 and above, p_to_d can be defined recursively using
the fact that it is a homomorphism from Plans to UDi↵(S):

p_to_d(p2 � p1) = p_to_d(p2) � p_to_d(p1).

In this expression, the “�” on the left is plan concatenation,
while the “�” on the right is the usual function composition, in
the case of certain diffeomorphisms, and must be interpreted
as probability density convolution on Lie groups [12], in the
case of uncertain diffeomorphisms. Given a plan p and an
image y 2 UIm(S), define

p · y = p_to_d(p) · y 2 UIm(S)
as the predicted observations after executing p.

B. Formal statement of the planning problem
Problem 1 (Planning in observations space): Given:
1) A discrete set of commands U;
2) The values of p_to_d(u) for all u 2 U;
3) A distance d on UIm(S);
4) Two images ystart 2 Im(S) and ygoal 2 Im(S);
5) A minimum visibility threshold v0;
6) A maximum distance threshold dg;
find a plan p? 2 Plans such that the predicted image p? ·y

according to p? has at least visibility v0:

vis(p? · ystart) � v0, (1)

and it is no farther than dg from the goal image:

d(p? · ystart,ygoal)  dg.

We do not include in this formulation a concept of “obstacles”
nor we optimize on the length of the plan.

(a) Statistics for dImL1
and dImL2

(b) Statistics for dImD↵
, with ↵ = 10%, 20%, 30%. (c) Statistics for dImN↵

, with ↵ = 10%, 20%, 30%.

Fig. 2. Comparison heuristics for the planning problem. Each subfigure shows the distribution of d(y1,y2) for a certain distance d, as a function of
the length of the plan that takes from y1 to y2, over the whole image sequence that we use for learning (approximately 22 minutes of data, at 1000
images, with snapshots taken at 1 second intervals). Note that these distances have different units: dImD↵

is measured in units of S, while the others are
measured in units of O. To overcome this problem, we normalize the data using the order statistics. More in details, for each distance d, we first compute
h(d, �) = {d(y1,y2) | y1,y2 2 P (�)}, where P (�) is the set of all pairs of images at plan distance �. Then we compute H(d) = [�h(d, �), the
set of all distances. Finally, we normalize using the order statistics, by computing and plotting h0(d, �) = order(h0(d, �), H(d)) 2 [0, 1]|P (�)|, where
order(x,v) returns the order of a number x in the vector v. This procedure makes the comparison invariant to any monotonic transformations of the
distances: d0(y1,y2) = f(d(y1,y2)) with f 2 Di↵+(R+

�). Note that the dImN↵
distances are much better predictors of the distance to the goal than

the L1 and L2 distances. For example, it is possible to discriminate exactly between 1 and 4 steps.

Fig. 1 shows an example instance of a problem for the
system that we use for most of the experiments. Our “robot”
is a Logitech Orbit camera which can be controlled with
pan/tilt commands1. We learn a DDS model from the logs
recorded while the camera underwent random motions, using
4 actions, corresponding to pan left, pan right, tilt up, and
tilt down. In image space, these actions correspond, as a first
approximation, to horizontal/vertical translation, though the
estimated diffeomorphisms are precise enough to capture the
spherical lens distortion.

A problem instance consists of an initial image ystart
(Fig. 1a) and a goal image (Fig. 1b). Because we sample these
images from the logs, we know the ground truth plan p� that
was executed. Note, however, that the planning objective is
not to recover the ground truth plan p�, but rather to find any
plan p? that makes the prediction p? · ystart match with ygoal.
Due to the limited field of view and the uncertainty of the
learned models, it is common to have ambiguous solutions
(Fig. 1). The constraint on the visibility (1) is essential
to maintain the problem well-posed. For each instance, the
thresholds v0 and dg are computed using the prediction given
the ground truth p�, to assure that a solution exists for each
instance2.

C. Measuring similarities
In this problem there are several objects for which we need

a way to measure similarity: the space of plans Plans, the
space of images Im(S), the space of diffeomorphism Di↵(S),
and their uncertain counterparts UDi↵(S) and UIm(S). To
simplify the discussion, we use the word “distance” in an
informal way. Most of the similarities are actually distances
(they satisfy the triangle inequality) or could be made so with
only slight modification of the definition.

1One reason this sensor was chosen is that it is the cheapest ($100)
off-the-shelf actuated sensor that we know. It is controlled through a ROS
interface. In addition to the data that we used, on the website we give
one-click* scripts to collect raw data logs from the sensor, preprocess the
data to a given resolution, extract tuples of the kind (yk,uk,yk+1) that
can be used for learning, run the diffeomorphism learning code, and prepare
benchmarks for planning. * Disclaimer: it is “one-click” only after many
clicks for installation.

