
Synthesis of Correct-by-Construction Behavior Trees

Michele Colledanchise†, Richard M. Murray‡, and Petter Ögren†

Abstract— In this paper we study the problem of synthesizing

correct-by-construction Behavior Trees (BTs) controlling agents

in adversarial environments. The proposed approach combines

the modularity and reactivity of BTs with the formal guarantees

of Linear Temporal Logic (LTL) methods. Given a set of

admissible environment specifications, an agent model in form

of a Finite Transition System and the desired task in form

of an LTL formula, we synthesize a BT in polynomial time,

that is guaranteed to correctly execute the desired task. To

illustrate the approach, we present three examples of increasing

complexity.

I. INTRODUCTION

As Behavior Trees (BTs) receive an increasing amount of
attention, not only in computer game AI design textbooks
[1], [2], but also in robotics [3]–[5], the lack of formal
design methods is becoming a problem. The difficulty of
analyzing and debugging BTs was described in [6]. Linear
Temporal Logic (LTL) has proved to be a successful tool in
addressing such problems in the hybrid control community,
hence in this paper we propose to use LTL to synthesize
correct-by-construction BTs given the system model and
some assumptions on the environment.

The proposed approach automatically synthesizes a BT
that guarantees that a given agent will complete a given task,
under some assumptions on the agent, task and environment.
This is done in polynomial time, without compromising the
advantages of BTs, in terms of reactiveness, modularity and
human readability.

BTs are a graphical mathematical model for reactive fault
tolerant task executions. They were first introduced in the
video game industry to control in-game opponents, and are
now an established tool appearing in textbooks [2] and
generic game-coding software such as Pygame, Craft AI,
and the Unreal Engine. BTs are appreciated for being highly
modular, flexible and reusable, and have also been shown
to generalize other successful control architectures such
as the Subsumption architecture [7] and the Teleo-reactive
Paradigm [8]. BTs have been used in applications including
unmanned aerial vehicles [3], medical robotics [5], industrial
robotics [4], and AI [9], [10]. In these applications, BTs are
either manually designed by human experts or automatically
designed using machine learning techniques [9] defining an
objective function to maximize using heuristic methods.

LTL is a specification language [11] that allows a formal
description of system properties that change over time and
thus specify a wide variety of tasks, such as safety, response,

†Robotics, Perception and Learning Lab, The Royal Institute of Technol-
ogy, Stockholm, Sweden. e-mail: {miccol�petter}@kth.se

‡Department of Control and Dynamical Systems, California Institute of
Technology, Pasadena, CA, USA. e-mail: murray@cds.caltech.edu

persistence, and recurrence. LTL-based planning allows the
automatic synthesis of correct-by-construction control poli-
cies for autonomous systems [12], [13]. In an LTL-based
planner, usually the task is specified in terms of an LTL
formula with respect to a finite transition system modeling
the system. The computational complexity of synthesizing a
control policy that satisfies an LTL is doubly-exponential
in the formula length [14], which led to the interest in
identifying a fragment of LTL that is sufficiently expressive
and for which, in the context of timed automata, the synthesis
of a control policy is efficient. A common fragment used is
the Generalized Reactivity (1) (GR(1)) [14]. LTL-planning
is often used considering the presence of an adversarial
environment. Then, the control policy synthesis assumes
some behavior of the environment in form of a LTL formula.
Off-the-shelf planners, such as [12], [13], receive as input
the system model, assumption on admissible environment,
and the system specification. To account for the adversarial
environment, different techniques have been proposed: two
players games, where the environment is considered as a
player in the game [15]; the entire system as a non de-
terministic transition system where the environment decides
which is the post-state for each action [16]; and allowing
the environment to arbitrary change the robot state at a finite
number of time instants [17].

In this paper we combine BTs with LTL by the automatic
synthesis of a control policy in form of a BT that is
guaranteed to satisfy a task defined in form of an LTL
formula, under certain assumptions on the environment. This
synthesis is done in polynomial time, with respect to the size
of the system. In detail, we define the system model as a finite
transition system, and synthesize a correct-by-construction
BT that describes the policy that satisfies the desired task.
Using the structure of BTs, the proposed controller is robust,
in the sense of action failure handling, and reactive, in the
sense of being able to countermeasure the environment that
arbitrarily changes the robot state as in [17]. BTs do not limit
the expressible control policy, as a BT is as expressive as a
FSM and vice-versa [22].

To be able to synthesize the BT in polynomial time we
focus our attention on a fragment of LTL, similar to the
fragment used in [16], that can be used to specify tasks such
as as safe navigation, response to the environment, persistent
coverage, surveillance, guarantee and obligation.

The paper is organized as follows: Section II presents
the related work. Section III describes BTs and LTL. Sec-
tion IV formulates the problem and Section V the proposed
approach. Section VI provides the theoretical analysis. Sec-
tion VII shows the results. Section VIII concludes the paper.

Submitted, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
http://www.cds.caltech.edu/~murray/preprints/cmo17-iros_s.pdf

II. RELATED WORK

In this section we briefly summarize related work and
compare it with the proposed approach.

The vast majority of BTs are still manually designed by
human experts [1], [2], however, there has been a number
of efforts to automate the process [9], [10]. In particular [9]
proposes a grammar-based genetic programming method that
combines a set of pre-defined sub-BTs to maximize a given
objective function in closed form. The approach works well
for the kind of applications where the task is to reach a
given state and the objective function can be easily derived.
In [18] the authors combine BTs with Q-learning, proposing
an automated tree design based on reinforcement learning
techniques. However, these approaches are applicable where
the defined task is to satisfy a single proposition (e.g. reach
a certain state, satisfy a given condition). In contrast, our
approach considers a larger set of constraints.

Similar works [10] use machine learning techniques to
learn a BT given a reward function. However this heuristic
approach has no theoretical guarantee that the task will
be correctly completed. In contrast, our approach provides
guarantees that the desired task will be completed. Similar
solutions have been proposed in the field of robotics, where
genetic programming is applied directly onto the BT. Their
approach involved experiments with a flying robot, iteratively
learning the BT in every experiment. An attempt to find
a safe behavior is found in [19] where they exploit the
particular structure and execution of BTs to learn a safe BT.
However both approaches are still based on heuristic func-
tions that cannot capture behaviors that are easily described
by LTL, such as surveillance and persistent coverage.

