
1

Bootstrapping bilinear models of simple Vehicles
Andrea Censi Richard M. Murray

Abstract—Learning and adaptivity will play a large role in

robotics in the future, as robots move from structured to

unstructured environments that cannot be fully predicted or

understood by the designer. Two questions that are open: 1) in

principle, how much it is possible to learn; and, 2) in practice,

how much we should learn. The bootstrapping scenario describes

the extremum case where agents need to learn “everything” from

scratch, including a torque-to-pixels models for its robotic body.

Systems with such capabilities will be advantaged in terms of

being resilient to unforeseen changes and deviations from prior

assumptions. This paper considers the bootstrapping problem

for a subset of the set of all robots: the Vehicles, inspired by

Braitenberg’s work, are idealization of mobile robots equipped

with a set of “canonical” exteroceptive sensors (camera; range-

finder; field-sampler). Their sensel-level dynamics are derived

and shown to be surprising close. We define the class of BDS

models, which assume an instantaneous bilinear dynamics be-

tween observations and commands, and derive streaming-based

bilinear strategies for them. We show in what sense the BDS

dynamics approximates the set of Vehicles to guarantee success

in the task of generalized servoing: driving the observations to

a given goal snapshot. Simulations and experiments substantiate

the theoretical results. This is the first instance of a bootstrapping

agent that can learn the dynamics of a relatively large universe

of systems, and use the models to solve well-defined tasks, with

no parameter tuning or hand-designed features.

I. INTRODUCTION

The discipline of robotics collects the heritage of fields
such as mechanical engineering, computer science, and control
theory, whose basic methodology is based on explicit modeling
and systematic design procedures. However, as robots are
equipped with richer sensors, inhabit populated unstructured
environments, and perform more complex behaviors, explicit
modeling and design is too costly, thus motivating the use
of adaptive and learning systems. While it is clear that
some learning is needed, two open questions are: 1) how
much learning is possible, in principle, i.e. how little prior
knowledge can we get away with; and 2) how much learning
is desirable. The latter question is easier to answer, the answer
being: it depends. Learning is a trade-off of performance
(running cost) vs prior knowledge (design cost). The main
challenge for learning in robotics is guaranteeing safety and
performance [1], in contrast with other industrial applications
of learning techniques (an “error” of a recommender system
is only an inopportune suggestion).

The question of how much learning is possible requires more
qualification. Biology gives us a proof of existence that, in
some sense, “everything” can be learned in relatively large
domains. Most cognitive-level processing in the brain happens
in the neocortex, a six-layered sheet of uniform neurons, initially

A. Censi is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA. E-mail: censi@mit.edu.
R M. Murray is with the Division of Engineering and Applied Science, Califor-
nia Institute of Technology, Pasadena, CA. E-mail: murray@cds.caltech.edu.

uninterpreted
observations

uninterpreted
commands

“world”

unknown
sensor(s)

external
world

unknown
actuator(s)

bootstrapping
agent

Figure 1. For a bootstrapping agent connected to an unknown body the
“world” is the series of the unknown actuators, the external world, and the
unknown sensors.

“blank” and eventually adapted during development to work
with different sensor modalities (the visual cortex is repurposed
to process tactile information in blind subjects [2]; completely
new modalities can be learned as well [3]). Reproducing the
same adaptability and generality in artificial systems will make
us able to create more reliable robots.

A concrete formalization of the “learn everything” problem
has been proposed by Kuipers and colleagues [4, 5]. In the boot-
strapping scenario an agent starts its life embodied in a robotic
body with no prior information about its sensors and actuators:
the external world is the series of the unknown actuators, the
external environment, and the unknown sensors (Fig. 1). The
agent has access to a stream of uninterpreted observations
and commands, with no associated semantics. The central
problem of bootstrapping is obtaining a predictive model of
the sensorimotor cascade and using it to perform useful tasks.
Bootstrapping can be seen as an extreme form of system
identification/calibration. Calibration techniques for robotics
assume to know the type of sensors/actuators being calibrated
and can only estimate a limited number of parameters in a
known family of models. Can an agent learn to use unknown
sensors and actuators? Can the same learning algorithm work
for a range-finder and a camera? These are, at the moment,
open questions. It would be extremely convenient if we could
just attach any sensor to a robot, and the robot could learn how
to use it, without tedious programming.

In research towards learning there is a trade-off of results
strength vs generality: on one extremum, system identification
has a complete, rigorous theory for learning with relatively small
class of systems (e.g., linear, time invariant dynamical systems);
on the other extremum, deep learning [6] provides generic
tools with the ambition of learning everything, but essentially
no formal results. One of cornerstones of learning theory is
that learning “everything” is impossible, as the “free lunch”
theorems show; therefore, it is important to properly define the
assumptions of the methods. Our work formalizes the problem
of bootstrapping for the Vehicles universe. We apply a formal
control-theoretic approach giving precise statements about the
conditions needed for successfully learning the dynamics of
the Vehicles and succeeding at specific tasks.

Submitted, International Journal of Robotics Research (IJRR), Dec 2013
http://www.cds.caltech.edu/~murray/papers/cm13-ijrr.html

2

A. Related work
The first rigorous formalization of learning is due to Vap-

nik [7]. In supervised learning the goal is to learn the relation
between the two for the purpose of prediction. Unsupervised
learning refers to techniques, such as manifold learning and
autoencoders [6, Section 4.6], that learn compact representations
of the data, often used as a preliminary step in supervised
learning. In the interactive setting the agent interacts with
the world; this introduces the problem of exploration and
issues such as the exploration-vs-exploitation tradeoff. In the
embodied setting the agent lives in a (robotic) body and it has
to deal with high-dimensional data streams and an unobservable
world too complex to be modeled exactly. There are four things
that one might learn in the context of interactive agent-world
settings: a) statistical regularities in the observations: what is
the agent likely to experience in a particular setting; b) the input-
output dynamics of the system: how the commands influence
state and observations; c) policies: how to choose commands
that obtain a desired behavior; d) “values”: what are desired
behaviors or states. There are thus manifold variations of the
learning problem, depending on the prior knowledge assumed
for each of these components.

a) Learning dynamics in computer science & control :
System identification techniques [8] have been successfully
deployed in industrial applications since a few decades. There
is a complete theory for linear systems [9] as well as for
some limited classes of nonlinear systems (e.g., linear+static
nonlinearity [10], Volterra series [11]). Adaptive control [12]
is concerned with what happens when closing the loop, such
as guaranteeing stability/performance of a learned controller.

Most work in computer science focuses on more general mod-
els with fewer assumptions on the system dynamics. (Hidden)
Markov Models and (Partially Observable) Markov Decisions
Processes (MDPs) are discrete-time dynamical systems with
a discrete state space that evolves according to arbitrary
probabilistic transitions. Their dynamics can be learned with
spectral methods [13, 14]. There are also alternative black-box-
style models for dynamical systems, such as Predictive State
Representations [15–17], in which the dynamics is represented
by a series of tests, which are observable functions of the state.
These methods can potentially approximate any dynamics,
though they suffer from the curse of dimensionality, which
makes them unsuitable to use for generic high-dimensional
data streams.

Our approach is in the spirit of system identification, in the
sense that we strive to give formal results, if in ideal conditions
(e.g. asymptotical results, local convergence); for some other
aspects it is more inspired to computer science (e.g., the style of
our definitions for constructing the set of Vehicles) or machine
learning (e.g., simple algorithms on large datasets).

b) Deep belief networks: Deep belief networks (DBNs)
have the same ambition of learning everything from scratch. In
contrast to “classic” neural networks that are mostly understood
as fitting a nonlinear function between input and output [18],
the learned weights of a DBN [6, 19] encode a low-dimensional
representation of a probability distribution generating the
data. The computational structure of DBNs gives them some
“universal approximator” property, but at this time it is not clear
how the potential is limited by the approximations needed
in practice (e.g., limiting the iteration of a nominally infinite
MCMC process). Moreover, the investigation so far has been

primarily empirical—tuning a DBN is still considered an
art. While the primary domain in which DBNs are used are
static images, DBNs have been used to describe dynamical
data [20–22]. Extensions using three-way interactions have
been used to represent motions and transformations at the pixel
level [23–28]. Other extensions have been used to model the
statistics of multimodal sources of data [29, 30], but not the
dynamics of those data, as of interest here. There is no DBN-
based work that considers the semantic of “observations” and
“commands” and control synthesis, though it is certainly worth
exploring.

c) Learning in robotics: Most recent work on learning
in robotics leans towards the structured learning of policies to
obtain specific behaviors, either in the unsupervised setting,
for example according to the reinforcement learning frame-
work [31, 32], or in the supervised setting, for example using
apprenticeship learning [33]. In this paper we are concerned
with learning models of the dynamics at the sensorimotor level;
once we have models, policies are manually derived. In the
long term, as complexity of tasks increase, it is inevitable that
an agent must have a model of the world [34, 35].

Developmental robotics is interested specifically in the
developmental point of view of an embodied agent, often
informed by developmental stages observed in humans [36,
37]. For example, one of the issues is learning the “body
schema” [38] for which the approach can be either paramet-
ric [39, 40] or nonparametric [41] using tools such as Gaussian
processes [42, 43]. None of these techniques can deal with raw
high-dimensional sensorimotor data.

Our work closely follows Kuipers’ and colleagues’ definition
of the problem, while introducing a more rigorous mathematical
formalization. Pierce and Kuipers [4] describe how an agent
can build successively more abstract levels of representation
for its sensors and actuators that can be used for prediction
and various navigation tasks. The logical organization has been
used in successive works, and also remains as a guideline
in this thesis. This structure follows the Spatial Semantic
Hierarchy [44–48], which describes how cognitive knowledge
of space and motion can be organized four hierarchical ontology
levels. At the sensorimotor level the agent learns the structure
of the sensors; the topological or metric organization of sensels
can be recovered by computing statistics of the sensory streams;
several variations of the same idea have been developed [49–53].
Understanding the structure of the sensors is a necessary
preliminary step before modeling sensorimotor interaction [54].
The agent must learn how actions influence the observations,
and in particular what action have a reproducible effect. At
the control level, the agent learns to perform simple spatial
tasks, such as homing to a given position. Some of the
developed control laws induce a discretization of the continuous
sensorimotor experiences by mapping a set of initial states to
a final state. This bootstraps a concept of “place”, and the
agent can create a topological map by mapping which control
laws moves from one place to another [55]. Further work
by Kuipers and colleagues focused on other ways to find a
symbolization of the uninterpreted streams of data, through
the abstraction of objects [56–58]. The ultimate goal is to
have a generic bootstrapping architecture integrated with more
traditional learning approaches that is able to go “from pixels
to policies” [59].

3

sensel
s

time t

upward-facing camera
simulates field sampler

frontal
camera

range-finder range-finder

omni-wheels

(a) Experimental platform (b) Path in a test environment

Field sampler

configuration

YFS
YFS

Vision sensor

configuration

YVS
YVS

time
YHLR

out-of-range data

Range-finder

configuration

YHLR

(e)

(d)

(c)

Figure 2. Bootstrapping agents should be able to deal with any robotic body. Our experimental platform is designed to simulate the three “canonical sensors”
described in this paper. An upward-facing camera simulates an ideal field-sampler (Definition 12); the intensity values from the central band of a front-facing
camera simulates an ideal 1D vision sensor (Definition 18); finally, two Hokuyo sensors are used as representatives of ideal range finders (Definition 15).

B. Contribution and outline

This paper shows that it is possible to solve the bootstrapping
problem for a relatively large subset of the robotics domain.
We describe the first instance of a bootstrapping agent that can
learn the dynamics of a relatively large universe of systems,
and use the models to solve well-defined tasks, without manual
tuning or features design, and with some theoretical guarantees.

Section II formally constructs the set of Vehicles, a subset of
the “set of all robots”, that are the idealization of mobile robots
equipped with exteroceptive sensors. Section III describes the
three “canonical” sensors that we use in the paper: field-sampler,
range finder and the ideal vision sensor.

Section IV describes the family of BDS models, which
assume that there is an instantaneous, bilinear relation between
observations and commands. Section V describes a strategy
for learning BDS models appropriate for a bootstrapping agent,
based on computing Hebbian-style statistics.

Section VI describes in what sense the BDS family approxi-
mates the canonical exteroceptive sensor despite the fact that
they do not fully capture the nonlinearities or the hidden states
in the real dynamics. Section VII describes a variety of learning
experiments, conducted both in simulation, where the idealized
sensors are simulated exactly, as well as experiments using the
real implementation of the idealized canonical sensors (Fig. 2).

Section VIII describes the problem of generalized servoing
(driving the current observations to some goal observations) and
how it can be solved for BDS models. Section IX proves that
the servoing strategy for the BDS models works also for the
dynamics of the Vehicles, under certain assumptions. Section X
shows experiments for servoing and servoing-based navigation.

Finally, Section XI wraps up and describes future work.
Relation with previous work: The ideas of this paper

first appeared in an ICRA paper [60], developed in several
others [61–63] and eventually condensed in a dissertation [64].

Additional materials: Source code and datasets are available
at http://purl.org/censi/2013/jbds. The page includes a video
that shows further details about the experiments.

Notation: Our notation is standard, with a few exceptions.
R+

� are the positive reals, and R+

• = R+

� [{0}. Measures(A)
are all probability measures on a set A.

Given three sets Y, U, X, let D(Y; X; U) be the set that
contains all continuous-time control systems with observations
y in Y, state in x 2 X, and commands u 2 U. D(Y; U) is a
shortcut for D(Y; Y; U). D(Y; X; U; �) is the set of all discrete-
time dynamical systems with sampling interval �.