2Strictly speaking, the visibility threshold v0 contains information about
the solution p�, as it is a function of the plan length. However, none of the
algorithms we consider uses this side information to “cheat”.

1) Measuring on Di↵(S): The domain S is a Riemannian
manifold, so it comes equipped with a metric dS . Given this
metric, we can define a metric on Di↵(S) as:

d
Di↵(S)
L1

('1,'2) = s
S
dS('1(s),'2(s) ds.

2) Measuring on Im(S): Distances on Im(S) and UIm(S)
are used both for defining thresholds for success, and as
heuristics during planning. The usual norm-induced distances
on the function space Im(S) are

dImLp
(y1,y2) =

1
|S| (s

S
|y1(s)� y2(s)|p ds)

1
p .

How can we judge the quality of a heuristics? The ideal
heuristics would be a function of the distance in terms of plans:
d(y,ygoal) = f(L), where L is the length of the shortest plan
to go from y to ygoal and f is some monotonic function. We
cannot require this to hold exactly (if this held exactly, we
would not need to solve the planning problem, as we could
just follow the gradient of the distance), but it is reasonable
to ask for this to hold at least for small L. According to
this criterion, dImL1

and dImL2
are not good heuristics for this

problem (Fig. 2a—see the caption for some important details
on how to compare these distances).

This motivates the search for other distances. Our intuition
was that the distances must be robust to some residual diffeo-
morphism, in the sense that y1 and y2 should be considered
close if y2 = ' � y1 for a “small” diffeomorphism '. The
family of distances dImD↵

looks at pairwise distances between
similar pixels in images. For each pixel s 2 S in the first
image, we find the most similar pixel in the second image,
looking in the area A↵(s) around s, which is a fraction ↵ ⌧ 1
of the size of the whole domain:

A↵(s) = {s0 2 S | dS(s, s0)  ↵|S|}.
We then average these distances over the domain:

dImD↵
(y1,y2) =

1
|S| s

S
dS(s, argmin

v2A↵(s)
|y1(s)� y2(v)|) ds.

It is easy to see that dImD↵
(y1,y2) is 0 if the two images are

related by a diffeomorphism smaller than ↵.

We observed that a simpler variation works better. Instead
of averaging the distances between similar pixels, the dis-
tance dImN↵

averages the minimum dissimilarity in A↵(s):

dImN↵
(y1,y2) =

1
|S| s

S
min

v2A↵(s)
|y1(s)� y2(v)| ds.

This distance is more stable with respect to the choice of the
parameter ↵, and that it is the most predictive of the length
of the plan between the observations (Fig. 2c).

3) Measuring on UIm(S) and UDi↵(S): Finally, because
we have to deal with a scalar uncertainty, we can lift a
distance on Im(S) to UIm(S) by simply weighting by the
scalar uncertainty. For a given distance that can be expressed
as the integral of an error field

´
ed(s) dS, we define the

corresponding weighted distance d as

d (hy1, z1i , hy2, z2i) =
´
z1(s)z2(s)ed(s) ds´

z1(s)z2(s) ds
.

Likewise, distances on Di↵(S) are lifted to UDi↵(S).
D. Planning with graph search

We shall adapt existing planning techniques to our problem.
We consider several variations of bidirectional search [13,
Chapter 2], which are summarized in Table I. It is not
immediate to adapt sampling-based planning, such as RRT-
based methods, because we do not have the ability to sample
a “random” state (in our case, a random image).

The bidirectional search algorithm constructs two trees in
the state space (which is, in our case, UIm(S)), one with root
in the start state (in our case, ystart), and one with root in the
goal state (in our case, ygoal). The two trees are grown at
each iteration, until they “touch” according a given metric.

There are many variations according to the policy for node
expansion. In breadth-first search, trees are expanded in all
directions uniformly. A greedy approach expands the node
which is closest to the root of the other tree. The “greedy-tree”
approach expands the node on one tree which is closest to the
other tree. This implies comparing the node with all nodes
in the other tree. This makes sense only if, as in our case,
computing distances is much cheaper than expanding nodes.

Computation details: The software is written in Python.
The dominant cost consists in applying diffeomorphisms to
images. Judiciously using vectorized operations on flattened
arrays, the cost of applying a generic diffeomorphism (i.e.,
a generic permutation of the pixels), is in the order of 0.2
seconds for 128x128 images. There is probably a 10⇥ speed-
up available if coded in C, by being more careful about
memory allocation, and writing the operations in a more
cache-friendly manner; and probably another 10⇥ speed-up
by using a GPU implementation, which has been shown to
substantially help in analogous problems [14].