Formal verification of BTs has been studied in [3] where
they translate the BT into a tractable formalism. The formal-
ism used is the Attributive Language with Complements and
concrete Domains ALC(D). However such verifications can
be done only after designing the tree, which is supposedly
done by a human expert.

The first approach to combine LTL planning with BTs is
found in [20] where they synthesize a maximally satisfying
control policy taking into account robot failures. However
BTs are used only as a bridge between their task execution
framework and the low level controllers of the robot. In
contrast, our approach synthesizes the BT as a task execution
framework, preserving the advantages of BTs in term of
modularity, reactiveness, robustness and human readability.
The BT itself is not directly synthesized from the LTL.

III. BACKGROUND: BT AND LTL
In this section we briefly describe BTs and LTL. A more

detailed description of BTs can be found in [2], while more
detailed description of LTL can be found in [21].

Behavior Trees: A BT is a graphical modeling language
and a representation for execution of actions based on
conditions and observations in a system. A BT is a directed
rooted tree where each node is either a control flow node or
an execution node. With the common definitions of parent
node and child node. The root is the single node without

parents, whereas all other nodes have one parent. The control
flow nodes have one or more children, and the execution
nodes have no children. Graphically, the children of nodes
are placed below it.

The execution of a BT begins from the root node. It sends
ticks with a given frequency to its child.A tick is a signal
that allows the execution of a child. When a parent sends a
tick to a child, the execution of this is allowed. The child
returns to the parent a status running if its execution has not
finished yet, success if it has achieved its goal, or failure
otherwise.
There are four types of control flow nodes (fallback, se-
quence, parallel, and decorator) and two execution nodes
(action and condition). Below we describe the execution of
the nodes used in this paper.

The fallback node ticks its children from the left, returning
success (running) as soon as it finds a child that returns
success (running). It returns failure only if all the children
return failure. When a child returns running or success, the
fallback node does not tick the next child (if any). The
fallback node is graphically represented by a box with a “?”.

The sequence node ticks its children from the left, return-
ing failure (running) as soon as it finds a child that returns
failure (running). It returns success only if all the children
return success. When a child returns running or failure, the
sequence node does not tick the next child (if any). The
sequence node is graphically represented by a box with a
“→”.

The action node performs an action, returning success if
the action is completed and failure if the action cannot be
completed. Otherwise it returns running.

The condition node checks whether a condition is satisfied
or not, returning success or failure accordingly. The condition
node never returns running.

There also exists a non-reactive version of the control flow
nodes described above, where the nodes remember which
child has returned success or failure. Nodes with memory
always tick the same child until this returns success or
failure, ignoring its status after that. Such control flow nodes
are often called nodes with memory and they are graphically
represented with the addition of the symbol “∗” (e.g. a
sequence node with memory is graphically represented by
a box with a “→ ∗”).

Linear Temporal Logic: LTL is a powerful language
that can be used to specify a wide range of important
system behavior. A LTL formula is defined according to the
following grammar:

' � p � ¬' � '1 ∧'2 ��' � '1U'2 (1)
An LTL formula consists of a set of atomic propositions;

Boolean operators and temporal operators. Here, ¬ is the
Boolean negation operator; ∧ is the Boolean conjunction
operator; � is the temporal next operator; and U is the
temporal until operator. Further operators such as disjunction
(∨); implication (⇒); eventually (�), always (�); infinitely
often (��); and eventually forever (��) can be derived.

IV. PROBLEM FORMULATION

In this section we give a set of assumptions and definitions
and then we state the main problem.

Definition 1: A finite transition system is a tupleT = �S,A, ⌧, s0,AP,�� where S is a finite set of states, A is
a finite set of actions, ⌧ ∶ S ×A→ S is a transition function,
s0 is an initial state, AP is a set of atomic propositions, and
� ∶ S → 2AP is a labeling function.

Definition 2: The action function ↵ ∶ S → 2A gives the
set of available actions at a given state.

Definition 3: The null action " is an action such that s =
⌧(s, ") ∀s ∈ S.

Definition 4: A state s′ ∈ S is said successor state of s ∈ S
if and only if ∃a ∈ ↵(s) ∶ s′ = ⌧(s, a). The set of successor
states of s is denoted by P

ost

(s).
Definition 5: A run � = s0, s1, s2, . . . of a finite transition

system is an infinite sequence of its states where s
i

is the
state at index i.

Definition 6: A state s satisfies a proposition p if and only
if � � p.

Definition 7: A run � is a satisfying run of an LTL
formula ' if and only if s

i

� ' ∀s
i

∈ �.
Definition 8: A policy is a map ⇡ ∶ S×M ×2AP → A×M

where M is a set of memory variables and 2AP is a set of
all possible propositions.

Definition 9: A policy ⇡ is a satisfying policy for an LTL
formula ' (⇡ � ') if its run from s0 is a satisfying run.

Definition 10: An agent specification ' describes the pos-
sible behaviors of the agent and is defined as:

' = '� ∧'� ∧'⇒� ∧'⇒�� ∧'⇒�� ∧'⇒�. (2)
where:
'� � �

i

�p1i, '� � �
i

�p2i
'⇒� � �

i

�(q3i ⇒ �p3i), '⇒�� � �
i

�(q4i ⇒ ��p4i)
'⇒�� � �

i

�(q5i ⇒ � � p5i), '⇒� � �
i

�(q6i ⇒�p6i)
p
ij

is an atomic proposition the agent can control and
q
ji

is an atomic proposition the agent cannot control.
Remark 1: The agent specification ' defined in Defini-

tion 10 allows '⇒�� which cannot be specified in CTL or
GR(1). However it cannot allow disjunctions of formulas as
in GR(1) without increasing the synthesis complexity.

Definition 11: The environment specification describes
the possible behaviors of the environments and is defined as:

 = � ∧ �� ∧ �� (3)
where: � � �

j

�q1j , �� � �
j

��q2j , �� � �
j

� � q3j .
Assumption 1: " ∈ ↵(s)∀s ∈ S. That is, the null action is

available for each state in S.
Assumption 2: The initial state does not violate '.
Assumption 3: The environment does not force the agent

to a state where no possible actions are available (not even
the null action).