II. MODELING THE VEHICLES UNIVERSE

Consider the set of all robots Robots, which contains all
possible systems obtained by pairing every combination of
robotic actuators and robotic sensors. The goal of bootstrapping
is to create agents that can work with any system in Robots. As
a starting point, this paper considers a smaller set, the Idealized
Vehicles universe, inspired by Braitenberg’s work Vehicles [65].
The set Vehicles contains particular simple robots, which have
the kinematics of simple vehicles and are equipped with any
combination of a set of “canonical” exteroceptive sensors. An
element of Vehicles is defined by describing its body, composed
by a particular kinematics and sensors, and then placed in an
“environment”:

Robots 3 vehicle =

vehicle body
z }| {
sensors + kinematics + environment

It is perhaps unusual to put the environment as part of the
“robot”, yet this makes sense in the context of learning: can a
robot learn it has a camera if it spends its life in the dark?

1) Vehicle kinematics: The kinematics of a rigid body in
SE(3) can be written as a function of the position t 2 R3

and the attitude R 2 SO(3). The linear velocity v 2 R3

is a three-dimensional vector, and it is expressed in the body
frame. The angular velocity ! 2 R3 is also a three-dimensional
vector giving the instantaneous angular velocities around the
three principal axes in the body frame. Using the hat map,
the vector ! is mapped to an antisymmetric matrix !̂ 2 so(3)
such that ! ⇥ v = !̂v. With this notation, the dynamics of a
rigid body controlled in velocity are

ṫ = Rv, Ṙ = R !̂. (1)

Let Q be the configuration space in which the robot moves.
We assume that Q is a subgroup of SE(3) with Lie algebra q,
such as SE(2) (planar motion), or R3 (pure translations).

Definition 1. A vehicle kinematics is a left-invariant dynamical
system defined on a subgroup Q SE(3) such that q̇ = qA(u)
where A : U ! q maps commands to instantaneous velocities.

The control results given in this paper (34) are limited to
the holonomic case, where A spans the tangent space q.

2) Maps and environments: The definition of map depends
on the sensors. We use simple sensors so the map will be simple
as well. For range-finders, we need to describe the geometry of
the obstacles. For the camera, following a Lambertian model,
we need the reflectance of the obstacles.

http://purl.org/censi/2013/jbds

4

Definition 2. A map is a tuple m = hO, T ,Fi where O ⇢ R3

is a compact subset of the space representing obstacles, T :
@O ! R is the reflectance of the obstacles, and F : R3 ! R
is a spatial field. We assume that @O, T , and F are all smooth.
The set of all maps is indicated as Maps.

This definition can be extended in trivial ways. If there
are multiple field samplers sampling different fields, then the
codomain o F should be R ⇥ · · · ⇥ R. For RGB cameras,
the codomain of T should be [0, 1]3 rather than R. The
definition can also be restricted to the planar case by letting R2

instead of R3 in the definition, and using the planar euclidean
group SE(2) instead of SE(3) whenever it appears in the
following discussion. A relatively strong assumption is that
the map is static, but the methods developed here are robust
to slight deviations from this assumptions.

We assume that the agent experiences the world in episodes.
At the beginning of each episode, the agent wakes up in the
same body but in a possibly different map. We call environment
the mechanism that generates these maps.

Definition 3. The environment is a probability distribution
on Maps that generates the map seen at each episode.

3) Relative Exteroceptive Robot Sensors: The sensors we
consider are composed of a set of sensory elements (sensels)
that are physically related to one another and belonging to
the sensel space S, which is assumed to be a differentiable
manifold. Real robots have discrete sensors with a finite number
of sensels, but at first we pretend that the sensel space S is
continuous. At each time, the sensor returns the observations
as a function from S to an output space, here assumed for
simplicity to be R. Independently of the sensor, this function
is called “image”, and the set of all functions from S to R is
written as Im(S). We write the observations as y = {ys}

s2V,

where s is the sensel position ranging over the viewport V,
which is a connected compact subset of the sensel space S .

Example 4. For a central camera, S is the visual sphere S2;
the viewport V is a rectanguloid carved into S2; s 2 S is a
pixel’s direction, and y

s is the measured luminance.

A relative exteroceptive sensor is characterized by two
properties: relativity and exteroceptivity. To formally state these
properties, we need to define an action of the configuration
space Q on the sensel space S and on the space of maps Maps.

Definition 5. There is an action of the configuration space Q
defined on the sensel space S: for every q 2 Q and s 2 S , we
can define the element q · s 2 S , and q

1

· (q
2

· s) = (q
1

q

2

) · s.

Example 6. For a pan-tilt-roll camera, S = S2, Q = SO(3),
and q · s corresponds to applying the rotation q to s 2 S2.

Likewise, using a construction typical of stochastic geome-
try [66, 67], we define an action of the group SE(3) on Maps.
Given an element g 2 SE(3), the map g · m corresponds to
rototranslating the world according to the motion g.

Definition 7. Given g 2 SE(3) and m 2 Maps, then the
rototranslated map m̃ = g · m = hÕ, T̃ , F̃i is given by Õ =
g · O, T̃ (p) = T (g · p), F̃(p) = F(g · p).

Definition 8. A relative exteroceptive sensor is a map :
Maps⇥ Q ⇥ S ! R with the properties:

a) Relativity: For all q, g 2 Q:

 (m, q, s) = (g · m, g

�1

q, s). (2)

This describes the fact that there is an intrinsic ambiguity in
choosing the frame of reference. The world and the robot have
both a pose with respect to some fixed coordinate frame, but
the output of the sensor depends only of the relative pose.

b) Exteroceptivity: For all q, g 2 Q:

 (m, q, s) = (m, qg

�1

, g · s). (3)

This describes the fact that the robot is “carrying” the sensor:
ultimately the output at sensel s depends only on q ·s, therefore
it is invariant if we apply g to s and multiply q by g

�1.

4) Vehicles and robots: We first describe the “vehicle body”
suspended in a vacuum, and then, to obtain a “vehicle”, we
pair a body with an environment.

Definition 9. A vehicle body B is a tuple B =
hU, Q, K, hS, V, , rii, where U is the command space, K 2
D(Q; U) is the vehicle kinematics (Definition 1), S is the sensel
space, V ⇢ S is the viewport, the function : Maps⇥Q⇥S !
O describes an exteroceptive sensor (Definition 8), and r 2 Q
is the relative pose of the sensor with respect to the vehicle’s
reference frame.

Definition 10. A vehicle is a tuple hB, ei where B is a vehicle
body (Definition 9) and e is an environment (Definition 3).

A vehicle is a system in D(Y;Maps; U), where the observa-
tions space is Y = Im(V). The observations of a vehicles are
constructed as follows. At the start of episode k, one samples
a map m

k

2 Maps from the environment. We index time-
dependent quantities with both the episode k and the time t.
The pose q

k,t

is the output of the kinematics K from q

k,0

= Id.
The observations y

k,t

for episode k and time t are a function
from V to R such that y

s

k,t

= (m
k

, rq

k,t

, s).
5) Idealized vehicles: At last, we can define exactly the class

of systems that are used for this paper. The set Vehicles ⇢
Robots of idealized vehicles are defined by choosing a subset
of vehicles and a subset of environments.

Definition 11 (Idealized vehicles). The set Vehicles is created
by assembling every combination of vehicle body B and
environment e such that:

• The vehicle body’s kinematics has commands that can be
interpreted as kinematic velocities: the command space U
is Rnu and the map A in Definition 1 is linear.

• The sensors are chosen from the three “canonical sen-
sors” classes RF(S), VS(S), FS(S), to be defined later
in Section II-3.

• The environment e satisfies certain observability properties,
defined later in Definition 31.

The set Vehicles is larger than the typical class of systems
considered in identification/machine learning, but still small
with respect to the set of all robots Robots. Enlarging the set
to include Robots is the broad goal of our future work.

5

III. DYNAMICS OF CANONICAL EXTEROCEPTIVE SENSORS

This section derives the models for three “canonical” robot
sensors: field-samplers, range finders, and cameras (Table I).
For each sensor, we define the observations y

s

t

, where t is
time and s 2 S is the sensel, as a function of the map and
the robot pose. Depending on the sensor, the interpretation
of y

s

t

changes from distance reading (range-finder), luminance
(camera), intensity (field sampler). We then derive the sensor
dynamics, which is an expression for ẏ

s

t

as a function of the
sensor velocities. The models derived here are ideal, as they
are noiseless, continuous-time and continuous-space. Noise and
spatiotemporal discretization are modeled as nuisances which
are applied to the ideal system (Section IX-4).

Table I
DYNAMICS OF CANONICAL EXTEROCEPTIVE SENSORS

field sampler s 2 R3 ẏst = (ŝjirs
vjy

v
t)!

i
t + (rs

viy
v
t)v

i
t

camera s 2 S2 ẏst = (ŝjirs
vjy

v
t)!

i
t + µs

t (rs
viy

v
t)v

i
t

range-finder s 2 S2 ẏst = (ŝjirs
vjy

v
t)!

i
t + (rs

vi log y
v
t � s⇤i)v

i
t

These equations are valid for sensels far from discontinuities
(Definition 16). Note that the dynamics of the three sensors
is formally the same for rotations (albeit the gradient
operator is on R3 in the first case and on S2 in the others).

1) Field-samplers: A field-sampler, indicated by
the icon on the side, is a sensor that samples the
spatial field F : R3 ! R defined as part of the map

(Definition 2) and is an idealization of several sensors [68, 69].

Definition 12. An ideal field-sampler is a relative exteroceptive
sensor (Definition 8) with sensel space S ⇢ R3 defined by

 (hO, T ,Fi , ht,Ri, s) = F(t + R s).

The set of all field-samplers is FS(S)⇢D(Im(S);Maps; se(3)).

The dynamics of a field sampler are particularly simple
and can be written compactly using a tensor notation. The
derivative ẏ depends on the spatial gradient. Given a func-
tion y 2 Im(S), the symbol ry represents is the spatial
gradient with respect to s. The gradient is a (0, dim(S)) tensor
at each point of S . The gradient being a linear operator, it can
be written as a (1, 2) tensor field rs

vi

, so that rs

vi

y

v is the i-th
component of the gradient at point s. This notation is valid
both in the Euclidean case (s 2 Rn) and in the manifold case
(e.g., s 2 S2).

Proposition 13. The dynamics of a field-sampler are bilinear
in y and the sensor velocities v, !:

ẏ

s

t

= (ŝj
i

rs

vj

y

v

t

)!i

t

+ (rs

vi

y

v

t

)vi
t

. (4)

Proof: Fix a sensel s 2 R3. Let z = t+R s so that y(s) =
F(z). The values z, t, and R depend on time but we omit the
time subscript for clarity. We can compute the derivative from
ẏ

s = rs

vi

Fv

ż

i if we have an expression for ż

i and rs

vi

Fv.
As for ż

i, from (1) it follows that ż

i = R

i

k

(vk + !̂

k

j

s

j) =

R

i

k

(vk+ ŝ

j

k

!

j). As for rs

vi

Fv , from F(z) = y(R⇤i
j

(zj�t

j)),
where R

⇤i
j

is the transpose of the rotation matrix R, it follows
that rz

qi

Fq = rz

qi

y(R⇤i
z

(qj�t

j)) = rz

si

y

s rs

qi

R

⇤j
i

(qj�t

j) =

rz

sj

y

s

R

⇤j
i

. Putting all together, we obtain ẏ

s = rs

qi

Fq

ż

i =

rz

sb

y

s

R

⇤j
i

R

i

k

(vb
j

+ ŝ

j

!

b

j

). Substituting R

⇤b
i

R

i

k

= Idb
k

and
rearranging gives (4).

2) Range finders: The readings of an ideal range
finder measure the distance from a reference point (in
R3) to the closest obstacle in a certain direction (in S2).

(The yellow icon we use is a tribute to the Sick range-finder.)
First, we define the “ray tracing” function, which depends on
the obstacles O ⇢ R3.

Definition 14 (Ray tracing function). The ray tracing function

�O : (R3 \ O) ⇥ S2 ! R+ [1
is the minimum value of ↵ such that the ray of length ↵

shot in direction s from point p hits the obstacle O. Let
IO = {↵ | p + ↵s 2 O} ⇢ R be the values of ↵ for which
the ray hits O. Then the ray tracing function can be written as

�O(p, s) =

(
min IO(p, s) IO(p, s) 6= ;,
1 IO(p, s) = ;.

The following is the formal definition of a range finder as a
relative sensor in the form required by Definition 8.

Definition 15. An ideal range finder is a relative exteroceptive
sensor with sensel space S ⇢ S2 defined by

 (hO, T ,Fi , ht,Ri, s) = �O(t,Rs).

The set of all range finders is RF(S)⇢D(Im(S);Maps; se(3)).

The dynamics of a range finder are differentiable only where
the ray tracing function itself is differentiable.

Definition 16 (Discontinuities). The subset Sdif
p of S describes

the points for which �O(p, ·) is differentiable:

Sdif
p = {s 2 S | �O(p, ·) is differentiable at s}.

If the obstacles O are smooth, Sp \ Sdif
p are the occlusions.