Results: Table II shows the algorithms performance in
problem instances such as those shown in Fig. 1, randomly
sampled from our logs. As expected, uninformed unidirec-
tional search (algorithm GNB) is the least efficient, and,
given our constraints on resources (5 minutes of execution
time) succeeds in only 40% of the cases, corresponding
to the “easy” instances. Breadth-first bidirectional search
(BNB) does slightly better at 80% success. As expected, given
our considerations in Section III-C.2, the informed search

TABLE I
PLANNING ALGORITHMS COMPARED IN THIS PAPER

directions use PlanReduce? node priority composite actions
GNB 1 breadth-first
BNB 2 breadth-first
GEB 1 X breadth-first
BEB 2 X breadth-first
BEG 2 X greedy
BET 2 X greedy-tree
BETc 2 X greedy-tree X

Each algorithm is named with an acronym of the form {G,B}{N,E}{B,G,T}.
{G,B}: either one-directional (“G”) or bidirectional (“B”) search; {N,E}: “E”
when using the equivalence relation induced by PlanReduce (Section IV),
“N” otherwise. {B,G,T} indicate the priority for node expansion: “B” stands
for breadth-first (uninformed); “G” stands for greedy (on either tree, the
node with the image closest to the root of the other tree is expanded first);
and “T” for greedy tree (the node which is closest to the any node on the
other tree is expanded first). BETc is a variant of BET using the composite
actions (Section V).

TABLE II
PERFORMANCE OF ALL ALGORITHMS FOR THE CASE |p�| = 7

success mean |p?| mean time (s) mean # nodes
GNB 40% 1.8 † 87.1 208
BNB 80% 4.4 50.2 168
BNG 100% 5.4 2.8 24
BNT 100% 5.4 2.3 22
GEB 100% 4.6 4.7 57
BEB 100% 4.9 3.3 39
BEG 100% 5.1 2.0 19
BET 100% 5.4 1.8† 18†

†: Note that sometimes there exists a very short alternative solution to the
ground truth. The very inefficient GNB gets 40% of success due to those
instances, which give a mean length of 1.8 steps. ‡: As expected in this
scenario, the BET algorithm is the most efficient for time and resources.

algorithms (BNG, BNT) do better, succeeding in 100% of
the cases.

IV. INCREASING THE PLANNING PERFORMANCE USING
EQUIVALENT PLAN REDUCTION

It is possible to increase the performance of the planning
algorithms by exploiting some of the structure of the dynamics
that can be inferred a posteriori from the learned (or given)
diffeomorphisms. Section IV-A and IV-B recall recall the set
of action predicates previously introduced [4] and how they
can be estimated from data. Section IV-C describes how this
knowledge can be used to design an algorithm that collapses
equivalent plans to a canonical form. Section IV-D shows
that introducing this variation in the node expansion greatly
improves planning performance.

A. Actions predicates
Suppose that the (unobservable) underlying state evolves ac-

cording to xk+1 = f(xk,uk). We identify several predicates
on the set of commands:

1) Actions that have no effect:

void(u) , f(x,u) = x.

These can be safely excluded from planning.

TABLE III
PERFORMANCE OF BET FOR SAMPLES OF DIFFERENT LENGTH

success mean |p?| mean time (s) mean # nodes
|p�| = 1 100% 1.0 0.3 8
|p�| = 2 100% 1.8† 0.5 8
|p�| = 3 100% 2.6† 0.7 11
|p�| = 4 100% 5.1† 12.2‡ 21
|p�| = 5 100% 4.8 1.5 18
|p�| = 6 100% 6.0 2.5 22
|p�| = 7 100% 5.4 1.8 18
|p�| = 8 100% 7.4 15.1 30
|p�| = 9 100% 7.8 8.7 29
|p�| = 10 100% 8.8 8.6 35
|p�| = 11 §80% 10.6 30.5 50
|p�| = 12 §90% 7.3 16.3 32

†: Note that the length of the solution is possibly smaller or longer than the
plan of the ground truth p� (Fig. 1).
‡: In a few cases, the algorithms get trapped in a large basin containing a
local minimum; eventually they exit, but this drives up the average times.
§: For 11–12 steps, depending on the trajectory, there is only minimal overlap
between goal and start image, making the problem not well posed.