Assumption 4: For each proposition p
ij

to be satisfied, the
environment does not block all the paths to a state s

ij

∈ S ∶
s
ij

� p
ij

forever.
Remark 2: We need to formulate Assumptions 3 and 4 as

we have no assumptions of when the variables q
ji

become
true.

Problem 1: Given a finite transition system T under As-
sumption 1, an LTL formula ' in form of (2), derive a BT
such that its policy ⇡ holds the following ⇡ � ⇒ '.

V. PROPOSED SOLUTION

In this section we describe the proposed approach. We
begin with an informal description of the algorithms, then we
state a few definitions needed to give a formal description.

The behavior described by ' can be seen as the com-
position of three sub-behaviors: a transient behavior ('�);
a steady state behavior ('⇒��, '⇒�, and '⇒��); and
a priority behavior ('⇒� and '�). We create a BT that
describes the transient behavior and a BT that describes a
steady state behavior. We compose the aforementioned trees
in a sequence composition. Both sub-trees execute actions
that satisfy the priority behavior. The satisfying run can thus
be divided into a transient run and a steady state run.

For each formula in ' we compute three functions: the
value function, the requirement function, and the constraint
function. The value function is used to identify the actions
the agent can perform to satisfy a given proposition. The
requirement function has two purposes: it is used to identify
at each state the actions that do not violate ' and it is used
to define assumptions on the environment’s specification .
The constraint function is used to draw assumptions on the
environment’s specification .

Definition 12: The set ⌃(s) ⊆ S is the satisfaction set of
s. It contains all the states in any satisfying run for ' starting
from s.

Definition 13: V ∶ S ×AP ⇒ N∪∞ is the value function
for a state s ∈ S and a proposition p ∈ AP . Each value
function satisfies the optimality condition:

V (s, p) = min
a∈↵(s)V (⌧(s, a), p) + 1. (4)

Definition 14: R ∶ S ⇒ 2AP is the requirement function
of the state s ∈ S.

The requirement function is computed by Algo-
rithm 1 in O(�'��T �) time. R(s) satisfies the follow-
ing: R(s) �⇒ R�(s) ∧ R�(s) ∧ R�(s) ∧ R⇒�(s) ∧
R��(s) ∧ R��(s) ∧ �

s

′∈P
ost

(s)�{s}R(s′) where R�(s),
R�(s), R�(s), R⇒�(s), R��(s), and R��(s) are defined
below.

Function R�(s): R�(s) is a proposition used to identify
the action to perform in order to satisfy '�. The agent can
move to s only if R�(s) holds. It is defined as:

R�(s) ��
i

s � p1i (5)

Intuitively, the agent can move to s only if '� = �
i

�p1i is
satisfied.

Function R�(s): R�(s) is a proposition used to identify
the action to perform in order to satisfy '⇒�. The agent can
move to s only if R�(s) holds. It is defined as:

R�(s) ��AT
s

⇒ �
i∶q6i

s � p6i (6)

where AT
s

is a proposition that holds if and only if the agent
is at s. Intuitively, the agent can move to s only if

Algorithm 1: get R(S, ', R�, R�, R�, R��, R��)

1 � ← �
2 for s ∈ S do

3 R′(s) = R�(s) ∧R�(s) ∧R�(s)
4 for p3i ∈ ' do

5 if s � p
p3i then

6 R′(s) = R′(s) ∧R⇒�(s)
7 � ←� ∪{s}
8 for p4i ∈ ' do

9 if s � p
p4i then

10 R′(s) = R′(s) ∧R��(s)
11 � ←� ∪{s}
12 for p5i ∈ ' do

13 if s � p
p5i then

14 R′(s) = R′(s) ∧R��(s)
15 � ←� ∪{s}
16 do

17 � ← �
18 for s′ ∶ s′ ∈Parents(�) do

19 R′(s) ← R′(s) ∨ R′(s′)
20 � ← � ∪{s′}
21 � ← �
22 while � ≠ �;
23 for s ∈ S do

24 R(s) = R�(s) ∧R�(s) ∧R�(s) ∧R⇒�(s) ∧
R��(s) ∧R��(s) ∧R′(s)

25 return R

'⇒� = �
i

�(q6i ⇒ �p6i) is satisfied. The proposition
AT

s

will be helpful to avoid having the agent blocked at
the initial state because ¬q6i holds despite the initial state
satisfying p6i.

Function R�(s): R�(s) is a proposition used to identify
the action to perform in order to satisfy '�. The agent can
move to s only if R�(s) holds. It is defined as:

R�(s) ��
i

(p∗2i ∨ V (s, p2i) ∈ N) (7)

where p∗2iis an auxiliary variable initialized to false and set
to true when s � p2i. Intuitively, the agent can move to s if
each proposition p2i was either satisfied in the past or it can
be satisfied in finite time.

Function R⇒�(s): R⇒�(s) is a proposition used to
identify the action to perform in order to satisfy '⇒�. The
agent can move to s only if R⇒�(s) holds. R⇒�(s) is
defined as R⇒�(s) � �

i

R′⇒�(s, p3i), where R′⇒�(s, p3i)
is defined as:

R′⇒�(s, p3i) �
�����������������

�¬q3i ∨ p∗3i ∨ �
j∶s�p3j

(�¬q3j ∨ (V (s, p3j) ∈ N∧
∧∃s̃ ∶ V (s̃, p3j) = 0 ∧ V (s′, p3i) ∈ N)), if s � p3i�
s′∈P

ost

(s)�{s}
R′⇒�(s′, p3i) otherwise

(8)
where p∗3iis an auxiliary variable initialized to false and set
to true when s � p3i and set to false when ¬q3i holds.