Proposition 17. The dynamics of an ideal range finder are
defined for {s | Rs 2 Sdif

t } and given by

ẏ

s

t

= (ŝj
i

rs

vi

y

v

t

)!i

t

+ (rs

vi

log y

v

t

� s

⇤
i

)vi
t

. (5)

The “�s

⇤
i

” term in (5) means that if the velocity v is in
the direction on s, then the range decreases (the remaining
nonlinear term r

i

log �s is less intuitive).
Proof: (This proof is due to Shuo Han) The dynamics

for rotation (first term in (5)) is the same as the field-sampler;
hence we are only concerned in proving the result for translation
assuming zero rotation. Write � = �(s, t) as a function of the
direction s and the robot position t 2 R3. Then we have to
prove that

@

@t

�(s, t) = r log �(s, 0) � s

⇤
. (6)

environment

s

t

�(s, t)

0

Without loss of generality, we can assume
we are computing the derivative at t = 0.
In a neighborhood of 0, it holds that

kt+�(s)sk = �

✓
t + �(s)s

kt + �(s)sk , 0

◆
, (7)

as can be seen by geometric inspection. The proof is based on
the implicit function theorem applied to the relation (7). Define
the function n(v) : R3 ! R3 as the vector v normalized by

6

its module: n(v) , v/kvk. Then (7) can be rewritten as the
implicit function

F (�, s, t) = kt + �(s)sk � �(n(t + �(s)s), 0) = 0.

The derivative @�(s, t)/@t can be computed using the
implicit function theorem applied to F , which states that
@�/@t = (@F/@�)

�1

@F/@t. Define P : S2 ! R3⇥3 as
the projector P

v

= I � vv

⇤
. The derivative of n(v) is then

@n(v)/@v = P

v

/kvk.
We use the shortcut x = t + �(s)s, and �

0

(s) = �(s, 0).

@F

@t

=
x

⇤

kxk � r
u

�

0

(u)P
u

|
u=n(x)

P

n(x)

kxk .

For @F/@� we simply obtain @F

@�

= @F

@p

s. For @�

@t we obtain:

@�

@t

= � @F/@t
@F/@�

= � x

⇤ �r
u

�

0

(u)P
u

|
u=n(x)

P

n(x)

x

⇤
s �r

u

�

0

(u)P
u

|
u=n(x)

P

n(x)

s

.

This expression is valid in a neighborhood of t = 0. As t ! 0,
x ! �(s)s, kxk ! �(s), and n(x) ! s. Substituting all of
these, we obtain

@�

@t

! � �(s)s⇤ �r
s

�

0

(s)P 2

s

�(s)s⇤s �r
s

�

0

(s)P 2

s

s

.

Using the fact that P (s)s = 0 and r
s

�

0

(s)P (s) = r
s

�

0

(s)
(the gradient is tangent to s), we simplify it to

@�

@t

= ��(s)s⇤ �r
s

�

0

(s)

�(s)
=

r
s

�

0

(s)

�(s)
� s

⇤
,

from which (6) is easily obtained.
3) Vision sensors: Vision sensors configurations can

be quite exotic [70, 71]. We consider a central camera
with one focus point, so that the sensel space is the visual

sphere S2 (in general, the sensel space should be R3⇥S2). We
also ignore all complications in the physics of light scattering.
The following definition is applicable only if the surfaces have
a Lambertian light model, far from occlusions, and considering
a static world. See Soatto [72] for a formal definition that takes
into account occlusions and shading. The output of an ideal
vision sensor depends on the texture T : @O ! R defined
on the border of the obstacles @O. Given the ray tracing
function �O, the point sampled in direction s from point p is
p + �O(p, s) s and its luminance is T (p + �O(p, s) s).

Definition 18. An ideal vision sensor is a relative exteroceptive
sensor with sensel space S ⇢ S2 defined by

 (hO, T ,Fi , ht,Ri, s) = T (t + �O(t,Rs)Rs).

The set of all vision sensors is VS(S)⇢D(Im(S);Maps; se(3)).

The dynamics depends on the inverse of the distance to the
obstacles, called nearness and indicated by µ = 1/�.

Proposition 19. The dynamics of an ideal vision sensor are
defined for {s | Rs 2 Sdif

t } and given by

ẏ

s

t

= (ŝj
i

rs

vi

y

v

t

)!i

t

+ (µs

t

rs

vi

y

v) v

i

t

. (8)

Remark 20. (8) is the dynamics of the luminance signal seen by
a fixed pixel s 2 S2. It is not the dynamics of the position of a
point feature that moves in the visual field, which is commonly
used in other contexts, such as structure from motion.1

1Using our notation, those dynamics are ṡ = s⇥ ! + µs
t (1� ss⇤)v.

IV. BILINEAR DYNAMICS SENSORS

This section introduces the class of Bilinear Dynamics
Sensors (BDS), which can be used as an instantaneous approx-
imation of the dynamics the canonical sensors. The following
sections will then describe learning and control algorithms.

1) Why using bilinear dynamics: One reason to use bilinear
dynamics as a generic model is that the dynamics of the
canonical sensors is approximately bilinear (Table I); indeed,
the field-sampler dynamics is exactly bilinear. Ignoring those
results, we can also justify the bilinear guess from first
principles. Suppose we we want to model the observations
dynamics ẏ = g(y, u, x), where g is, in general, nonlinear and
dependent on an inaccessible hidden state x. If we ignore this
dependence, we are left with models of the form ẏ = g(y, u).
Because the agent has access to y, ẏ, and u, learning the map g

from the data is a well-defined problem. Rather than trying to
learn a generic nonlinear g, which appears to be a daunting
task, especially for cases where y consists of thousands of
elements (pixels of a camera), our approach has been to keep
simplifying the model until one obtains something tractable.
A second-order linearization of g leads to the expression

ẏ = a + Ay + Bu + C(y, y) + D(y, u) + E(u, u). (9)

Here A and B are linear operators, but C, D, E are tensors
(later we make the tensor notation more precise). If y and u

have dimensions ny and nu, then C, D, E have dimensions,
respectively, ny ⇥ny ⇥ny , ny ⇥ny ⇥nu, and ny ⇥nu ⇥nu.
We can ignore some terms in (9) by using some semantic
assumptions regarding the specific context. If u represents a
“movement” or “velocity” command, in the sense that if u

is 0, then the pose does not change, and y does not change
as well (u = 0) ẏ = 0), we can omit the terms a, Ay

and C(y, y). If we assume that u is a symmetric velocity
commands, in the sense that applying +u gives the opposite
effect of applying �u, then we can get rid of the E(u, u) term
as well. In conclusion, our ansatz to capture the dynamics of
a generic robot sensor is ẏ = Bu + D(y, u).

2) Discrete and continuous BDS models: We describe two
types of bilinear dynamics. The BDS class (Definition 21)
assumes that the observations are a vector of a real numbers,
while the CBDS class (Definition 22) assumes that the
observations are a function on a manifold.

Definition 21. A system is a bilinear dynamics sensor (BDS),
if y 2 Rny , u 2 Rnu and there exist a (1, 2) tensor M and a
(1, 1) tensor N such that

ẏ

s

t

=
P

nu

i=1

(
P

ny

v=1

Ms

vi

y

v

t

+ Ns

i

)ui

t

. (10)

BDS(n; k) ⇢ D(Rn;Rk) is the set of all such systems.

We will be using the Einstein conventions for tensor calculus,
in which repeated up and down indices are summed over, so
that the explicit “

P
” symbol can be omitted.

In the continuous-space case, the formalization is entirely
similar—the only change is that the index s, rather than an
integer, is a point in a manifold S .

Definition 22. A system is a Continuous-space BDS system
(CBDS) if y

t

2 Im(S), u 2 Rnu , and there exists a (1, 2)
tensor field M and a (1, 1) tensor field N such that

ẏ

s

t

=
P

nu

i=1

(s
v2S

Ms

vi

y

v

t

dS + Ns

i

)ui

t

. (11)

7

CBDS(S; k) ⇢ D(Im(S);Rk) is the set of all such systems.

Remark 23. The literature includes similar models, but not
quite equivalent, for the finite-dimensional case. Elliot [73]
calls bilinear control system a generalization of (10) which
includes also a linear term Ay, and a particular case of (10)
where Ns

i

= 0 is called symmetric bilinear control system.
3) Spatial sampling preserves bilinearity : The BDS model

is defined for a discrete set of sensels, while the models for the
canonical sensors were defined for continuous time and space.
A natural question is whether the properties of the system
(bilinearity) are preserved for discretely sampled systems, both
in time and space. As for space discretization, is we assume
that the continuous function y

s

t

, s 2 S , is sampled at a dense
enough set of points to allow precise reconstruction, then the
sampled system has bilinear dynamics. If the sampling is
uniform, sampling needs to be higher than at the Nyquist
frequency. However, this is not a necessary condition; see
Margolis [74, Chapter 3] for an elementary exposition on
nonuniform sampling.

Proposition 24. Suppose that y

t

2 Im(S) has bilin-
ear dynamics described by a system in CBDS(S; nu).
Let {s1, . . . , sny} 2 S be a sufficient sampling sequence and
ỹ

t

= {ys

1

t

, . . . , y

s

ny

t

} 2 Rny be the sampled signal. Then the
dynamics of ỹ

t

is described by a system in BDS(ny; nu).
Proof: (Sketch) Because the sampling is sufficient, it

is possible to reconstruct all values {ys

t

}
s2S as a linear

combination of values of ỹ

t

: there exist kernels '
i

(s) such
that y

s

t

=
P

i

'

i

(s)ỹi

t

. From this the results follows easily.

4) Temporal sampling preserves bilinearity to first order:
Suppose the dynamics of y is bilinear: ẏ = Muy (for
simplicity, we ignore the affine part of the dynamics), and
that the dynamics is discretized at intervals of length T . The
value of y at the (k + 1)-th instant is given by y

k+1

=

y

k

+
´
kT+T

kT

Mu

t

y

t

dt. Assuming that the commands take
the constant value u

k

in the interval [kT, kT + T], the
solution can be written using the matrix exponential as
y

k+1

= mexp(T (Mu

k

))y
k

. Using the series expansion of the
matrix exponential, the first few terms are mexp(T (Mu

k

) =
I+ TMu

k

+ o(T 2). The difference �y

k

= 1

T

(y
k+1

� y

k

) is
then linear with respect to u only at the first order:

�y

k

= Mu

k

y

k

+ o(T 2).

V. LEARNING BILINEAR DYNAMICS

This section presents a learning/identification algorithm for
the class of BDS/CBDS tailored for bootstrapping: it can be
written as a streaming algorithm and implemented using simple
parallel operations (Algorithm 1).

1) A streaming algorithm for learning BDS: The agent is
summarized as Algorithm 1. During the exploration phase, the
commands u

t

are sampled from any zero-mean distribution
with a positive definite covariance. (Alternatively, the agent
observes a stream of commands chosen by another entity.) As
the agent observes the stream of data hy

t

, ẏ

t

, u

t

i, it estimates
the following statistics, described by (12)–(16): the mean of
the observations and the (2, 0) covariance tensor P; the (2, 0)
covariance tensor Q for the commands; a (3, 0) tensor T,
and a (2, 0) tensor U. For simplicity, the analysis is done in

Algorithm 1 A streaming algorithm for learning BDS
• The agent generates commands u

t

using a random
sequence with positive-definite covariance matrix. (Alter-
natively, it observes commands chosen by another entity.)

• The agent observes the stream of data hy
t

, ẏ

t

, u

t

i , and
from these data it computes the following statistics:

y

s = E{ys

t

}, (12)
Psv = cov(ys

t

, y

v

t

), (13)
Qij = cov(ui

t

, u

j

t

), (14)
Tsvi = E{(ys

t

� y

s) ẏ

v

t

u

i

t

}, (15)
Uvi = E{ẏv

t

u

i

t

}. (16)

• The parameters for a BDS model are recovered using

Mv

xj

= TsviP�1

sx

Q�1

ij

, (17)

Ns

i

= UsjQ�1

ij

�Ms

vi

y

v

. (18)

the continuous-time case (the agent observes ẏ), and in the
asymptotic regime, so that we assume that all sample averages
converge to the expectations and the operators E, cov are used
for either. We use the following relation between the estimated
P,Q,T,U and the unknown model parameters M, N.

Lemma 25. Let P, Q be the covariance of y and u. Then the
tensors T and U tend asymptotically to

Tsvi = Ms

qj

PqvQij

, (19)
Usj = (Ms

vi

y

v + Ns

i

)Qij

. (20)

Proof: The computation for T is as follows:

Tsvi = E{ẏs

t

(yv

t

� y

v

t

) u

i

t

}
= E{((Ms

qj

y

q

t

+ Ns

j

)uj

t

)(yv

t

� y

v)ui

t

} (21)
(Independence of u, y.)

= Ms

qj

E {yq

t

(yv

t

� y

v)}E{ui

t

u

j

t

} = Ms

qj

PqvQij

.(22)

The analogous computation for U is Usj = E{ẏv

t

ǔ

j

t

} =
E{(Ms

vi

y

v

t

+ Ns

i

)ui

t

ǔ

t

j} = (Ms

vi

y

v + Ns

i

)Qij

.

Following this result, M and N are obtained using (17)–(18).
A general pattern can be observed in (19). Every quantity

that the agent learns ultimately depends on three factors:
1) The agent’s body dynamics. In this case, the tensor M.
2) The environment statistics. In this case, the covariance P,

which depends on the statistics of the environment (for
a camera, the environment texture T).

3) The experience the agent had in such environment. In
this case, the tensor Q captures the kind of “training”
the agent had in the environment.

If the agent wants to learn its body dynamics, the other two
factors are nuisances to be removed (here, using (17)–(18)).