Algorithm 1 planreduce

1 function PlanReduce(p 2 Plans):
2 return pr(p, ;)
3
4 function pr(p2 2 Plans, p1 2 Plans)
5 write p1as a � A
6 write p2as B � b
7 if inverse(b, a): # If the two actions are inverse...
8 return pr(B, A) # ...they both disappear.
9 if commute(b, a)

10 # Now a comes after b. Would the plan be shorter
11 # if we put b before a?
12 aA pr(a, A)
13 bA pr(b, A)
14 if len(aA) < len(bA): # current order is fine
15 return pr(B, b � aA)
16 else if len(aA) > len(bA): # use alternative
17 return pr(B, a � bA)
18 else: # len(aA) ==len(bA), choose according to ordering
19 if b� a:
20 return pr(B, b � aA)
21 else:
22 return pr(B, a � bA)

2) Pairs of actions that have the same effect:

same(u1,u2) , f(x,u1) = f(x,u2).

If two actions have the same effect then it is not necessary
to include both in planning.

3) Pairs of actions that are left/right inverses:

inverse(u1,u2) , f(f(x,u1),u2) = x.

If two actions u1 and u2 have the inverse effect, then we
can exclude plans which contain the subplan u2 � u1, as
there is always shorter plan achieving the same effect. Note
that, in general, right inverse does not imply left inverse
(inverse(u1,u2) 6, inverse(u2,u1)).

4) Pairs of actions that commute:

commute(u1,u2) , f(f(x,u1),u2) = f(f(x,u2),u1).

(a) Orbit camera (b) Dubin’s car

Fig. 3. The PlanReduce algorithm allows to exclude redundant plans, as
implied by the predicates described in Section IV-A. For a system with N
actions, the size of the set PlansL which contains all plans up to length L
is NL (blue curve). (a) In the case of the Orbit camera, for which all
actions commute, each action has an inverse, and each pair of actions
explores a different direction in the state space, the number of reduced
plans RedPlansL = PlanReduce(PlansL) grows with the volume of the
state space explored. If the state space has dimension K, then the volume is
proportional to LK (green curve). (b) In the case of the Dubin’s car, where
not all actions commute, the size of RedPlansL still grows exponentially,
though with a smaller constant factor.

If two actions u1 and u2 commute, then it is not necessary
to consider plans of the pattern p2 � u2 � u1 � p1, if the plan
p2 � u1 � u2 � p1 has already been considered.

B. Inferring pairwise actions relations

We can infer these predicates from the learned diffeomor-
phisms, though there is some tuning constant to be adjusted.
Let d be a chosen distance on UDi↵(S).

1) An action u is void if p_to_d(u) is close to the identity:

void(u) , d(p_to_d(u), IdS)  c d0. (2)

2) Two actions u1,u2 are the same if p_to_d(u1) and
p_to_d(u2) are close:

same(u1,u2) , d(p_to_d(u1), p_to_d(u2))  c d0. (3)

3) Two actions are inverse of each other if their diffeomor-
phisms are inverse of each other:

inverse(u1,u2) , d(p_to_d(u1), p_to_d(u2)
�1)  c d0.

(4)
4) Two actions commute if the diffeomorphism associated

to u1 � u2 is similar to the one associated to u2 � u1:

commute(u1,u2) ,

d(p_to_d(u1 � u2), p_to_d(u2 � u1))  c d0. (5)

In these expressions, the scaling constant d0 > 0 is computed
as the maximum size of the diffeomorphisms:

d0 = max
u

d(p_to_d(u), IdS)). (6)

The dimensionless tuning constant c ⌧ 1 accounts for the
noise and the approximation that we can accept.

C. Reducing plans to their canonical form
To incorporate this knowledge information into the planning

algorithms, we devise an algorithm PlanReduce : Plans !
Plans that takes a given plan, and, based on the knowledge
of these predicates, returns a possibly shorter plan which has
the same associated diffeomorphism.

The listing given for PlanReduce (Algorithm 1) only shows
how to deal with the commute and inverse relations. (It is
trivial what to deal with void commands: just do not include
them in the planning. Likewise, if there are commands that
are equivalent, then just include only one of them in the set
of available commands.) The algorithm is written here in
tail-recursive form with two parameters p1 and p2, which
makes it easy to analyze, though an implementation (and
the one available on the website) can be written as a loop
where p1 and p2 are two stacks. At all times, the invariant
that is preserved is that p_to_d(p2 � p1) = p_to_d(p).

Dealing with inverses (line 7) is easy: if p2 = B � b
and p1 = a �A and inverse(a, b), then a and b cancel each
other and we can continue with p2 = B and p1 = A.