Function R��(s): R�(s) is a proposition used to identify
the action to perform in order to satisfy '��. The agent
can move to s only if R��(s) holds. R��(s) is defined as

R��(s) � �
i

R′��(s, p4i), where R′��(s, p4i) is defined as:

R′��(s, p4i) �
�����������������

�¬q4i ∨ �
j∶s�p4j

(�¬q4j ∨ (V (s, p4j) ∈ N∧
∧∃s̃ ∶ V (s̃, p4j) = 0 ∧ V (s′, p4i) ∈ N)), if s � p4i�
s′∈P

ost

(s)�{s}
R′��(s′, p4i) otherwise

(9)
Intuitively, the agent can move to s if for each p4i the
proposition �(q4i ⇒ ��p4i) is either trivially satisfied (i.e.�¬q4i holds) or it is possible to satisfy p4i in finite time and
for all the other propositions �(q4j ⇒ ��p4j) that are not
trivially satisfied it is possible to satisfy p4j and then satisfy
p4i in finite time.
Function R��(s): The agent must satisfy '�� in the steady

state run. Whenever a proposition q5i holds the states that
satisfy the steady state run may change. To identify those
states, for each p5i, we create the finite transition systemT
p5i from T removing the states that do not satisfy p5i.

Then, using Equation(4), we compute the value functions
V
p5i(s, p) on T

p5i . This value function allows us to compute
the conditions under which there exists a satisfying run for
the steady state.
R��(s) is a proposition used to identify the action to

perform in order to satisfy '��. The agent can move to
s only if R��(s) holds. R��(s) is defined as R��(s) ��

i

R′��(s, p5i), where R′��(s, p5i) is defined as:

R′��(s, p5i) �

�

���������������������������

(� � ¬q5i ∨ �
j∶s�p5j

� � ¬q5j) ∧ (��¬q5i∨
∨((�j � � ¬q4j ∨�k≠j � � ¬q4k ∨ (∃s′ ∶ Vp5i(s′, p4k) = 0∧∧Vp5i(s′, p4j) ∈ N) ∧�j � � ¬q4j ∨�k≠j � � ¬q4k∨∨(∃s′ ∶ Vp5i(s′, p4k) = 0 ∧ Vp5i(s′, p4j) ∈ N)))), if s � p5i�
s′∈P

ost

(s)�{s}
R′��(s′, p5i) otherwise

(10)
Intuitively, the agent can move to s if for each p5i the

proposition �(q5i ⇒ �� p5i) is either trivially satisfied (i.e.��¬q5i) or eventually forever does not have to reach a state
(or a set of states) for which p5i does not hold. Moreover
eventually forever the agent must stay within states that
satisfy p5i; '⇒�; and '⇒��

Definition 15 (Constraint Function): ⇢ ∶ S ⇒ 2AP is the
constraint function of the state s, defined as ⇢(s) = (⇢��(s)∧�

s

′∈P
ost

(s)�{s} ⇢��(s′))∧(⇢�(s)∧�s

′∈P
ost

(s)�{s} ⇢��(s′)),
where ⇢��(s) and ⇢�(s) are defined below.

Function ⇢��(s,p): This function is used to identify the
action to perform in order to avoid deadlocks and livelocks
without violating '. The agent can move to s only if
⇢��(s) holds. ⇢��(s) = �

i

⇢��(s, p2i) ∧ �
i

⇢��(s, p3i) ∧�
i

⇢��(s, p4i) ∧�
i

⇢��(s, p5i), where ⇢��(s, p) is:

⇢��(s, p) =
�������������

true, if V (s, p) = 0
false, if V (s, p) =∞

�
s′∈P

ost

(s)�{s}
� � (ATs ⇒ R(s′)) ∧ ⇢��(s′) otherwise

(11)
Intuitively, the agent from s can satisfy p only if the
environment eventually allows the agent to move to a state

s′ ∈ P
ost

(s) � {s} such that it can satisfy the requirement
function R(s′) and then move on to satisfy p.

Function ⇢�(s,p): This function is used to identify the
action to perform in order to avoid deadlocks and livelocks
without violating '. The agent can move to s only if ⇢�(s)
holds.
⇢�(s) = �

i

⇢�(s, p2i) ∧ �
i

⇢�(s, p3i) ∧ �
i

⇢�(s, p4i) ∧�
i

⇢�(s, p5i), where ⇢�(s, p) is:

⇢�(s, p) =
�����������������������

(�(ATs ⇒�R(s))∨∨�s′∈P
ost

(s)�{s} �(ATs ⇒�R(s′))), if V (s, p) = 0
false, if V (s, p) =∞(�(ATs ⇒�R(s)) ∨ �

s′∈P
ost

(s)�{s}
�(ATs ⇒�R(s′)))∧

∧⇢�(s′) otherwise
(12)

Intuitively, the agent can move to s only if at the next state
it is allowed to stay in s or move to a state s′ ∈ P

ost

(s)�{s}
such that it can satisfy the requirement function R(s′) and
then move on to satisfy p.

Note that Assumption 2 can be formulated as: ⇒
R(s0) ∧ ⇢(s0) while Assumption 3 can be formulated as:
 ⇒ �

s̄∉⌃(s0)R(s̄) ∧ ⇢�(s̄) and Assumption 4 can be
formulated as: ⇒ �

s̄∉⌃(s0)R(s̄) ∧ ⇢��(s̄).
Synthesis of BT 2: This tree executes the satisfying run for

'�. Each proposition p2i has to be satisfied at least once in
the satisfying run. For each proposition we derive a BT BT 2i

as in Figure 1(a). The tree BT 2i, until p2i is not satisfied,
performs an action at each state s. The action leads to a state
s′ such that R(s′) ∧ ⇢(s′) holds.

?

!

set p⇤
2i = trues ✏ p2i

p⇤
2i = true

perform a :

⌧(s, a) = s0 6= s
and

R(s0
) ^ ⇢(s0

)

hold

(a) A tree BT 2i.
?

q4i = false s ✏ p4i

perform a :

⌧(s, a) = s0 6= s
and

R(s0
) ^ ⇢(s0

)

hold

(b) A tree BT 4i

Fig. 1. Trees BT 2i and BT 4i

Remark 3: It is possible that for a finite time there is no
action a (see BT 2i in Figure 1(a)). In this case the tree does
not perform any action (i.e. it performs the null action ").
Assumption 4 ensures that if the agent chose to move to s,
then eventually an action a exists.