2) Singular case: We have assumed in (17)–(18) that the
covariance is full rank. If it is not (e.g., a dead sensel, or two
sensels giving the same), then the model is unobservable in a
certain subspace corresponding to the kernel of P and those
operations are to be projected in on the complement of the
kernel.

8

3) Effect of additive noise: Suppose that instead of y, ẏ we
observe ỹ

t

= y

t

+ ✏

t

and ˜̇
y = ẏ + ⌫

t

; and the commands seen
by the robot are ũ

t

= u

t

+⇠
t

, where ✏, ⇠, ⌫ are zero-mean white
independent stochastic processes. Then running Algorithm 1
with the perturbed values would give the same tensors M, N,
because all noise terms cancel when computing expected values
of mixed products, such as in E{ẏs (yv � y

v) u

i}.
One particular case in which the noise is not independent

depends on how the derivative ẏ is approximated. Suppose
that {t

k

}
k2Z is the sequence of timestamps for the data

available to the agent. If one uses a two-tap approximation to
compute the derivative (ẏ

tk
' (y

tk+1
�y

tk�1
)/(t

k+1

� t

k�1

))
then the noise on ẏ

tk
is independent of the noise on y

tk
. If,

however, a simple Euler approximation is used, by computing
ẏ

tk
' (y

tk
� y

tk�1
)/(t

k

� t

k�1

), then the noise is dependent
and the formulas given are not valid anymore.

4) Streaming implementation: These expectations can be
computed recursively; for example, y

s

k+1

= k

k+1

y

s

k

+ 1

k+1

y

s

k

.
The computation (15) is similar to three-way Hebbian

learning between y, ẏ, and u; the expectation of the product
can be thought as an approximation of the frequency that the
three signals are active together. There is also a computational
similarity with deep learning methods using three-way interac-
tions [23–26], as well as subspace approaches in the system
identification literature for learning bilinear systems [75–77].

5) Being careful with indices: When implementing these
operations, it is easy to get confused with the order of the
indices.2 Numerical packages usually offer some shortcuts to
define complex operations on sets of tensors. For example, in
Python’s library Numpy, the operation (17) can be implemented
using the user-friendly einsum function as follows:

M = einsum("svi,sx,ij->vxj",T,P_inv,Q_inv)

VI. BDS APPROXIMATIONS OF CANONICAL SENSORS

This section describes what is the learned BDS approx-
imation of the canonical robotic sensors, assuming certain
constraints on the environment and the exploration strategy.
The results are summarized in Table II.

Table II
BDS APPROXIMATIONS OF CANONICAL SENSORS

field sampler s 2 R3 ẏst = (ŝjirs
viy

v
t)!

i
t + (rs

viy
v
t)v

i
t

camera s 2 S2 ẏst = (ŝjirs
jvy

v
t)!

i
t + µ(rs

viy
v
t)v

i
t

range-finder s 2 S2 ẏst = (ŝjirs
jvy

v
t)!

i
t + ↵µ(rs

viy
v
t � s⇤i)v

i

The symbol µ denotes the average nearness (inverse of
distance); ↵ is a positive scalar.

1) Sufficient exploration: In identification it is often neces-
sary to impose certain observability conditions on the data that
make the system identifiable. The analogous concept in this con-
text are the symmetries of the distribution over maps seen by the
agent. Let the training distribution pT 2 Measures(Maps⇥ Q)
be the distribution over maps/poses experienced by the agent
during learning. This distribution depends on the environment e

and the exploration strategy. If m
k

is the map at episode k

2The tensors T for the Vehicles are antisymmetric: if two indices are
swapped, the robot moves in the opposite direction as expected. . .

and q

k,t

is the pose, the subjective map, which is the map
from the point of view of the robot, is given by

m0
k,t

, q

�1

k,t

· m
k

2 Maps. (23)

Its distribution pm0 2 Measures(Maps) is found from pT by
marginalization. The symmetries of such distribution describe
whether the agent has explored “enough”.

Definition 26. Sym(pm0) is the subgroup of Q to which the
distribution pm0 is invariant: g2Sym(pm0),p(g ·m)=pm0(m).

Example 27. A planar robot (Q = SE(2)) lives in a basement
lab that is always kept extremely tidy: the map m

0

2 Maps
never changes across episodes. At the beginning of each
episode the robot is turned on at a random pose, not necessarily
uniformly distributed. The robot spins in place in a random
direction until the batteries die. In this case, the group Sym(p

m

0)
is the group of planar rotations SO(2), because of the motion.

Whether the symmetry is “symmetric enough” depends on
the sensor. For example, Sym(p

m

0) = SO(2) is enough for
making the statistics of a 2D range-finder uniform across the
viewport V ⇢ S1, but it would not be sufficient if the sensor
was a camera for which S = S2. What we need is a way to
measure the viewport V using group actions.

Definition 28. Let Sym(V) be the minimal subgroup of Q such
that there exists a s

0

2 V for which any s 2 V can be written
as g

s

· s
0

for some g

s

2 Sym(V).

Example 29. For a planar range-finder with V ⇢ S1, Sym(V) =
SO(2). For a camera with V ⇢ S2, Sym(V) = SO(3). For a
field-sampler with V ⇢ R2, Sym(V) = SE(2).

After these technical preliminaries, we can state elegantly a
uniformity result.

Proposition 30. If Sym(p
m

0) Sym(V) the expected value of
the observations of any relative exteroceptive sensor is the
same for all sensels s: E

pT{ (m, q, s)} = c.

Proof: The result depends on algebraic manipulation based
on (2), (3), and the definition (23):

E
pT{ (m, q, s)} (2)

= E
pT{ (q�1 · m, Id, s)}

(23)
= E

p(m0
)

{ (m0
, Id, s)}

= (9g

s

2 Sym(V) such that s = g

s

· s
0

)

E
p(m0

)

{ (m0
, Id, g

s

· s
0

)}
(3)
= E

p(m0
)

{ (m0
, g

�1

s

, s

0

)} (2)
= E

p(m0
)

{ (g�1

s

· m0
, Id, s

0

)}
= (g�1

s

2 Sym(V) ⇢ Sym(p
m

0))

E
p(m0

)

{ (m0
, Id, s

0

)},
which is independent of the sensel s.

To make the following development simple, we group
together all assumptions on the environment and training data.

Definition 31 (Common assumptions on environment and
exploration). We make the following assumptions on the
environment and exploration:

1) Qij = cov(ui

, u

j) is positive definite.
2) Psv = cov(ys

, y

v) is positive definite.
3) Sym(p

m

0) Sym(V).
4) u

t

was chosen independently of y

t

.

9

5) The distance to the obstacles in direction s and the
reflectance of the obstacle are independent.

The first three are essentially excitability conditions: for
example, the second assures that a robot with a camera is
not kept in the dark. Assumption 4 is very convenient in the
derivations (one correlation less to take into account); it holds
if the exploration uses random babbling, but not if the robot
is guided along trajectories based on the observations. The
last assumption is very mild; it is satisfied for example if the
robot’s exploration covers the whole environment, as eventually
it will see any texture from every distance.

Field-samplers: The dynamics is exactly bilinear
(FS(S) ⇢ CBDS(S;Rnu)) so there is no approximation.

Vision sensors: Their dynamics contains a hid-
den state, the nearness µ

s

t

. The best approximant in
CBDS(S;Rnu) uses the uniform average nearness µ.

Proposition 32. Assuming the conditions of Definition 31, the
projection of an element of VS(S) in CBDS(S;Rnu), in the
sense of finding the best mean-square error approximant is

ẏ

s

t

= (ŝj
i

rs

vi

y

v

y

)!i

t

+ (µrs

vi

y

v

t

)vi
t

,

Proof: We give the proof for the bilinear part (M) of the
BDS dynamics ignoring the affine part (N) which is easily
seen to be 0 in this case. The real dynamics of the camera is of
the form y

s

t

= R

s

iv

(t)yv

t

u

i

t

where R

s

iv

(t) = µ

s

t

rs

iv

contains the
nearness as hidden state. We want to approximate this using
the BDS dynamics ẏ

s

t

= M

s

iv

y

v

t

u

i

t

. The mean squared error
between the two is

E(M) = E
t

{s
x

(s
q

P
j

�
M

x

jq

� R

x

jq

(t)
�
y

q

t

u

j

t

dq)2 dx}.
This is a convex function of M . The condition @E/@M gives

@E/@M

s

iv

= E
t

{(s
q

P
j

(Ms

jq

� R

s

jq

(t))yq

t

u

j

t

dq)yv

t

u

i

t

}.
If y and u are independent, letting E

t

{yq

t

y

v

t

} = P

qv,
E
t

{uj

t

u

i

t

} = Q

ij , we get

@E/@M

s

iv

=
P

j

(s
q

M

s

jq

P

qv � E{Rs

jq

(t)yq

t

y

v

t

} dq)}Qij

.

(24)
If R

s

jq

(t) is independent of y, which is verified in the case of
the camera because nearness and color are independent, then
E{Rs

jq

(t)yq

t

y

v

t

} = E{Rs

jq

(t)}P qv = R

s

jq

P

qv , which implies

@E/@M

s

iv

=
P

j

(s
q

P

vq(Ms

jq

� R

s

jq

) dqQ

ij

.

This is equivalent to P

vq(Ms

jq

� R

s

jq

)Qij = 0 for all s, j, q,
which, if Q,P > 0 implies M

s

jq

= R

s

jq

. In the case of the
camera dynamics for translation, we have R

s

jq

(t) = µ

s

t

rs

jv

,
therefore R

s

jq

= µ

srs

jv

, and µ

s = µ by Corollary 30.
Range finders: Also in this case the instantaneous

nearness is replaced by the average nearness.

Proposition 33. Assuming the conditions of Defini-
tion 31, the projection of an element of VS(S) in CBDS(S;Rnu)
is

ẏ

s

t

= (ŝj
i

rs

vj

y

v

t

)!i

t

+ (↵µrs

vi

y

v

t

� s

⇤
i

)vi
t

where ↵ is a positive constant. (In our experiments ↵ is close
to 1 but this is not supported by theory.)

As in the previous proof, we focus on the dynamics of the
translation part, which is ẏ

s

t

= (rs

vi

log y

v

t

� s

⇤
i

)vi

t

. Note that

rs

vi

log y

v

t

= 1

y

s
t
rs

vi

y

v

t

. This means that the range-finder is
instantaneously approximated by BDS, with R

s

jq

(t) = 1

y

s
t
rs

jv

.
Again, we encounter the nearness. We write R

s

jq

(t) = µ

s

t

rs

jv

.
The proof is the same as for the camera, up until (24),
where there is a slight complication. For both sensors, the
term R

s

jq

(t) is the same. However, for the camera, the
observations y are the luminance, which is independent of
the nearness. Hence the expectation can be split as follows:
E
t

{Rs

jq

(t)yq

t

y

v

t

} = E
t

{Rs

jq

(t)}E
t

{yq

t

y

v

t

}. However, for the
range-finder, the observations y are the distance, which is the
inverse of the nearness, so they are not independent. Rewrite
everything with the distance: y = �, µ = 1/�. Then, in general,
the expectation cannot be split:

E
t

�
(1/�

s

t

)rs

jv

�

v

t

�

q

t

 6= E
t

{(1/�

s

t

)}rs

jv

E{�v

t

�

q

t

}.
However, for our scenario, it is true that, for some positive
value ↵,

E
t

�
(1/�

s

t

)rs

jv

�

v

t

�

q

t

= ↵µrs

jv

E{�v

t

�

q

t

}. (25)

for some positive value ↵. To see this, rewrite the expecta-
tion as E

t

�rs

jv

log �v

t

�

q

t

. The gradient is a linear operator

that commutes with expectation. We then need to evaluate
rs

jv

E
t

{log �v

t

�

q

t

} . Based on Bussgang’s theorem, the cross
covariance of log � and � is a linear function of the autoco-
variance of �; for some ↵ > 0,� 2 R,

E
t

{log �v

t

�

q

t

} = ↵µE
t

{�v

t

�

q

t

} + �1vq.

Here, 1vq is the tensor with elements equal to 1. Taking into
account that rs

jv

1vq = 0sq
j

, we obtain (25).

VII. LEARNING EXPERIMENTS

This section shows examples of learning of BDS models
for both simulations and real robots. Simulations implement
exactly the sensor models described in the previous sections.
Real experiments are used to check whether the results are
robust with respect to unmodelled phenomena.

1) Simulations setup: There is an extremely large parameter
space to explore: there is an infinite number of Vehicles to
simulate. For the environment, not only we need to choose a
map, but an entire probability distribution on maps. For the
vehicles, there are many details in specifying the actuators
and sensors (spatial discretization, levels of sensor noise,
arrangement of pixels, etc.). Every small detail influences
the results: for example, different environments change the
learned T through the covariance matrix (Lemma 25), but the
findings are qualitatively unchanged.

The vehicles inhabit procedurally generated maps. The
obstacles O are a set of randomly generated circular ob-
stacles, with density 0.15 circles/m2 and radius distributed
according to a uniform distribution on [1 m, 3 m]. (More
complex shapes do not change the results.) The textures T
are generated using “smoothed random checkerboards”, which
look like this: . Let ⌧ be a uni-
dimensional parametrization of @O as to write the texture
as a function T (⌧), which is equal to the convolution of a
Gaussian kernel (� = 0.1m) with a random process t(⌧)
that takes values in {0, 1}, It is defined as t(⌧) = (d

i

(⌧)
mod 2) where d

i

(⌧) counts the number of events in a Poisson
process with intensity � = 10 events/m. The field F(p) for
the field-sampler is generated as a sum of randomly placed

10

sources: F(p) =
P

i

!

i

k(kp � p

i

k)), where p

i

2 R2 is
randomly sampled with a density of 0.5 sources/m2 and the
kernel k : R+

� ! R+

� is the function k(d) = 1/(2 d + 1).
The vehicles have the kinematics of a rigid body on SE(2)

controlled in velocity. The maximum linear/angular velocity
are 0.1 m/s and 0.1 rad/s. The commands are perturbed by
additive Gaussian noise with � = 1% of the range. Three
vehicles equipped with different sensors were simulated:

IDRF

IDRF: This vehicle has an ideal range finder
(FOV 360°, resolution 0.5 rays/°). For this and the
other sensors, the frequency is 30 Hz and the noise
is additive Gaussian with � = 1% of the range.