Dealing with commands that commute is slightly more
involved. To obtain a well-defined behavior, it is necessary
to assume that there is a total ordering “�” on the space U,
because, if u1 and u2 commute, then there needs to be a way
to choose between u2 �u1 and u1 �u2 as the canonical plan
to return. At line 7, given a plan of the form B�b�a�A, where
a and b commute, we can choose to replace b � a �A with
a�b�A. If one choice gives a shorter reduced subplan (found
through a recursive call in lines 12–13), then we choose the
shorter, otherwise the total order � is used to decide.

The algorithm’s complexity is O(|p|) if memoization [15] is
used to remember the reductions already computed. (Because
of the recursive calls at lines 12–13, if memoization is not
used it might have exponential cost in |p|.) In our scenario,
the cost of this algorithm, which deals only with sequences
of integers, is negligible with respect to the cost of applying
a diffeomorphism to an image.

Proposition 2 (Properties of PlanReduce): PlanReduce

always terminates. The reduced plan is equivalent to the
original plan:

p_to_d(PlanReduce(p)) = p_to_d(p), (7)

but it is possibly shorter: |PlanReduce(p)|  |p|.
Proof: Writing the algorithm in tail-recursive form

makes this analysis easy. To see that the algorithm termi-
nates, note that at each step either the total length |p1| +
|p2| decreases, or, when it does not, the quantity that de-
creases is noutoforder(p2 � p1), defined as noutoforder(p) =P|p|

i=1

Pi�1
j=1(p

i � pj), which is the number of pairs that do
not appear in the string in the order according to �. To see
that (7) holds, notice that p_to_d(p2 � p1) = p_to_d(p) is
conserved through each recursive call.

From (7) it follows that

p_to_d(Plans) = p_to_d(PlanReduce(Plans)),

which means that we cover all plans, assuming that the
predicates were correctly estimated from data. Note, however,
that the stronger condition p_to_d(p1) = p_to_d(p2) ,
PlanReduce(p1) = PlanReduce(p2) does not hold, because
we only use first-order information between commands. For

example, it might be that u2 � u1 commutes with u3, but
not u1 and u2 separately.

D. Effects of reduction on planning performance

Fig. 3 compares, for each horizon L, the number of plans
that would be generated without reduction:

PlansL = {p 2 Plans | |p|  L},
with the number of the reduced plans:

RedPlansL = {PlanReduce(p) | p 2 PlansL}.
In the case of a system where all actions commute, like our
pan-tilt camera, the number of plans as a function of the
length L changes from exponential to polynomial. If actions
do not commute (as in the Dubin’s car example shown in the
following), then the number of plans is still exponential but
with slightly smaller constant factor.

This translates to faster algorithms that need fewer node
evaluations. We just need to modify the node expansion
routine. Suppose that a node to be expanded is labeled
by a plan p. Instead of returning the set of successors
as {u � p | u 2 U}, the successors are computed as the
set {PlanReduce(u � p) | u 2 U}. This allows to not expand
nodes that would be redundant.

We modify the BNB, BNG, BNT algorithms obtaining the
variants BEB, BEG and BET (see Table I for a summary).
As expected, these perform much better in terms of memory
and speed (Table II). Table III shows the performance of BET
broken down for different lengths of the ground truth plan.

V. COMBINING ACTIONS FOR MORE EFFICIENT SEARCH

The performance of all methods considered up to now is
dependent on how well the distance between images works
as a heuristics for the planning problem. What we wish to
happen is that the heuristics is mostly always decreasing
along the plan from the start to the goal image. If this is
not true, then the graph search algorithms try to fill basins
containing local minima before continuing the search in a
useful direction. (There are some possible mitigation measures
that we did not discuss [13], such as mixing a breadth-first and
a greedy strategy, as well as biasing expansion towards less
explored areas.) The worst scenario possible is one in which
the heuristics has large local variations along the feasible
plan from start to goal image. The perfect example for this
is the problem of parking with a car-like dynamics.

Consider a Dubin’s car with 6 actions {F,L,R, f, l, r},
corresponding to driving forward (F), forward-right (R),
forward-left (L), and their relative inverses, indicated with
lower case. The observations are taken to be a “local map” of
the environment, as it could be obtained by an omnidirectional
range-finder (Fig. 4). The task is encoded by the start and
goal images, in (a) and (b), respectively, of how the local map
would look like in the initial and goal position. The actions
induce Euclidean motions of the local map.

We generated several variation of this benchmark requiring
an increasing number of maneuvers, from 1 to 5. None of the
algorithms considered so far allow to solve the benchmark
for more than 2 maneuvers (Table IV), given the resources
limits we have established.