Synthesis of BT 3: This tree executes the satisfying run for
'⇒�. Each proposition p3i has to be satisfied at least once in
the satisfying run whenever q3i holds. For each proposition
we derive a BT BT 3i as in Figure 2. The tree BT 3i, while
q3i is satisfied and until p3i is not satisfied, performs an
action at each state s. The action leads to a state s′ such that
R(s′) ∧ ⇢(s′) holds.

Synthesis of BT 4: This tree executes the satisfying run for
'⇒��. Each propositions p4i must hold infinitely often in
the satisfying run whenever q4i holds. For each proposition

?

?

q3i = false set p⇤
3i = false

!

set p⇤
3i = trues ✏ p3i

p⇤
3i = true

perform a :

⌧(s, a) = s0 6= s
and

R(s0
) ^ ⇢(s0

)

hold

Fig. 2. A tree BT 3i.

we derive a BT BT 4i as in Figure 1(b). The tree BT 4i,
whenever q4i holds and until p4i is not satisfied, performs
an action at each state s. The action leads to a state s′ such
that R(s′) holds.

All the BTs BT 4i are composed in a sequence node with
memory BT 4 as the sub-trees BT 4i have to be executed in
turn. They are composed in a sequence node with memory as
the agent must be able to alternate runs that satisfy different
p4i.

?

q5i = False s ✏ p5i

perform a :

⌧(s, a) = s0 6= s
and

R(s0
) ^ ⇢(s0

)

hold

(a) A tree BT 5

?

_iq6i = false

perform a :

⌧(s, a) = s0 6= s
and

R(s0
) ^ ⇢(s0

)

hold

(b) A tree BT 6i

Fig. 3. Trees BT 5 and BT 6i

Synthesis of BT 5: A proposition p5i must eventually
always hold whenever q5i holds. We derive a BT BT 5i as
in Figure 3(a).

The tree BT 5i, whenever q5i holds and until p5i is not
satisfied, performs an action at each state s. The action leads
to a state s′ such that R(s′) holds.

Synthesis of BT 6: A proposition p6i must hold at the next
state whenever q6i holds.

Multiple Possible Actions: If at state s there exist multiple
actions a

i

such that a
i

∶ ⌧(s′
i

, a
i

) = s′∧s ≠ s′∧R(s′
i

)∧⇢(s′
i

)
holds, these action are collected in a fallback composition in
ascending order of the value function at s′

i

.
The final BT isBT = sequence(BT 2,BT 3,BT 4,BT 5,BT 6). (13)

Here we give an informal description of the execution of theBT in Equation (13). The root of BT generates the ticks.
The tick first reaches the subtree BT 2 (if any). BT 2 is a
sequence composition of BT 2i. The tick reaches each BT 2i,
for each BT 2i, the tick reaches the condition node s � p2i
(see Fig 1(a)). If that condition node returns success, the
proposition p2i is satisfied, the auxiliary variable p∗2i is set
to true and the success status is propagated back to BT . If
the condition s � p2i returns failure then the tick reaches the
condition node p∗2i = true. If that condition returns success,
the proposition p2i was previously satisfied and the success

status is propagated back to BT . If the condition node p∗2i =
true returns failure the tick reaches the action node perform
a ∶ ⌧(s, a) = s′ ≠ s and R(s′) ∧ ⇢(s′) hold performing such
action. The other subtrees are executed similarly.

VI. THEORETICAL ANALYSIS

Proposition 1: Under Assumptions 1-4, a BT in form
of (13) describes a policy that satisfies ⇒ '�.

Proof: BT moves the agent to s′ only if R�(s′) holds.
R�(s′) holds if and only if s′ � '�. Hence BT will never
move the agent to a state that violates '�.

Proposition 2: Under Assumptions 1-4, a BT in form
of (13) describes a policy that satisfies ⇒ '⇒�.

Proof: At state s, BT executes an action a such that
s′ = ⌧(s, a) and R(s′) ∧ ⇢(s′) hold. When the agent is at
state s for each p6i in �(q6i ⇒ �p6i) two cases occur:¬q6i holds, or q6i holds. In the former case, the specification�(q6i ⇒ �p6i) is satisfied by definition; in the latter case
s′ � p6i must hold.

Since the agent moved to s, ⇢�(s) holds. This ensures
that at s for each i either ¬q6i or s′ � p6i holds.
 ⇒ R(s0)∧ ⇢(s0) holds by Assumption 2. This ensures

that there exists a satisfying run from
s0. ⇒ �

s̄∉⌃(s0)R(s̄)∧⇢(s̄) holds by Assumptions 3 and 4.
This ensures that if the environment forces the agent to move
to s̄, there exists a satisfying run for ⇒ '⇒� from s̄.

Proposition 3: Under Assumptions 1-4, a BT in form
of (13) describes a policy that satisfies ⇒ '�.

Proof: BT contains a number �'�� of sub-trees BT 2i.
In each BT 2i, if the proposition p2i did not hold before
(i.e. the condition node p∗2i returns failure), it performs an
action a. Two situations can occur: there exists a state s′ ∈
P
ost

(s) � {s} such that R(s′) ∧ ⇢(s′) holds, in this case a
is such that s′ = ⌧(s, a); or there is no such state, in this
case a is the null action (the agent stays in s). We need to
prove that eventually there exists a state s′ ∈ P

ost

(s) � {s}
such that R(s′) ∧ ⇢(s′) holds. Since the agent moved to
s, ⇢��(s, p2i) holds. This ensures that s′ ∈ P

ost

(s) � {s}
such that R(s′)∧⇢(s′) eventually holds. ⇒ R(s0)∧⇢(s0)
holds by Assumptions 3 and 4. This ensures that there exists
a satisfying run from s0. ⇒ �

s̄∉⌃(s0)R(s̄)∧⇢(s̄) holds by
Assumption 4. This ensures that if the environment forces the
agent to move to s̄ there exists a satisfying run for ' from s̄.
Thus eventually, under Assumptions 1-4, there exists a state
s′ ∈ P