IDVS

IDCAM: This vehicle has an ideal vision sensor
(FOV 360°; resolution 0.5 rays/°). Before sampling,
the light field is smoothed with a Gaussian point-
spread function with � = 1.

IDFS

IDFS: This vehicle has an ideal field-sampler
The sensels are placed in a regular 12 ⇥ 12 grid
of radius 1 m.

The length of the simulated logs is ~1000
episodes for a total of ~800k total observations.

2) Experiments: The robotic platform we use is a Kuka
Youbot. The 4 omnidirectional wheels allow to impose
any velocity on se(2). Two Hokuyo URG-04LX range-
finders [78] (FOV: ~270°; resolution: 2 rays/°; frequency
10 Hz) are mounted at the platform sides, approximately at
pose h0.3 m,±0.15 m,±90°i with respect to the platform center.
A Logitech Orbit camera (FOV: ~60°; resolution: 320 ⇥ 240;
frame rate: 10 Hz) is mounted at h0.02 m, 0 m, 0i with respect to
the center of the base. Another camera (FOV: ~50°, resolution:
320⇥240; frame rate: 10 Hz) is mounted on the arm, fixed in
such a way that the camera points upwards with axis orthogonal
to the ceiling (Fig. 2a). The Kuka Youbot data was used in
different configurations that emulate the three canonical sensors.
Formally we can think of the Youbot as one point in the large
set Robots, and these three configurations as three projections
on the set Vehicles. For all configurations, the commands
u =

⌦
v

1

, v

2

,!

3

↵
are the kinematic velocities of the base.

YHL

YHL: The observations y 2 [0, 1]180 are the
normalized ranges of the left Hokuyo. The field
of view includes fixtures on the robot. The data
corresponding to occlusions due to fixtures on
the robot as well as out-of-range data (returned

as “0” by the driver) are censored before learning. The YHLR
configuration contains the concatenated readings from both
range-finders subsampled to have 180 sensels in total.

YVS

YCF: A 1D vision sensor is simulated by
taking the values of the pixels corresponding to
a middle band (rows 100 to 140 in a 320⇥240
image) in the image returned by the Orbit camera.
We use the luminance component as the signal:

y

s

t

= 0.299 r

s

t

+ 0.587 g

s

t

+ 0.114 b

s

t

where hrs
t

, g

s

t

, b

s

t

i are the
color components. (The analysis in Section III is valid for 2D
sensors as well, but the BDS models cannot deal with full-frame
2D data because the complexity is O(n2).)

YFS

YFS: This configuration simulates a field
sampler by using a camera pointed upwards
parallel to the ceiling. Because the ceiling is
always level, there is no perspective effect at
play. Therefore, the value reported by each pixel

can be understood as sampling a planar function. With the

geometry of our environment, the area sampled is ~ 2 m ⇥ 2 m.
The luminance signal is first smoothed with a Gaussian kernel
(� = 0.1m) and then sampled with a grid of 12 ⇥ 12 pixels.
LDR: The other platform used is an iRobot Landroid (proto-
type). The Landroid has two tracks controlled in velocity and a
Hokuyo on board approximately mounted at h5mm, 0, 0i with
respect to the center.

LDR

The logs were taken in a typical robotic lab
environment (Fig. 3). In the real experiments, the
Youbot started always from the same position
at the center of an arena of area approximately
12 m ⇥ 12 m and ceiling height ~9 m. The

laboratory clutter was periodically rearranged every few logs.
The Landroid data was taken in nearby corridors as well. The
datasets contain relatively rare deviations from ideal conditions,
such as moving people, occasional slippage, hardware faults
(out-of-battery faults), and bugs-related collisions with the
environment. Learning is robust to such occasional nuisances
because all statistics in Algorithm 1 are computed as expecta-
tions.

The logs were recorded in ROS format. All data from the
Youbot’s ROS computation graph were recorded; for saving
space, images where compressed to JPG. The total size of the
data for the Youbot is ~10 GB for a length of ~6 hours. For
the Landroid, the data is ~1 hour.

3) Exploration strategy: We generate trajectories by sam-
pling random commands (motor babbling); this satisfies the
hypotheses of Corollary 30 and ensure uniform exploration.

The most obvious choice for the choice of commands would
perhaps be to sample a random command at each time step.
The resulting trajectory would be a Brownian motion in if
the configuration space is Euclidean space, or an appropriate
generalization if the configuration is a Lie group [79]. Brownian
motion is not an efficient way to explore environments as it
tends to revisit places. A better alternative is to use a Levy flight-
type trajectory, which are assumed to describe the behavior of
foraging animals [80]. We choose the value of u

t

is a realization
of a stochastic process, which depends on two probabilities:
a measure pu 2 Measures(U) from which commands are
sampled, and a measure p

�

2 Measures(R+

�) from which
switching intervals are sampled. At the beginning of the k-th
interval at time t

(k), one samples a command u

(k) ⇠ pu and an
interval �(k) ⇠ p

�

. The commands are set to be u

t

= u

(k) for
the interval t 2 [t(k), t(k)+�(k)]. Then at t

(k+1) = t

(k)+�(k),
the process is repeated.

We used for p

�

a uniform distribution in [1 s, 60 s]. For pu

we used a discrete set of values, so that each component could
assume the values {�0.1, 0, +0.1} (m/s or rad/s). (The BDS
model does not need the commands to belong to discrete sets;
however, we planned to use the datasets for other methods that
might have this assumption.)

Figure 3. Exploration via motor babbling using Levy-flight-type trajectories.
Composite image of robot poses at times t = 0, 1min, 10min, 60min.

4) Safety supervisor: The bootstrapping agent does not have
direct access to the robot velocities. Rather, the commands

11

are filtered by a supervisor. The supervisor knows a priori
the robotic platform and the map between uninterpreted
commands u and the platform velocities. Based on the range-
finder data, the supervisor judges a command unsafe if it would
make the robot collide with an obstacles. An unsafe command
is ignored and the platform is stopped until a safe command
is received. In principle, we would want the agent to learn
that certain actions are unsafe based on some “pain” feedback
signal, but, with our current setup, neither the robot nor the lab
would survive more than a handful of learning experiences.

5) Data visualization: Fig. 4 and successive show graphical
representations of the learned tensors P, M, N, T, U for the
various cases. The covariance tensors P are displayed as images
(e.g. Fig. 4a). Positive entries are red (mnemonics: red = hot
= positive), negative in blue, and white is 0. For each figure,
the values are scaled so that the most positive values are pure
red, so in general these figures only show the relative values
and not the scale. When displaying the tensors the ordering of
the sensels is important, though the agents are indifferent to
a permutation of the sensels. The covariance shows whether
the ordering of the sensels is correlated with the distance in
the sensel space. For example, the covariance matrix of the
range-finder (Fig. 5a) encodes the fact that the sensels are
ordered in sensel space like they are in the vector y, while the
covariance of the field sampler reflects the fact that the sensels
have a 2D grid disposition and are ordered by rows (Fig. 10a).

The tensors M and T are shown in 2D slices, each slice M·
·i

and T··i corresponding to the i-th command. The colors use
the same convention as the tensor P. The tensors N and U are
shown in slices corresponding to each command. Each slice is
a one-dimensional function of s so it is plotted as a function
of s. For example, the learned dynamics of the range-finder
considering only the first command can be written as

ẏ

s

t

= (Ms

v1

y

v+Ns

1

)u1 =

 s

v

y

v

t

+

!
u

1

.

A. Findings
1) Uniform representation: The learned tensors are qualita-

tively similar for the ideal sensor in simulation (e.g., Fig. 4b)
and the corresponding real sensor (e.g., Fig. 5b); this is a
confirmation that the simple models introduced in Section III
capture the dominant phenomena for real sensors even if some
others phenomena were neglected (finite temporal and spatial
sampling, value discretization).

2) Robustness: Sensels that do not follow the BDS model
are simply ignored. For example, for the Landroid data, two
antennas partially occlude the sensor, generating out-of-range
or extremely noisy data. In the corresponding tensor T the
entries corresponding to the occluded sensels have very small
values (white stripes in Fig. 9b and Fig. 9c). By defining the
concept of usefulness of a sensel [62] one can find quantitative
criteria to find sensor faults without a reference model.

3) Sensitivity: These models exhibit sensitiveness to very
subtle effects. For example, the covariance of the simulate
camera (Fig. 7a) is a Toeplitz matrix (entries are constant for
each diagonal), because its pixels are equidistant on the visual
sphere and covariance is a function of the distance [53]. The

covariance of the real camera (Fig. 8a) does not have this
property: because of the perspective transform, pixels that are
equidistant in image space are not exactly equidistant on the
visual sphere, and the learned tensors are sensitive enough to
pick up this effect..

4) Influence of environment and exploration statistics: The
pictures confirm visually that the learned tensor T is equal to
the product of M and P (Lemma 25). For the case of the range-
finder (Fig. 5), the relation T = MPQ, assuming a diagonal Q,
can be visualized as follows:

Tsv3 / Ms

q3

Pqv ⌘

s

v /

s

v ⇥

s

v

The estimation step (17) in Algorithm 1 can be interpreted as
removing the influence of the world statistics (covariance P)
and the exploration statistics (covariance Q).

5) Composability: Data from multiple sensors can be used
together just by concatenating the observations together. If the
two sensors observations are uncorrelated, then there is nothing
to gain. For example, luminance and distance are not predictive
of each other, so if the data from a camera and a range-finder,
the resulting tensors T is a block tensor where the the diagonal
blocks are for the two original sensors, and the off-diagonal
mixed blocks are zeros. If the data is correlated then there are
off-diagonal blocks. For example, the field of view of the two
range-finders used in our setup overlap for some readings, as
can be seen from the covariance matrix (Fig. 6a). This overlap
is automatically taken into account in the learned model as is
shown by the off-diagonal patterns of the tensor T (Fig. 6b).

6) Invariance to reference frame: The dynamics of the
canonical robotic tensors (summarized in Table I) were derived
assuming that the commands are kinematic velocities relative
to the sensor frame. If the sensors are off-centered, like in the
case of the Hokuyo on the Youbot, the BDS approximation
works just as well. The velocities of two reference frames
which are linked together are related by a linear transform:
if g

r

, g

s

2 se(3) are the velocity of the robot and the sensor,
respectively, then there exists a matrix A such that g = Ag

h

.
This corresponds to a linear transform of the commands
u 7! Au. The BDS model family is invariant to linear
transformations of the commands, therefore the model is able
to represent just as well the sensor for any the reference frame.
The resulting tensors are a linear combination of the tensors
that would be obtained for canonical commands. For example,
in the case of range-finders the slice of N corresponding to
the angular velocity should be 0, as for the simulated vehicle
(Fig. 4m), but in the case of the Youbot, Ns

2

is not identically
zero, because a rotation of the platform also gives a slight
translation of the sensor (Fig. 5m).

VIII. SERVOING TASKS

Models are only as good as the decisions they allow to make.
The task that we use in this paper is generalized servoing.

Let y� be some given “goal” observations. We define servoing
as moving as to minimize ky � y�k. This is a good task
for bootstrapping because it can be stated for all sensor
configurations; it is a basic skill for embodied agents; and
it can be used as a building block to derive more complex
behavior, such as navigation.

12

IDRF

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 4. Learning results for the robot IDRF (ideal range-finder).

YHL

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 5. Learning results for the robot YHL (Youbout, left range-finder).

YHLR

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 6. Learning results for the robot YHLR (Youbot, left + right range-finders)

IDVS

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 7. Learning results for the robot IDCAM (ideal camera) From the corners of the covariance in (a) we can see that this is a sensor with 360deg field
of view. The expected value of the tensors U and N is 0; here the values are noisy estimates of 0.

YVS

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 8. Learning results for the robot YCF (Youbot, frontal camera) From the hourglass shape of the covariance we can see that the sensels are not
equispaced on the visual sphere (in fact, they are equispaced in image space).

13

IDFS

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 9. Learning results for the robot IDFS (ideal field sampler) The correlation between these sensels is almost 1 due to the fact that the sources are
sparse in the environment.

YFS

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

s

v

(d) Ts v 2

(e) Us
0 (f) Us

1 (g) Us
2

s

v

(h) Ms
v 0

s

v

(i) Ms
v 1

s

v

(j) Ms
v 2

(k) Ns
0 (l) Ns

1 (m) Ns
2

Figure 10. Learning results for the robot YCF (Youbot, upwards camera as field-sampler) The sensels are ordered by row...

LDR

s

v

(a) Psv

s

v

(b) Ts v 0

s

v

(c) Ts v 1

(d) Us
0 (e) Us

1

s

v

(f) Ms
v 0

s

v

(g) Ms
v 1

(h) Ns
0 (i) Ns

1

Figure 11. Learning results for the robot LDR (Landroid with Hokuyo)

The literature has many examples of the same problem, soled
for one sensor modality and with a known model; see, e.g.
[81], for a recent reference.