5 maneuvers

(a) ystart (b) ygoal

step

heuristics

(c) Qualitative behavior

Fig. 4. Parking for a Dubin’s car formulated as planning in the image
space. Here the “image” is a local map of the environment, as could possibly
be obtained by a range-finder mounted on the car, in the starting position,
in (a), and in the goal position, in (b). The car’s cartoonish silhouette is only
for visualizing the desired motion and is not part of the algorithms’ input.
(c) Motions of the car induce Euclidean motions of the image. Along the
feasible plan that goes from start to goal image, the distance between the
current image and the goal image has several local minima that make this a
very challenging benchmark for greedy algorithms.

TABLE IV
PERFORMANCE IN THE PARKING BENCHMARKS (1–5 MANEUVERS)

BET BETc
p� p? time (s) # nodes p? time (s) # nodes

RLrl RLrl† 5.52 52 rlRL 0.65 24
(RLrl)2 (rlRL)2 6.97 62 (rlRL)2 1.26 24
(RLrl)3 fail‡ 316.19 227 (rlRL)3 3.72§ 48
(RLrl)4 fail‡ 317.76 157 (rlRL)4 2.71§ 48
(RLrl)5 fail‡ 368.50 167 (rlRL)5 9.98§ 72

†: RLrl and rlRL are two equivalent subplans. The algorithms use one or
the other, according to some incidental order of expansions for the actions.
‡: BET fails for more than 2 maneuvers. §: BETc completes all benchmarks.

A. Taking advantage of diffeomorphism composition

The heart of the problem is that for some classes of systems,
including nonholonomic systems, only considering “primitive”
commands in U does not explore all possible directions of
the state space (Fig. 5a). Using words from linear algebra
in a metaphorical way, the “span” of the primitive actions
p_to_d(U) has smaller “dimension” than the state space,
which is the “span” of p_to_d(Plans).

Note that, for affine systems, where the (infinitesimal)
actions are vector fields, then one can generate “new” actions,
corresponding to infinitesimal “maneuvers”, by computing the
closure of the corresponding Lie algebra (see Isidori [16] for
the general theory and Siciliano et. al. [17] for the application
to mobile robots dynamics). Here, we cannot assume that

Idun
re
ac
ha
bl
e

un
re
ac
ha
bl
e

primitive

primitive

(a) Primitive actions

d0

(b) Constructing Pnear

new
actions

(c) New actions

Fig. 5. (a) In nonholonomic systems, the primitive actions do not explore
all degrees of freedom of the underlying state space. (b) We construct the
set Pnear of all plans that lead to a diffeomorphism near the identity. (c) By
choosing a representative covering of Pnear, we can select a set of plans that
explore all degrees of freedom.

diffeomorphisms are small/infinitesimal, and do not have a
symbolic description of them. Nevertheless, our algorithmic
approach shares the same spirit.

In our approach, to find a subset of Plans that explores
all interesting directions, we construct a subset of plans Pnear
by enumerating the set RedPlans|U| and retaining the ones
whose diffeomorphism lies close to the identity:

Pnear = {p 2 RedPlans|U| | d(p_to_d(p), IdS)  d0},
where “close” is defined by the scaling constant d0 in (6), as
illustrated in Fig. 5b. This set can be quite dense. We choose
a subset of Pnear by eliminating plans too close to each other;
we have thus found a new set of commands, which allows
more efficient search along all directions of the state space
simultaneously (Fig. 5c). In the case of the Dubin’s car, this
procedure generates all “parking” maneuvers, which generates
a net lateral motion, as well as some near-rotations in place.

We call “BETc” the variant of BET that computes and
uses these composite actions. For this algorithm the parking
benchmark is very easy, as it can move exactly sideways,
thereby avoiding the local minima of the heuristics (Table IV).

B. Towards exploiting the global structure

It is interesting to see what happens if we carry over
this exploration of the plan space beyond a neighborhood
of the origin. In general, this cannot be done by a simple
enumeration of all plans, but rather must be done by a proper
graph search. Like in the planning scenario, the nodes of
the graph are labeled with plans, but now there is no image
associated; nodes are collapsed based on a threshold on the
distance of the induced diffeomorphisms.