ost

(s)� {s} such that R(s′)∧ ⇢(s′) holds forever and
from s′ eventually we can always reach a state s̃ such that
s̃ � p2i.
Note that R(s′) is satisfied if, each �p2i was either satisfied
in the past or a state s̃ � p2i is reachable from s′ (V (s′, p2i) ∈
N), hence BT executes a run that satisfies all the �p2i.
Moreover the satisfaction of the propositions '⇒�� and
'⇒�� do not violate '� as the BT to satisfy them is executed
only after �

i

p∗2i holds.
Proposition 4: Under Assumptions 1-4, a BT in form

of (13) describes a policy that satisfies ⇒ '⇒��.
Proof: BT contains a number �'⇒��� of sub-treesBT 4i. Each BT 4i is derived to satisfy �(q4i ⇒ ��p4i). If

the proposition q4i holds and p4i does not hold, it performs
an action a. Two situations can occur: there exists a state
s′ ∈ P

ost

(s)�{s} such that R(s′)∧⇢(s′) holds, in this case a
is such that s′ = ⌧(s, a); or there is no such state, in this case
a is the null action (the agent stays in s). We need to prove
that eventually there exists a state s′ ∈ P

ost

(s)�{s} such that
R(s′)∧⇢(s′) holds. Since the agent moved to s, ⇢��(s, p4i)
holds. This ensures that s′ ∈ P

ost

(s)�{s} such that R(s′)∧
⇢(s′) eventually holds. Moreover ⇒ R(s0) ∧ ⇢(s0, p4i)
holds by Assumption 2. This ensures that there exists a
satisfying run from s0. ⇒ �

s̄∉⌃(s0)R(s̄) ∧ ⇢(s̄) holds by
Assumptions 3 and 4. This ensures that if the environment
forces the agent to move to s̄ there exists a satisfying run for
' from s̄. Thus eventually , under Assumptions 1-4, there
exists a state s′ ∈ P

ost

(s)�{s} such that R(s′)∧⇢(s′) holds
forever and from s′ eventually we can always reach a state
s̃ such that s̃ � p4i.

We now need to prove that the satisfaction of the others�(q4j ⇒ ��p4j) in '⇒�� do not violate the satisfaction
of �(q4i ⇒ ��p4i). The agent is at s hence R��(s)
holds. R��(s) holds only if �(¬q4i) ∨�

j

(∃s̃ ∶ V (s̃, p4j) =
0 ∧ V (s̃, p4i) ∈ N) holds. Hence either �(q4i ⇒ ��p4i)
is trivially satisfied (i.e. �(¬q4i) holds) or the satisfaction
of the other propositions �(q4j ⇒ ��p4j) do not violate�(q4i ⇒ ��p4i) .

We now need to prove that the satisfaction of '� do not
violate �(q4i ⇒ ��p4i). BT 2 is constructed to satisfy '�.BT 2 let the agent move to a state s only if R��(s) holds.

We now need to prove that the satisfaction of '⇒� do not
violate �(q4i ⇒ ��p4i). BT 3 is constructed to satisfy '�.BT 3 let the agent move to a state s only if R��(s) holds.

We now need to prove the satisfaction of '⇒�� do not
violate �(q4i ⇒ ��p4i). The agent is at s hence R��(s)
holds. R��(s) holds only if for each k in �(q5k ⇒ ��p5k)
the following holds: ��¬q5k∨��¬q4i∨�

j

∃s̃ ∶ V
p5i(s̃, p4j) =

0 ∧ V
p5i(s̃, p4i) ∈ N, hence the agent can either violate p5k

infinitely often (i.e. ��¬q5k holds) or the agent can violate
p4i eventually forever (i.e. � � ¬q4i holds) or the agent can
satisfy ⇒ '⇒�� and p5i (i.e. �

j

∃s̃ ∶ V
p5i(s̃, p4j) = 0 ∧

V
p5i(s̃, p4i) ∈ N holds.)
Proposition 5: Under Assumptions 1-4, a BT in form

of (13) describes a policy that satisfies ⇒ '⇒�.
Proof: BT contains a number �'⇒�� of sub-trees BT 3i.

Each BT 3i is derived to satisfies �(q3i ⇒ �p3i). If the
proposition q3i holds and p3i does not hold, it performs
an action a. Two situations can occur: there exists a state
s′ ∈ P

ost

(s)�{s} such that R(s′)∧⇢(s′) holds, in this case
a is such that s′ = ⌧(s, a); or there is no such state holds, in
this case a is the null action (the agent stays in s). We need
to prove that there exists a state s′ ∈ P

ost

(s)� {s} such that
R(s′) ∧ ⇢(s′) holds infinitely often. Since the agent moved
to s, ⇢��(s) holds. This ensures that s′ ∈ P

ost

(s)�{s} such
that R(s′) ∧ ⇢(s′) eventually holds.
 ⇒ R(s0) ∧ ⇢(s0, p3i) holds by Assumption 2. This

ensures that there exists a satisfying run from s0. ⇒�
s̄∉⌃(s0) ⇢(s̄) holds by Assumptions 3 and 4. This ensures

that if the environment forces the agent to move to s̄ there

exists a satisfying run for ' from s̄. Thus eventually, under
Assumptions 1-4, there exists a state s′ ∈ P

ost

(s)�{s} such
that R(s′) ∧ ⇢(s′) holds forever and from s′ eventually we
can always reach a state s̃ such that s̃ � p3i.

We now need to prove that the satisfaction of the others�(q3j ⇒ �p3j) in '⇒� do not violate the satisfaction of�(q4i ⇒ �p4i). The agent is at s hence R⇒�(s) holds.
R⇒�(s) holds only if �(¬q3i) ∨ p∗3i ∨ �j

(∃s̃ ∶ V (s̃, p3j) =
0 ∧ V (s̃, p3i) ∈ N) holds. Hence either �(q3i ⇒ ��p3i)
is trivially satisfied (i.e. �(¬q3i) holds) or the satisfaction
of the other propositions �(q3j ⇒ ��p3j) do not violate�(q3i ⇒ ��p3i) or p3i was satisfied since q3i started to
hold (i.e. p∗3i hold).

We now need to prove that the satisfaction of '� do not
violate �(q3i ⇒ �p3i). BT 2 is constructed to satisfy '�.BT 2 let the agent move to a state s only if R⇒�(s) holds.