1) Gradient-descent based servoing for BDS models: A
relatively simple to implement gradient-descent control law
that minimizes ky�y�k can be derived for BDS models in the
holonomic case and is given by (26) in the proposition below. It
is computationally simple to implement because it is a bilinear
function of the error y

r � y

r

� and the current observations.
In general, there exists no smooth controller that stabilizes a

goal state asymptotically for nonholonomic systems [82]. For
the BDS dynamics (10), the system is holonomic if the linear
operators {Ms

vi

y

v}nu
i=1

form a nilpotent Lie algebra, which is
taken as a necessary hypothesis for the following result.

Proposition 34. Given the goal observations y�, a positive
defined metric m

rs

for y and r

ij for u, the control law

u

j = �P
r,s,v,i

(yr � y

r

�)mrs

(Ms

vi

y

v + Ns

i

)rij (26)

corresponds to a descent direction of ky � y�km.
Moreover, if the operators {Ms

vi

y

v}nu
i=1

form a nilpotent Lie
algebra, the point y = y� is asymptotically stable.

Proof: Define the error signal e

r = y

r � y

r

� and write the

error function as V = 1

2

e

r

m

rs

e

s. The derivative of V is

V̇ = ė

r

m

rs

e

s = ẏ

r

m

rs

e

s = [(Mr

qj

y

q + Nr

j

)uj]m
rs

e

r

= �e

t

m

ts

(Ms

vi

y

v + Ns

i

)rij(Mr

qj

y

q + Nr

j

)m
rs

e

r

.

Defining a vector g

i

= e

t

m

ts

(Ms

vi

y

v + Ns

i

) we obtain V̇ =
�g

i

r

ij

g

j

 0, which shows that V never increases. If we prove
that g is never 0 in a neighborhood of y�, then V̇ < 0, and V

is then a Lyapunov function, making y� asymptotically stable.
In general, because the Lie algebra is nilpotent of order 0, any
solution of (10) can be written in the form

y = exp(Ms

v1

b

1) exp(Ms

v2

b

2) · · · exp(Ms

vnu
b

nu)y�, (27)

where the {bj}nu
j=1

are the Philip Hall coordinates, and exp
represents the exponential of a linear operator [83, Chapter 11,
page 540]. Near y� each term can be linearized as

exp(M·
·jbj) = I + M·

·jb
j + o(kbk2).

The linearized version of (27) is then

y

s = y

s

� + Ms

vj

b

j

y

v

� + o(kbk2).
From this we get e

s = Ms

vj

y

v

�b

j+o(kbk2), which we substitute

14

in the definition of g

i

to obtain

g

i

= y

v

�M
s

vi

m

rs

e

r + o(kbk2)
= y

v

�M
s

vi

m

rs

(Mr

qj

y

q

�b
j) + o(kbk2).

In a neighborhood of y�, but not precisely at y�, the vector b is
nonzero; otherwise, from (27) we get y = y�. Assuming that
the Mr

qj

y

q

� commute, we also have that Mr

qj

y

q

�bj 6= 0r. In fact,
if they commute, we can write (27) as y = exp(Mr

qj

y

q

�bj)y�
and the argument of the exponential must be different from 0.
These two together imply that g

i

= y

v

�M
s

vi

m

rs

(Mr

qj

y

q

�bj) 6= 0
near the origin. Here the abundance of indices is masquerading
the simplicity of the assertion. Without indices: suppose there
is a vector v 6= 0, and a linear operator A such that Av 6= 0;
then A

⇤
Av 6= 0. In this case, v = b and A

v

i

= y

v

�M
s

vi

.
2) Servoing based on longer-horizon prediction: The gradi-

ent descent strategy is myopic: the agent might be trapped in
local minima of the cost function. In our setup, this happens
for the camera (YCF), because the environment texture has
much higher frequency than the geometry: the change of the
camera observations for a small motion is much larger than
the change of observations for a range-finder.

One way to avoid myopia is to use receding-horizon control:
we choose the command that minimize the dissimilarity
between goal and prediction over a long time step � (gradient
descent is the limit as � ! 0). Let '(y, u, �) be the predicted
observations after an interval � for a constant command u. We
choose the command that achieves the minimum dissimilarity
with the goal observations:

u

?

t

= min
u2U

k'(y
t

, u, �) � y�k. (28)

In the case of the BDS models we can compute the prediction
in closed form if the commands are kept constant. In fact,
suppose that the commands are fixed to u

t

= u for an
interval [t, t + �]. Then during that interval, the dynamics
are ẏ

s

t

= (Ms

vi

y

v

t

+ Ns

i

)ui

. Rearranging we can write it as
ẏ

s

t

= (Ms

vi

u

i)yv

t

+ (Ns

i

u

i), which is of the form ẋ = Ax + b

for A = Ms

vi

u

i and b = Ns

i

u

i. This is a linear-time-invariant
dynamics with fixed input, hence the solution is

'(y
t

, u, �) = exp(�Ms

vi

u

i)yv

t

+(
�

s
0

exp((��⌧)Ms

vi

u

i) d⌧)Ns

i

u

i

.

For the camera, the second term is zero (N = 0) and the matrix
exponential can be interpreted as a diffeomorphism applied to
the image. In this paper we are just going to iterate over all
commands in a subset of the available commands. The more
efficient solution of the problem formalized as graph search in
observations space [84] is outside the scope of this paper.

IX. ROBUSTNESS TO MODEL APPROXIMATIONS

We have computed the approximations in a certain model
class (BDS) for our vehicles. These approximations neglect
aspects of the dynamics (e.g., occlusions) as well as hidden
states. This section shows that those approximations are good
enough for the task of servoing. The approach is to show that
if the approximated dynamics are “close enough” to the real
but unknown dynamics, then a control strategy that works for
the learned system will work for the real system. Sufficient
conditions for convergence are obtained as a function of the
statistics of the environment.

Y

ẏ = f̂(y, u)

y

(a)
f̂(y, u)

y

Y

(b)

Figure 12. The learned dynamics ˆ

ẏ =

ˆf(y,u) is defined on the space of
observations Y and neglects the dependence on the hidden state x 2 X. The
learned dynamics can be seen as the projection (in the maximum likelihood
sense) of the true dynamics in the space Y ⇥ X to the observations space Y.

1) A sufficient condition for convergence: We have consid-
ered instantaneous models of the form

ˆ̇
y

t

= f̂(y
t

, u

t

), (29)

However, the real dynamics of y is different from f̂ , mostly
because it depends on an unknown hidden state x that is not
modeled, and has a dynamics of its own:

(
ẏ

t

= f(y
t

, x

t

, u

t

),

ẋ

t

= g(x
t

, u

t

).
(30)

We look at the dynamics f̂ as a projection on the space Y of the
real dynamics f that exists in the space Y⇥X (Fig. 12a). When
a point y is fixed, the real dynamics f(y, x, u) is different
from the approximated dynamics f̂ as the hidden state x varies
(Fig. 12b). Intuitively, if the two dynamics are “close”, then
a control strategy for one should work for the other as well.
“Closeness” is defined using the relative error between the norm
of f̂ and the norm of f � f̂ .

Definition 35. The dynamics f̂ and f are a-close if there
exists a < 1 such that, for all x and u,

kf̂(y, u) � f(y, u, x)k akf̂(y, u)k. (31)

If this condition is satisfied, then the control law for the
approximated system works also for the real system.

Proposition 36. Let u

?

t

= u

?(y�, yt

) be a control law
makes the system ẏ

t

= f̂(y
t

, u

?

t

) asymptotically stable in
a neighborhood of y�. Assume that f̂ and u

? are smooth. If
the bound (31) holds, then the same control law makes the
system (30) asymptotically stable at y�.

Proof: Close the loop and consider the dynamics of the
autonomous system:

ẏ

t

= f̂(y
t

, u

?(y�, yt

)). (32)

By assumption, y� is asymptotically stable, so
f̂(y�, u

?(y�, y�)) = 0 and from (31) it follows that y� is an
equilibrium point also for the real dynamics.

Asymptotical stability can be proved using a Lyapunov
argument. Because y is stable for the approximated dynamics,
there exists a corresponding Lyapunov function (actually, many).
We construct one which is convenient for our goals. Let N

be a small compact neighborhood around y�. We construct
a Lyapunov function for the set N [85]. Because y� is
asymptotically stable, for any point outside N , it takes a finite
amount of time to arrive in N (while it could take infinite time

15

to get to the goal). Consider the function V (y), defined as the
time it takes for the solution of (32) to arrive in N :

V (y) , min
t

{�
ˆ

f

(y; t) 2 N}. (33)

Here, �
ˆ

f

(y; t) is the flow of the dynamics f̂ . This function
is differentiable because the control law and the dynamics
are smooth. Moreover, this function satisfies V̇ (y) = �1,
which means, geometrically, that the flow f̂(y, u

?) is exactly
perpendicular to the level sets of V :

V̇ (y) =
@V

@y

f̂(y, u

?) = �1. (34)

For any three vectors a,b, c, the constraints ha,bi = �1
and kb � ck < kck implies that ha, ci < 0. Applying this
to the vectors a = @V/@y, b = f̂(y, u

?), c = f(y, x, u

?)
and using (34) and (31) one finds that V̇ is negative along
the trajectories of the real system: @V

@y f(y, x, u

?) < 0. This
implies that V is a Lyapunov function for the set N with
reference to the real dynamics. This implies that the system
reaches the boundary of the set N in finite time. Because
the size of N can be chosen arbitrarily small, the system is
asymptotically stable.

2) Vision sensor: convergence in spite of hidden
states: The dynamics for pure rotations is purely bilinear

for cameras and range-finders, while there is an approximation
regarding the dynamics for translation (Table II). The worst
case is pure translation (Q = R3).

Proposition 37. For pure translation, the control (26) applied
to an element of VS(S) local convergence if 0 < µ

s

t

< 2µ,
which can be interpreted as: a) There is no object at infinity
(µs

t

> 0); and b) There are no obstacles much closer than the
average obstacle (µs

t

< 2µ).

Proof: The camera dynamics for pure translation is
ẏ

s

t

= µ

s

t

rs

vi

y

v

t

u

i

t

. The approximated model is ˆ̇
y

s

t

=
µrs

vi

y

v

t

u

i

t

where µ is the average nearness. The difference
between the two dynamics � = ẏ

s

t

� ˆ̇
y

s

t

has norm k�k2
equal to

´ k (µs

t

� µ)rs

vi

y

v

t

u

i

t

k2 ds. By rewriting (µs � µ) as
(µs

/µ � 1) µ, we find the bound kf̂�fk2 kµs

/µ�1k21kf̂k2,
which is in the form (31) with a = max

s

(µs

t

/µ � 1)
2. The

condition a < 1 is satisfied if 0 < µ

s

t

< 2µ.

3) Range finder: convergence in spite of nonlineari-
ties: We derive an analogous result for the range-finder.

Proposition 38. For pure translation and a 360°viewport,
applied to a range-finder a sufficient condition for local
convergence of the control law is

k1 � µ

t

/µk1 kryk
2

µ

�1 � kryk
2

< 1,

which can be interpreted as: a) The environment is large enough
(as µ ! 0, the left-hand side goes to 0 as well); or b) The
environment is close circular (kryk ! 0).

Proof: The dynamics for a range finder for transla-
tion is ẏ

s

t

= (µs

t

rs

vi

y

v

t

� s

⇤
i

) v

i

t

, where µ is the nearness
(and µ = 1/y). The approximated BDS model is ẏ

s

t

=
(µs

t

rs

vi

y

v

t

� s

⇤
i

) v

i

t

, hence the deviation between the two is�s
t

=
(µ � µ

s

t

)rs

vi

y

v

t

u

i

. The deviation becomes small as kryk ! 0
or as |µs

t

� µ| ! 0. Because y in this case is the distance,
kryk ! 0 implies that the environment tends to a circular

environment of any size, while |µs

t

� µ| ! 0 means that the
environment should tend to circular of a particular radius 1/µ.
A lower bound on kf̂k2

2

can be found as follows:

kf̂k2
2

= k (µrs

vi

y

v

t

� s

⇤
i

) u

ik
2

= kµrs

vi

y

v

t

u

i � s

⇤
i

u

ik
2

.

(ka + bk � |kak � kbk|)
� |ks⇤

i

u

ik
2

� µkrs

vi

y

v

t

u

ik|.
(for small ry we choose one side)

= ks⇤
i

u

ik
2

� µkrs

vi

y

v

t

u

i

t

k
(kAbk kAkkbk)

� ks⇤
i

u

ik
2

� µkry

t

kku
t

k
An upper bound for k�k is the following:

k�s
t

k
2

 kµ�µ

t

s

k1krs

vi

y

v

t

u

ik2
2

 kµ�µ

t

s

k1kry

t

k
2

ku
t

k
2

.

Using these bounds, the ratio of k�s
t

k2
2

and kf̂k2
2;S

can be
bounded as

k�f ·
t

k
2

kf̂
t

k
2;S

 k1 � µ

t

s

/µk21
kryk

2

kuk
2

µ

�1ks⇤
i

u

ik
2

� kryk
2

kuk
2

.

The quantity ks⇤
i

u

ik
2

depends on the shape of the sensor. If
the viewport is 360°, then ks⇤

i

u

ik
2

= kuk
2

which can be
proved by evaluating the integral ks⇤

i

u

ik2
2

= 1

2⇡

´
S(s⇤u)2 ds.