The resulting search graphs (Fig. 6), once embedded
in Euclidean space, allow to recover the topology of the
underlying state space, modulo the visibility constraints. For
example, for an omnidirectional camera that can rotate on
itself, we recover the topology of SO(2) (Fig. 6b). If the
camera has a limited field of view, then the topology is that of
a line (Fig. 6a). The Orbit camera dynamics can be embedded
in 2D along two principal directions that correspond to
pan and tilt (Fig. 6c), though a more metrically faithful
representation in 3D wraps the nodes around the surface
of a torus (Fig. 6d). The Dubin’s car state space is SE(3),
which needs at least R4 for a topologically correct embedding
(as SO(2)⇥R2, with SO(2) embedded in R2) though locally
can be embedded in R3 (Fig. 6e).

VI. CONCLUSIONS

Diffeomorphism models approximate the dominant dynam-
ics of robotic sensorimotor cascades and can be learned from
raw data. This paper has shown that these learned models
have enough predictive power to be used for long-horizon
open-loop image-based motion planning.

Several established approaches of the graph planning family
have been adapted to this problem. The fact that each
node in the graph, labeled by a plan, has also associated
a diffeomorphism and a predicted uncertain images motivates
the introduction of mechanisms that minimize the number
of nodes that must be fully expanded and evaluated. The
mechanism of plan reduction, described in Section IV, allows
not to consider plans that can be said to be redundant just

pan

(a) Panning camera

pan

180° left 165° right

(b) Omni. camera

pan

tilt

(c) Orbit camera (2D)

visibility

50%

100%

(d) Orbit camera (3D) (e) Dubin’s car

Fig. 6. Embedding of Plans in Euclidean space according to the distance between induced diffeomorphisms, colored by visibility. To each plan p, we
associate an “uncertain diffeomorphism” p_to_d(p) 2 UDi↵(S) and a “visibility” value, which is the portion of the image that we can actually predict,
due to limited field of view. The empty plan, corresponding to the identity diffeomorphism, has 100% visibility. To obtain these images, we first compute a
distance matrix between plans using the distance between their diffeomorphisms. We then use MDS [18] to find an embedding. In this way, we can recover
the topology of the underlying state space from the learned incremental ations. Figure (a) is obtained using the (synthetic) dynamics of a camera with
only one degree of freedom and limited field of view. As the camera pans left or right, the visibility decreases. Figure (b) corresponds to the case of an
omnidirectional camera that rotates on itself. In this case, the visibility does not decrease. We recover the fact that rotating 180� on the left is the same as
rotating 180� on the right. Figure (c) and (d) corresponds to the experimental data from the Orbit camera. Figure (e) shows the case of the Dubin’s car, for
100 plans in the neighborhood of the identity. The underlying state space is SE(2), which cannot be embedded in R2 or R3 due to the different topology,
though locally it organizes itself into the x, y, ✓ directions.

by looking at the pairwise relations between actions that we
can infer from the learned diffeomorphism. The fact that
actions are uncertain diffeomorphisms makes it possible to
compress multiple actions into one. This allows to reason
offline about the geometry of the system, and choose a
“basis” of actions that explore efficiently in all directions,
as explained in Section V. Using these improvements, the
graph search algorithms in image space behave in a way
which is qualitatively similar to the corresponding planning
problem in the state space. For example, for systems where
all actions commute, such as the camera of our experiments,
planning with diffeomorphisms behaves very much like a
search problem on a lattice with an imprecise heuristics.

In this paper we focused on the planning problem and
we glossed over possible improvements of learning, such as
using more complex representations of uncertainty, such as a
covariance for every point-wise value of the diffeomorphisms.
With a more thorough probabilistic treatment, we can give
a clear statistical interpretation to some of the parameters
that now appear as tuning constants, such as the value c in
(2)–(5). Those thresholds on distances can be replaced with
likelihood ratio tests, and c with a probability of making a
mistake in inferring those predicates.

The fact that it is possible to recover the global topological/-
metric structure of the underlying dynamical systems (Fig. 6)
only from the incremental learned actions alone makes it
possible to think of different approaches to solve the planning
problem. Given the statistics of a set of image similarities to
be used as heuristics (such as those shown in Fig. 2), it might
be possible to derive optimal, zero-tuning branch-and-bound
methods that explore systematically and optimally the space
of plans. Or, given a set of arbitrary diffeomorphisms, it might
be possible to derive image invariants/covariants, in the spirit
of image moments.

Finally, we remark that hidden dynamics could make
these methods fail spectacularly. Such is the case of sensors
mounted on articulated bodies. However, in some cases, the
hidden state only gives a perturbation of the diffeomorphism,
such as in the case of the environment nearness when a camera
undergoes translational motion. In those cases, it might be
possible that, in closed loop, feedback allows to ignore some

of those hidden states, thus making the problem simpler than
open-loop planning.

REFERENCES
[1] A Stoytchev. “Some Basic Principles of Developmental Robotics”.