We now need to prove that the satisfaction of '�� do not
violate �(q4i ⇒ �p4i). BT 4 is constructed to satisfy '��.BT 4 let the agent move to a state s only if R⇒�(s) holds.

We now need to prove that the satisfaction of '⇒�� do
not violate �(q3i ⇒ �p3i). The agent is at s hence R��(s)
holds. R��(s) holds only if for each k in �(q5k ⇒ ��p5k)
the following holds: ��¬q5k∨��¬q3i∨�

j

∃s̃ ∶ V
p5i(s̃, p3j) =

0 ∧ V
p3i(s̃, p3i) ∈ N, hence the agent can either violate p5k

infinitely often (i.e. ��¬q5k holds) or the agent can violate
p3i eventually forever (i.e. � � ¬q4i holds) or the agent can
satisfy ⇒ '⇒� and p5i (i.e. �

j

∃s̃ ∶ V
p5i(s̃, p3j) = 0 ∧

V
p5i(s̃, p3i) ∈ N holds.)
Proposition 6: Under Assumptions 1-4, a BT in form

of (13) describes a policy that satisfies ⇒ '⇒��
Proof: BT contains a number �'⇒��� of sub-treesBT 5i. Each BT 5i, if the proposition q5i holds and p5i does

not hold, performs an action a. Two situations can occur:
there exists a state s′ ∈ P

ost

(s)�{s} such that R(s′)∧⇢(s′)
holds, in this case a is such that s′ = ⌧(s, a); or there is
no such state, in this case a is the null action (the agent
stays in s). We need to prove that there exists a state
s′ ∈ P

ost

(s) � {s} such that R(s′) ∧ ⇢(s′) eventually holds.
Since the agent moved to s, ⇢��(s, p5i) holds. This ensures
that s′ ∈ P

ost

(s) � {s} such that R(s′) ∧ ⇢(s′) eventually
holds.
 ⇒ R(s0) ∧ ⇢(s0, p5i) holds by Assumption 2 . This

ensures that there exists a satisfying run from s0. ⇒�
s̄∉⌃(s0)R(s̄) ∧ ⇢(s̄) holds by Assumptions 3 and 4. This

ensures that if the environment forces the agent to move to
s̄ (from which every satisfying run includes s0) there exists
a satisfying run for ' from s̄ to s0. Thus eventually there
exists a state s′ ∈ P

ost

(s)�{s} such that R(s′)∧⇢(s′) holds
forever and from s′ eventually we can always reach a state
s̃ such that s̃ � p5i.

We now need to prove that the satisfaction of '� does not
violate �(q5i ⇒ � � p5i). BT 2 is constructed to satisfy '�.BT 2 let the agent move to a state s only if R��(s) holds.

We now need to prove that the satisfaction of the other�(q5j ⇒ � � p5j) in '⇒�� does not violate the satisfaction
of �(q5i ⇒ � �p5i). The agent is at s hence R��(s) holds.
R��(s) holds only if there exists a state s̃ reachable from

s such that s̃ � p5i and � � ¬q5i ∨�
j∶s� � � ¬q5i hold. That

is eventually forever the agent will not reach any state that
does not satisfy '⇒��.

We now need to prove that the satisfaction of '⇒� does
not violate �(q5i ⇒ ��p5i). R��(s) holds only if (��¬q5i∨�

j

(� � ¬q3j ∨ �
k≠j � � ¬q3k ∨ (∃s′ ∶ Vp5i(s′, p3k) = 0 ∧

V
p5i(s′, p3j) ∈ N))) holds. That is the agent is either allowed

to leave T
p5i infinitely often to satisfy '�� (i.e. ��¬q5i holds

) or it can satisfy '⇒� without leaving T
p5i .

We now need to prove the satisfaction of '�� does not
violate �(q5i ⇒ � � p5i). R��(s) holds only if (��¬q5i ∨�

j

(� � ¬q4j ∨ �
k≠j � � ¬q4k ∨ (∃s′ ∶ Vp5i(s′, p4k) = 0 ∧

V
p5i(s′, p4j) ∈ N))) holds. That is the agent is either allowed

to leave T
p5i infinitely often to satisfy '�� (i.e. ��¬q5i holds

) or it can satisfy '�� without leaving T
p5i .

Theorem 1: The policy ⇡ described by BT in form of (13)
solves Problem 1. Proof:

A BT that satisfies all of following specifications: ⇒ '�,
 ⇒ '�, ⇒ '⇒�, ⇒ '⇒��, ⇒ '⇒��, ⇒ '⇒�
solves Problem 1. From Propositions 1 to 6, BT satisfies all
the aforementioned specifications.

Proposition 7: The BT for ' is computed in O(�'��T � +�'�3 + �'��T �log(�T �)) time.
Proof: Let �T � be the number of state and edges

of T , the value functions are computed in O(�T �) time.
The requirement function R� is computed in O(�'��) time.
The requirement function R� is computed in O(�'��) time.
Similarly R� is computed in O(�'⇒��) time, R⇒�� is com-
puted in O(�'⇒����'⇒���(�'⇒���+ �'⇒���)), and R⇒�� is
computed in O(�'⇒����'⇒����'⇒���+ �'⇒���)). ⇢� and ⇢
are both computed in O(�'⇒��(�'�� + �'⇒��� + �'⇒���))
time. The satisfaction set ⌃(s0) is computed in O(�'��T �)
time. For each sub-tree BT

i

the actions are sorted by the
value function. The sorting is done in O(�T �log(�T �)) for
each formula in '. Hence the BT for ' is computed in in
O(�'��T � + �'�3 + �'��T �log(�T �)) time.

VII. RESULTS

In this section we illustrate the proposed framework for
different tasks.