The bound is then of the form k�k akf̂
t

k with a = k1 �
µ

t

s

/µk1kryk
2

/(µ�1 � kryk
2

).
4) Convergence for non-ideal vehicles: Taken together, the

previous results show sufficient conditions under which the
gradient-descent control law (26) realizes the servoing behavior
for the set of idealized Vehicles (Definition 11). Here we
discuss what happens when nuisances are introduced, such
as spatiotemporal discretization and noise.

Regarding temporal discretization, let Zoh
�

: D(Y; X; U) !
D(Y; X; U; �) be the zero-order hold operator that transforms
a continuous-time system into a discrete time system with
interval �. Regarding spatial sampling, given a set of ny

points {si}ny

i=1

⇢ S , we can map a system in D(Images(S); U)
into one in D(Rny ; U). Call Sample

ny
the set of all such maps

with ny sampling points. Regarding noise, we can define the
set Noise

n

as the set of additive white gaussian disturbances.

Definition 39. The set of reasonably perturbed vehicles
˜Vehicles 2 D(Rny ;Maps;Rnu ; �) is created from Vehicles

by adding spatial/temporal discretization and noise:

˜Vehicles ,
�
N

1

� S � Zoh
�

(D) � N

2

| D 2 Vehicles,

N

1

2 Noise
ny , N

2

2 Noise
nu , S 2 Sample

ny
, � > 0}.

Regarding temporal and spatial discretization, we can directly
use the result of Proposition 36, as follows:

• As the spatial sampling tends to zero, the dynamics of the
sampled system tends to the ideal system. Therefore, there
exists a minimum sampling for which there is convergence.

• As the temporal sampling tends to zero, the dynamics of
the ZOH system tends to the ideal system. Therefore, there
exists a minimum sampling for which there is convergence.

For the noise, instead, completely different results should be
used: the concept of asymptotical stability does not apply, and
must be replaced with appropriate stochastic equivalents. In
our case, where we have proved stability with a Lyapunov
argument, it is easy to adapt the statement to the case of

16

small additive noise on observations and commands and prove
positive recurrence of a neighborhood of y�, meaning that the
robot is attracted and remains around in a neighborhood of
what was the asymptotical equilibrium [86].

X. SERVOING AND NAVIGATION EXPERIMENTS

This section evaluates the convergence ratio and dynamic
behavior of the control laws derived in the previous sections.
The same agent is able to do the same task with different sensor
configurations; but, obviously, with different performance based
on the sensor. The results in terms of convergence are generally
better than the results of the theory provide: while we proved
local convergence, convergence regions appear to be quite
robust and limited by hard factors (like the field of view of
the sensor) rather than approximations in the learned model.

1) Evaluation of convergence basins: Fig. 13 shows the
convergence basin of the control laws, for each of the sensor
configurations, and three test environments, different from the
training environment. The first two environments are convex
with no occlusions (the first is shown in Fig. 2); the third
has several occlusions. To create these figures, the robot was
programmed to move in a grid with fixed heading. A circle
indicates the goal position at which the goal observations y�
were taken. Fig. 13a and similar show the dissimilarity function
ky(q)�y�k as a function of the pose q. More precise sensors,
like the range-finder (panel a) have more peaked response
than the others (panels m, u). Fig. 13b and similar show the
velocities generated by the control law (26) in the plane; green
arrows correspond to actions that lead to smaller dissimilarity.

YHL

YHL: The range-finder configuration has
global convergence in the two convex environ-
ments (panels b, d), while the occlusions results
in local minima (panel f). Using both range-
finders one has better convergence and the local

minima disappear (panel l): a bootstrapping agent does better
with more data thrown at it, with no extra design effort required.

YVS

YCF: For this configuration the dissimilarity
has many local minima (panels m, ñ). The
gradient descent law(26) gets trapped in local
minima (panels n, o, q). The prediction-based
control (28), with U discretized in 32 values and

planning horizon � = 2 s has larger convergence basin (panels
r, s, t). These two controllers use the same learned models,
but one is much more complex: the trade-off of complexity vs
performance exists but is independent of the issues of learning.

YFS

YFS: The field sampler data has larger con-
vergence basin (panel x), mostly limited by the
sensor’s FOV. The wrong directions generated
near the goal (panel v) are due to sensor noise,
which is dominant near the goal.

The figures do not show the convergence basin for rotations.
For range-finder data (YHL), the basin size is ~40°, limited by
local minima of the cost function. For the camera data (YCF)
the convergence is lower, in the order of ~30°, and limited by
the sensor’s field of view (60°). For the field sampler (YFS),
the convergence is as high as 80°, because the rotation does
not make the scene exit the field of view.

The question of exactly how much data is needed for
learning does not find a complete answer in this paper: all
theoretical results are for asymptotic regime. To given an

empirical investigation, Fig. 15 shows the convergence basins
for configuration YHLR as a function of the size of the training
data. The task is successful long before the mode model itself
converges; i.e. far from the asymptotic regime.

2) Navigation experiments: The accompanying video shows
several experiments of servoing. The behavior is in line with
the expectations for a gradient-descent strategy, like tolerance
to slight disturbances such as partial sensor occlusions and
moving objects. Here, we comment on other experiments
that use servoing as a building block to create the more
complex behavior of navigation. Navigation in observations
space is achieved by solving a repeated sequence of servoing
problems on a map of observation snapshots. This task has
been demonstrated in the past only for one sensor modality
and with a known model [87, 88].

In an offline phase, the robot is driven along a closed trajec-
tory. The trajectory is sampled at poses q

j

, j 2 {1, . . . , N},
corresponding to the observations m

j

. The task is thus specified
by the sequence of observations vectors: {m

j

}N
j=1

. Fig. 2
shows the approximate trajectory used for the experiments and
the resulting waypoints map for the three configurations. The
heading is kept fixed, but during execution the agent can also
rotate. The distance between snapshots is ~0.1 m.

The navigation controller works by setting the goal ob-
servations y� to be a few steps ahead in the map, so that
the agent executes the navigation task by trying to converge
to a goal which is constantly moving. More in detail, the
navigation controller keeps as part of the state an index j

t

indicating the current “position” in the map. At the beginning,
the index j

t0 is set to be the closest map point in observations
space: j

t0 = arg min
j

ky
t0

� m

j

k. During operation, the
goal observations y� are set to the value y� = m

g

, where
g = (j

t

+ d) mod N is the index of the waypoint which
is d � 1 steps ahead. If the observations are closer than a
threshold c to the next observations in the sequence m

j+1

,
the index j is incremented (mod N). This ensures that the
overall trajectory is smoothly executed, because the agent never
converges: once it is close enough, the goal is advanced.

To make the results easier to compare across configurations,
the commands generated were scaled linearly up to a maximum
linear and angular velocity, respectively 0.1 m/s and 0.1 rad/s.

In the experiments we used d = 3. The convergence
threshold c was slightly different for each configuration, to
account for the fact that the different sensors configurations
have different noise levels. Panels b, f, j show the observations
used as waypoints. Panels c, g ,k show the observations y

s

t

(horizontal axis: time t, vertical axis, sensel s). The red bar
marks when the system was perturbed by occluding the sensors.
Panels d, h, l show the dissimilarity km

j

� y

t

k between the
observations y

t

and all waypoints. The dissimilarity shows
which part of the trajectory are more or less constrained.

YHLR

YHLR: The trajectory for this configuration
was the most repeateable (Fig. 14a) because
of the sensor precision, as seen by the peaked
dissimilarity. Note that the actual trajectory
differs from the original square; the robot “cuts

corners” because the goal is set d waypoints away.

YVS

YCF: The dissimilarity is much less peaked
for the camera observations (panel h). In fact the
pose is almost unobservable, especially on the
sides of the trajectory. Therefore the trajectory

17

environment A (convex) environment B (convex) environment C (occlusions)

dissimilarity between
observations and goal

direction of velocity
chosen by control law

descent direction
not a descent direction

YHLR

YHL

YVS

YFS

local minima
due to occlusions

no local
minima using

both range-finders

many local
minima

gradient descent is
trapped in local minima

prediction-based
control is more robust

mistakes near goal
due to noisy data

1 m

1 m

1 m

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (ñ) (o) (p) (q)

(u) (v) (x) (y) (w) (z)

(r) (s) (t)

Figure 13. Attraction regions for the servoing task for different configurations and environments. The colormap in panels a, c, e, etc. show the dissimilarity
ky � y�k , which is different for each sensor. The arrows in panels b, d, f, etc. show the directions according to the control law (26), except for r, s, t which
are for the prediction-based control law (28). Arrows are green if the corresponding motion minimizes the dissimilarity, and red otherwise.w

(a)

(l)sensel s
time

sensel

(e) (i)

(k) observations

(j) map

di
stu

rb
an

ce

waypoint i

dissimilarity

s

t

ambiguous
area

disturbance

(h)sensel s
time

sensel

(g) observations

(f) map

di
stu

rb
an

ce

waypoint i

dissimilarity

s

t

(d)sensel s
time

sensel

(c) observations

(b) map

di
st

ur
ba

nc
e

waypoint i

dissimilarity

s

t

peaked
similarity

YHLR YVS
YFS

Figure 14. Navigation experiments based on repeated servoing tasks. The robot is taken along the rectangular trajectory (shown in Fig. 2); the data is recorded
and used as waypoints (panels b, f, j). In a separate experiment with each configuration the agent follows the trajectory based on the raw observations. At
some point in the experiments the observations have been perturbed (here indicated by red markers). The trajectories (panels a, e, i) do not follow exactly the
original trajectory because 1) the goal is advanced along, so that the robot cuts corners; 2) The agent is controlling in observations space. The colormaps
show the dissimilarity between the current observations and the map observations (panels d, h, l). Regions with relatively ambiguous observations (panel l)
correspond to regions where the trajectory is not tracked well (panel i).

REFERENCES 18

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 15. The task is successful before the model has converged. The top
row show the velocities chosen by the gradient descent control law (same
convention as in Fig. 13). The bottom row shows the learned tensor Us

0.

is much less repeatable in pose space, especially
following the perturbation of the system.

YFS

YFS: Also the field-sampler has large uncer-
tainty towards the end of the trajectory (large
blue bands in panel k). This unconstrained area
causes the oscillations seen in the configuration
space (panel i).

XI. CONCLUSIONS AND FUTURE WORK

This paper considered the problem of designing bootstrap-
ping agents that can be embodied in any robotic body. The
analysis focused on the set of Vehicles, idealized models of
mobile robots equipped with exteroceptive sensors, inspired
by the work of Braitenberg. We derived the dynamics of
three “canonical” exteroceptive robotic sensors (field-sampler,
range-finders, and camera) and showed that they are more
similar than expected. We described the class of BDS systems,
whose bilinear dynamics can be learned easily using Hebbian-
like algorithms. Moreover, their dynamics approximates the
dynamics of the Vehicles well enough to perform simple spatial
tasks such as servoing and navigation in observations space. We
presented theoretical analysis of the learning algorithm as well
as theoretical guarantees for the task. The properties of these
agents were validated with simulations and experiments. It is the
first time that the same learning agent, with no additional tuning
or hand-designed features, is shown to work with multiple
systems belonging to a reasonable large family (the Vehicles),
and able to perform a task (in this case, servoing / navigation in
observations space), with theoretical guarantees both on what
approximated models are learned, and the performance of a
task. We regard these results as evidence that formal / control-
theoretical approaches is possible for learning in robotics and
other large domains. We now look at some open issues.

Covering the set of all robots: The first concern is to enlarge
the set of dynamical systems considered from Vehicles to a
larger subset of Robots. This implies dealing with articulated
bodies, which include kinematic hidden states that cannot be
dismissed, and second-order dynamics, which imply controllers
with internal states. There are other sensors of interest not
captured by the three discussed here both proprioceptive (e.g.,
IMUs) and exteroceptive (e.g., touch sensors). The challenge is
expanding the target subset while keeping the models general.
This is a common trend in machine learning, and the solution
is thought to be modularity and hierarchical representations [6].

Assumptions on training data: We made several limiting
technical assumptions that we observe not needed in practice

and that we aim to relax. For example, using the motor babbling
exploration makes commands and observations independent,
an assumption used in the proofs. Yet, further experiments, not
reported here, show that the models are learned just as well
using non-random and stereotypical trajectories.

Non-asymptotic results: All analysis is for the asymptotic
regime (the sample average is the expectation), but better bounds
are possible, because the agent is successful in the task even
when the model has not converged yet (Fig. 15).

Invariance to representations: A rather important technical
issue that we have not had the space to treat is invariance
to representation nuisances acting on the data. It is easy
to see that a bootstrapping agent using BDS models would
be able to tolerate a linear transformation y 7! Ay of
the observations. But what would happen if the data was
processed by an invertible nonlinear transformation of the
type y 7! f(y) with f invertible? This transformation does
not change the observability or controllability of the system
yet with a particularly evil choice of f the performance of
the agent will be abysmal. Invariance to transformations can
be interpreted as previous knowledge or assumptions about
the system [64, Chapter 2]: the agents described here not only
assumes that the robot belongs to a class of physical systems
(the Vehicles) but also that the data is represented in a particular
way. Different agents have different assumptions quantified
by the group of transformations that they tolerated. A partial
order of agents can be defined according to the groups to
which they are invariant. One way to achieve invariance is by
creating canonization operators [64, Part 3], in fact, it has been
argued that canonization is the dominant aspect of the brain
computation for problems such as pattern recognition [89].

REFERENCES
[1] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin. “Provably safe

and robust learning-based model predictive control”. In: Automatica
(2013). DOI: 10.1016/j.automatica.2013.02.003.