In: IEEE Trans. on Autonomous Mental Development 1.2 (2009)
DOI:10.1109/TAMD.2009.2029989.

[2] A. Censi and R. M. Murray. “Bootstrapping bilinear models of robotic
sensorimotor cascades”. In: Int. Conf. on Robotics and Automation.
Shanghai, China, 2011 DOI:10.1109/ICRA.2011.5979844.

[3] A. Censi and R. M. Murray. “Bootstrapping sensorimotor cascades: a
group-theoretic perspective”. In: Int. Conf. on Intelligent Robots and
Systems. San Francisco, CA, 2011 DOI:10.1109/IROS.2011.6095151.

[4] A. Censi and R. M. Murray. “Learning diffeomorphism models
of robotic sensorimotor cascades”. In: Int. Conf. on Robotics and
Automation. Saint Paul, MN, 2012 (url).

[5] F. Chaumette and S. Hutchinson. “Visual servo control, Part I”. In:
IEEE Robotics and Automation Magazine 13.4 (2006).

[6] D. Scaramuzza and F. Fraundorfer. “Visual Odometry [Tutorial]”. In:
IEEE Robot. Automat. Mag. 18.4 (2011).

[7] V. Kallem, M. Dewan, J. P. Swensen, G. D. Hager, and N. J. Cowan.
“Kernel-based visual servoing”. In: Int. Conf. on Intelligent Robots
and Systems. IEEE, 2007.

[8] C. Collewet, E. Marchand, and F. Chaumette. “Visual servoing set
free from image processing”. English. In: Int. Conf. on Robotics and
Automation. IEEE. Pasadena, United States, 2008 (link) (url).

[9] S. Han, A. Censi, A. D. Straw, and R. M. Murray. A bio-plausible de-
sign for visual pose stabilization. Tech. rep. CaltechCDSTR:2010.001.
California Institute of Technology, 2010.

[10] G. Silveira and E. Malis. “Direct Visual Servoing: Vision-Based
Estimation and Control Using Only Nonmetric Information”. In:
IEEE Trans. on Robotics 28.4 (2012).

[11] A. Sweet and X. Pennec. “Log-domain diffeomorphic registration
of diffusion tensor images”. In: Proceedings of the 4th international
conference on Biomedical image registration. Berlin, Heidelberg:
Springer-Verlag, 2010 (url).

[12] G. Chirikjian. Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Applied and Numerical Harmonic Analysis. Birkhäuser, 2011. ISBN:
9780817649432.

[13] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[14] E Olson. “Real-time correlative scan matching”. In: Int. Conf. on
Robotics and Automation. 2009 DOI:10.1109/ROBOT.2009.5152375.

[15] J. Mayfield, T. Finin, and M. Hall. “Using automatic memoization
as a software engineering tool in real-world AI systems”. In: Proc.
of the 11th Conf. on Artificial Intelligence for Applications. IEEE
Computer Society, 1995. ISBN: 0-8186-7070-3 (url).

[16] A. Isidori. Nonlinear Control Systems. London, UK, UK: Springer-
Verlag, 2000. ISBN: 1852331887.

[17] B. Siciliano, L. Villani, L. Sciavicco, and G. Oriolo. Robotics:
Modelling, Planning and Control. Springer, 2008.

[18] T. Cox and M. Cox. Multidimensional Scaling. Boca Raton, FL:
Chapman & Hall / CRC, 2001. ISBN: 1-58488-094-5.

http://dx.doi.org/10.1109/TAMD.2009.2029989
http://dx.doi.org/10.1109/ICRA.2011.5979844
http://dx.doi.org/10.1109/IROS.2011.6095151
http://purl.org/censi/2011/diffeo
http://hal.inria.fr/inria-00261398
http://dl.acm.org/citation.cfm?id=1881120.1881142
http://dx.doi.org/10.1109/ROBOT.2009.5152375
http://dl.acm.org/citation.cfm?id=791219.791666

	Introduction
	Diffeomorphism dynamical systems
	Planning in observations space
	Plans and induced diffeomorphisms
	Formal statement of the planning problem
	Measuring similarities
	Measuring on Diff(S)
	Measuring on Im(S)
	Measuring on UIm(S) and UDiff(S)

	Planning with graph search

	Increasing the planning performance using equivalent plan reduction
	Actions predicates
	Inferring pairwise actions relations
	Reducing plans to their canonical form
	Effects of reduction on planning performance

	Combining actions for more efficient search
	Taking advantage of diffeomorphism composition
	Towards exploiting the global structure

	Conclusions