Consider a gridworld scenario with 15 × 26 cells, similar
to the one used in [16]. A robot occupies a single cell at a
time and it can move to one of the four adjacent cells (in the
four cardinal directions) and the environment operates some
atomic propositions in a non-deterministic fashion. A video
showing the execution of each task is publicly available.1

Example 1: Consider the scenario in Figure 4(a), where
the gray cells are obstacles/walls and each room satisfies one
of the following atomic propositions: A, B, C, D, E, F , G,
or H as labeled in the figure. The task is to reach room A and
B then repeatedly visit C, E, and F , whenever the alarm is
turned on, the system must not enter neither A nor C. alarm
is an atomic proposition driven by the environment. The
given task can be described by the following LTL formula:
' = �¬obstacle∧�A∧�B∧��E∧��F∧��C∧�(alarm⇒

1The link will be available at publication, please see the submitted video.

¬A) ∧ �(alarm ⇒ ¬C). The computed path is shown in
Figure 4(a). We refer to the video available to visualize the
execution.

Example 2: Consider the scenario in Figure 4(b), where
the gray cells are obstacles, the white hashed cells are one
way cells (it can be reached only from the cell below it) and
the atomic propositions are: p1; p2; p3; and p4. The areas and
the rooms are labeled with the atomic propositions satisfied.

The task is defined by the following LTL formula: ' =�p1 ∧ � � p2 ∧ ��p3 ∧ ��p4.
Running our framework we obtain the following envi-

ronmental constraint (Assumption 2-4): ⇒ true that is
trivially satisfied. This is because the system behavior is
not influenced by the environmental variables. The computed
path is shown in Figure 4(b), note that the only choice the
systems has is to go to the left hand side, since the corridor
on the right hand side do not satisfy p2. We refer to the video
available to visualize the execution.

Example 3: Consider the scenario in Figure 4(c), where
the gray cells are obstacles/walls, the hashed gray cells are
traps (being either active or inactive) and the atomic proposi-
tions are: trap1, trap2, and p3 while the atomic propositions
for the environment are warning1 and warning2. warning

i

hold if the trap
i

will hold at the next state.
The task is defined by the following LTL formula:

' = �p3 ∧ �(warning1 ⇒ �¬trap1) ∧ �(warning2 ⇒�¬trap2).
Running our framework we obtain the following environ-

mental constraint (Assumption 2-4): ⇒ � � (AT
sb1 ⇒�¬warning1) ∨ � � (AT

sb2 ⇒ �¬warning2) (where sbi
is the cell below the trap i) that eventually, either trap1 or
trap2 must be inactive when the agent is in the cell below
the cell with the trap. The environment satisfies the following
 ⇒ � � (AT

sb1 ⇒ �¬trap1) hence the system chooses
the path on the left hand side and it waits in front of the
obstacle until this disappears. The computed path is shown
in Figure 4(c), note that the only choice the systems has is to
go to the left hand side, trap2 is not guaranteed to become
inactive.

(a) Path computed for
Example 1.

(b) Path computed for
Example 2.

(c) Path computed for
Example 3

Fig. 4. Path computed for each motion planning scenario.

VIII. CONCLUSIONS

We proposed the synthesis of a correct-by-construction BT
in polynomial time. We showed how using a task specifica-
tion language is it possible to derive a BT that guarantees
that a task is completed. We analyzed the framework from a
theoretical standpoint and showed some examples.

IX. ACKNOWLEDGMENTS

This work has been supported by the SARAFun project,
partially funded by the EU within H2020-ICT-2014. We
thank Ioannis Filippidis for his valuable input into this paper.

REFERENCES

[1] I. Millington and J. Funge, Artificial intelligence for games. CRC
Press, 2009.

[2] S. Rabin, Game AI Pro. CRC Press, 2014, ch. 6. The Behavior Tree
Starter Kit.

[3] A. Klökner, “Interfacing Behavior Trees with the World Using De-
scription Logic,” in AIAA conference on Guidance, Navigation and
Control, Boston, 2013.

[4] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework for
end-user instruction of a robot assistant for manufacturing,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[5] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with raven ii surgical robot using
behavior tree,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[6] A. J. Champandard, M. Dawe, and D. Hernandez-Cerpa, “Behavior
trees: three ways of cultivating game ai,” in Game Developers Con-
ference, AI Summit, 2010.

[7] M. Colledanchise and P. Ögren, “How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture and Decision Trees,” IEEE
Transactions on Robotics, vol. PP, no. 99, pp. 1–18, 2016.

[8] M. Colledanchise and P. Ögren, “How Behavior Trees Generalize the
Teleo-Reactive Paradigm and And-Or-Trees,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2016.

[9] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving
Behaviour Trees for the Mario AI Competition Using Grammatical
Evolution,” Applications of Evolutionary Computation, 2011.

[10] M. Nicolau, D. Perez-Liebana, M. O’Neill, and A. Brabazon, “Evo-
lutionary behavior tree approaches for navigating platform games,”
IEEE Transactions on Computational Intelligence and AI in Games,
vol. PP, no. 99, pp. 1–1, 2016.

[11] A. Pnueli, “The temporal logic of programs,” in Proceedings of
the 18th Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1977, pp. 46–57.

[12] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“Tulip: a software toolbox for receding horizon temporal logic plan-
ning,” in Proceedings of the 14th international conference on Hybrid
systems: computation and control. ACM, 2011, pp. 313–314.

[13] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE transactions on
robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[14] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive (1)
designs,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2006, pp. 364–380.

[15] I. Filippidis and R. M. Murray, “Symbolic construction of GR(1)
contracts for synchronous systems with full information,” CoRR, vol.
abs/1508.02705, 2015.

[16] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive controller
synthesis for a fragment of linear temporal logic,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on, May
2013, pp. 5033–5040.

[17] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: A temporal logic approach,” in 44th IEEE Confer-
ence on Decision and Control. IEEE, 2005, pp. 4885–4890.

[18] R. Dey and C. Child, “Ql-bt: Enhancing behaviour tree design and
implementation with q-learning,” in Computational Intelligence in
Games (CIG), 2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[19] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of behav-
ior trees for autonomous agents,” arXiv preprint 1504.05811, 2015.

[20] J. Tumova, A. Marzinotto, D. V. Dimarogonas, and D. Kragic, “Max-
imally satisfying ltl action planning,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 1503–
1510.

[21] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[22] P. Ögren, “Increasing Modularity of UAV Control Systems using
Computer Game Behavior Trees,” in AIAA Guidance, Navigation and
Control Conference, Minneapolis, MN, 2012.