[2] Cohen et al. “Functional relevance of cross-modal plasticity in blind
humans”. In: Nature 389.6647 (1997). DOI: 10.1038/38278.

[3] E. E. Thomson, R. Carra, and M. A. L. Nicolelis. “Perceiving invisible
light through a somatosensory cortical prosthesis”. In: Nature Commu-
nications 4 (2013). ISSN: 2041-1733. DOI: 10.1038/ncomms2497.

[4] D. Pierce and B. Kuipers. “Map learning with uninterpreted sensors and
effectors”. In: Artificial Intelligence 92.1-2 (1997). DOI: 10.1016/S0004-
3702(96)00051-3.

[5] B. Kuipers. “Drinking from the firehose of experience”. In: Artificial
Intelligence in Medicine 44.2 (2008).

[6] Y. Bengio. “Learning Deep Architectures for AI”. In: Foundations and
Trends in Machine Learning (2009). DOI: 10.1561/2200000006.

[7] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
1995.

[8] L. Ljung. System Identification: Theory for the User. 2nd ed. Prentice
Hall, 1999. ISBN: 0136566952.

[9] T. Katayama. Subspace methods for system identification. Springer,
1999.

[10] F. Giri and E.-W. Bai. Block Oriented Nonlinear System Identification.
Springer, 2010.

[11] M. O. Franz and B. Schölkopf. “A unifying view of Wiener and Volterra
theory and polynomial kernel regression”. In: Neural Computation 18.12
(12 2006). ISSN: 0899-7667. DOI: 10.1162/neco.2006.18.12.3097.

[12] P. Ioannou. Adaptive Control Tutorial (Advances in Design and Control).
SIAM, 2006. ISBN: 0898716152.

[13] S. Siddiqi, B. Boots, and G. J. Gordon. “Reduced-Rank Hidden Markov
Models”. In: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-2010). 2010.

[14] D. Hsu, S. M. Kakade, and T. Zhang. “A spectral algorithm for learning
Hidden Markov Models”. In: Journal of Computer and System Sciences
78.5 (2012). ISSN: 0022-0000. DOI: 10.1016/j.jcss.2011.12.025.

http://dx.doi.org/10.1016/j.automatica.2013.02.003
http://dx.doi.org/10.1038/38278
http://dx.doi.org/10.1038/ncomms2497
http://dx.doi.org/10.1016/S0004-3702(96)00051-3
http://dx.doi.org/10.1016/S0004-3702(96)00051-3
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1162/neco.2006.18.12.3097
http://dx.doi.org/10.1016/j.jcss.2011.12.025

REFERENCES 19

[15] M. L. Littman, R. S. Sutton, and S. Singh. “Predictive Representations
of State”. In: Adv. in Neural Information Processing Systems. MIT
Press, 2001.

[16] S. Singh and M. R. James. “Predictive state representations: A new
theory for modeling dynamical systems”. In: Int. Conf. on Uncertainty
in Artificial Intelligence. 2004. URL: http://portal.acm.org/citation.cfm?
id=1036905.

[17] B. Boots and G. J. Gordon. “Predictive State Temporal Difference
Learning”. In: Adv. in Neural Information Processing Systems. 2011.
URL: http://arxiv.org/abs/1011.0041.

[18] C. M. Bishop. Neural Network for Pattern Recognition. Oxford
University Press, 1995.

[19] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A Fast Learning Algorithm
for Deep Belief Nets”. In: Neural Computation 18.7 (2006). DOI:
10.1162/neco.2006.18.7.1527.

[20] I. Sutskever, G. E. Hinton, and G. W. Taylor. “The Recurrent Temporal
Restricted Boltzmann Machine”. In: Adv. in Neural Information
Processing Systems. 2008.

[21] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. “Convolutional
Learning of Spatio-temporal Features”. In: European Conf. on Computer
Vision. 2010. DOI: 10.1007/978-3-642-15567-3_11.

[22] G. W. Taylor, L. Sigal, D. J. Fleet, and G. E. Hinton. “Dynamical
binary latent variable models for 3D human pose tracking”. In: Conf.
on Computer Vision and Pattern Recognition. 2010. DOI: 10.1109/
CVPR.2010.5540157.

[23] R Memisevic and G Hinton. “Unsupervised learning of image trans-
formations”. In: Conf. on Computer Vision and Pattern Recognition.
2007.

[24] R Memisevic and G. Hinton. “Learning to represent spatial transfor-
mations with factored higher-order Boltzmann machines”. In: Neural
Computation 22.6 (2010). DOI: 10.1162/neco.2010.01-09-953.

[25] M. Ranzato and G. Hinton. “Modeling pixel means and covariances
using factorized third-order boltzmann machines”. In: Conf. on Com-
puter Vision and Pattern Recognition. 2010. DOI: 10.1109/CVPR.2010.
5539962.

[26] H Larochelle and G Hinton. “Learning to combine foveal glimpses
with a third-order Boltzmann machine”. In: Adv. in Neural Information
Processing Systems. Vol. 1. 2010.

[27] K. Yu, Y. Lin, and J. Lafferty. “Learning image representations from
the pixel level via hierarchical sparse coding”. In: Conf. on Computer
Vision and Pattern Recognition. 2011.

[28] B. Hutchinson, L. Deng, and D. Yu. “Tensor Deep Stacking Networks”.
In: IEEE Trans. on Pattern Analysis and Machine Intelligence 35.8
(2013). DOI: 10.1109/TPAMI.2012.268.

[29] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng.
“Multimodal Deep Learning”. In: International Conference on Machine
Learning (ICML). Bellevue, USA, 2011.

[30] N. Srivastava and R. Salakhutdinov. “Multimodal learning with deep
Boltzmann machines”. In: Adv. in Neural Information Processing
Systems. 2012. URL: http://books.nips.cc/papers/files/nips25/NIPS2012_
1105.pdf.

[31] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998. ISBN: 0262193981.

[32] J Kober, J. Bagnell, and J. Peters. “Reinforcement Learning in Robotics:
A Survey”. In: Int. J. of Robotics Research (2013). DOI: 10.1177/
0278364913495721.

[33] J. Kolter and P. Abbeel. “Hierarchical apprenticeship learning with
application to quadruped locomotion”. In: Adv. in Neural Information
Processing Systems. 2008.

[34] R. C. Conant and W Ross Ashby. “Every good regulator of a system
must be a model of that system ”. In: International journal of systems
science 1.2 (1970). DOI: 10.1080/00207727008920220.

[35] B. A. Francis and W. M. Wonham. “The internal model principle of
control theory”. In: Automatica 12.5 (1976). DOI: 10 . 1016 / 0005 -
1098(76)90006-6.

[36] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. “Developmental
robotics: a survey”. In: Connection Science 15 (2003). DOI: 10.1080/
09540090310001655110.

[37] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa,
M. Ogino, and C. Yoshida. “Cognitive Developmental Robotics: A
Survey”. In: IEEE Trans. on Autonomous Mental Development 1.1
(2009). DOI: 10.1109/TAMD.2009.2021702.

[38] M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella,
and R. Pfeifer. “Body Schema in Robotics: A Review”. In: IEEE
Transactions on Autonomous Mental Development 2.4 (2010). ISSN:
1943-0604. DOI: 10.1109/TAMD.2010.2086454.

[39] M. Hersch, E. Sauser, and A. Billard. “Online learning of the body
schema”. In: International Journal of Humanoid Robotics 5.02 (2008).
DOI: 10.1142/S0219843608001376.

[40] R Martinez-Cantin, M Lopes, and L Montesano. “Body schema
acquisition through active learning”. In: Int. Conf. on Robotics and
Automation. 2010.

[41] J. Sturm, C. Plagemann, and W. Burgard. “Body schema learning
for robotic manipulators from visual self-perception”. In: Journal of
Physiology-Paris 103.3 (2009). DOI: 10.1016/j.jphysparis.2009.08.005.

[42] C. E. Rasmussen. Gaussian processes for machine learning. MIT Press,
2006.

[43] J. Ko and D. Fox. “Learning GP-BayesFilters via Gaussian process
latent variable models”. English. In: Autonomous Robots 30.1 (2010).
DOI: 10.1007/s10514-010-9213-0.

[44] B. Kuipers. “An intellectual history of the Spatial Semantic Hierarchy”.
In: Robotics and cognitive approaches to spatial mapping 38 (2008).

[45] B. Kuipers. “The Spatial Semantic Hierarchy”. In: Artificial Intelligence
119.1–2 (2000).

[46] B. J. Kuipers and T. S. Levitt. “Navigation and mapping in large-scale
space”. In: AI MAGAZINE 9 (1988).

[47] B. Kuipers and Y.-T. Byun. “A Robot Exploration and Mapping Strategy
Based on a Semantic Hierarchy of Spatial Representations”. In: Journal
of Robotics and Autonomous Systems 8 (1991).

[48] E. Remolina and B. Kuipers. “Towards a general theory of topological
maps”. In: Artif. Intell. 152.1 (2004). DOI: 10.1016/S0004-3702(03)
00114-0.

[49] J. Stober, L. Fishgold, and B. Kuipers. “Sensor Map Discovery for
Developing Robots”. In: AAAI Fall Symposium on Manifold Learning
and Its Applications. 2009. URL: http://www.cs.utexas.edu/~stober/pdf/
stoberFSS09.pdf.

[50] J. Modayil. “Discovering sensor space: Constructing spatial embeddings
that explain sensor correlations”. In: Int. Conf. on Development and
Learning. 2010. DOI: 10.1109/DEVLRN.2010.557885.

[51] M. Boerlin, T. Delbruck, and K. Eng. “Getting to know your neighbors:
unsupervised learning of topography from real-world, event-based input”.
In: Neural computation 21.1 (2009). DOI: 10.1162/neco.2009.06-07-
554.

[52] E. Grossmann, J. A. Gaspar, and F. Orabona. “Discrete camera
calibration from pixel streams”. In: Computer Vision and Image
Understanding 114.2 (2010). ISSN: 1077-3142. DOI: 10.1016/j.cviu.
2009.03.009.

[53] A. Censi and D. Scaramuzza. “Calibration by correlation using metric
embedding from non-metric similarities”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2013). DOI: 10.1109/TPAMI.
2013.34.

[54] J. Stober, L. Fishgold, and B. Kuipers. “Learning the Sensorimotor
Structure of the Foveated Retina”. In: Int. Conf. on Epigenetic Robotics.
2009. URL: http://www.eecs.umich.edu/~kuipers/papers/Stober-epirob-
09.pdf.

[55] J. Provost and B. Kuipers. “Self-organizing distinctive state abstraction
using options”. In: Int. Conf. on Epigenetic Robotics. 2007. URL: http:
//www.eecs.umich.edu/~kuipers/research/pubs/Provost-epirob-07.html.

[56] B. Kuipers, P. Beeson, J. Modayil, and J. Provost. “Bootstrap learning
of foundational representations”. In: Connection Science 18.2 (2006).
DOI: 10.1080/09540090600768484.

[57] J. Modayil and B. Kuipers. “The initial development of object knowledge
by a learning robot”. In: Robotics and Autonomous Systems 56.11 (2008).
ISSN: 09218890. DOI: 10.1016/j.robot.2008.08.004.

[58] C. Xu. “Towards the Object Semantic Hierarchy”. In: Int. Conf. on
Development and Learning. 2010. DOI: 10 . 1109 / DEVLRN . 2010 .
5578869.

[59] J. Stober and B. Kuipers. “From pixels to policies: A bootstrapping
agent”. In: Int. Conf. on Development and Learning. 2008. DOI: 10.
1109/DEVLRN.2008.4640813.

[60] A. Censi and R. M. Murray. “Bootstrapping bilinear models of robotic
sensorimotor cascades”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). Shanghai, China,
2011. DOI: 10.1109/ICRA.2011.5979844.

[61] A. Censi and R. M. Murray. “Bootstrapping sensorimotor cascades: a
group-theoretic perspective”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). San Francisco, CA, 2011.
DOI: 10.1109/IROS.2011.6095151.

[62] A. Censi, M. Hakansson, and R. M. Murray. “Fault detection and
isolation from uninterpreted data in robotic sensorimotor cascades”. In:
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). Saint Paul, MN, 2012. DOI: 10.1109/ICRA.2012.
6225311.

http://portal.acm.org/citation.cfm?id=1036905
http://portal.acm.org/citation.cfm?id=1036905
http://arxiv.org/abs/1011.0041
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1007/978-3-642-15567-3_11
http://dx.doi.org/10.1109/CVPR.2010.5540157
http://dx.doi.org/10.1109/CVPR.2010.5540157
http://dx.doi.org/10.1162/neco.2010.01-09-953
http://dx.doi.org/10.1109/CVPR.2010.5539962
http://dx.doi.org/10.1109/CVPR.2010.5539962
http://dx.doi.org/10.1109/TPAMI.2012.268
http://books.nips.cc/papers/files/nips25/NIPS2012_1105.pdf
http://books.nips.cc/papers/files/nips25/NIPS2012_1105.pdf
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1080/00207727008920220
http://dx.doi.org/10.1016/0005-1098(76)90006-6
http://dx.doi.org/10.1016/0005-1098(76)90006-6
http://dx.doi.org/10.1080/09540090310001655110
http://dx.doi.org/10.1080/09540090310001655110
http://dx.doi.org/10.1109/TAMD.2009.2021702
http://dx.doi.org/10.1109/TAMD.2010.2086454
http://dx.doi.org/10.1142/S0219843608001376
http://dx.doi.org/10.1016/j.jphysparis.2009.08.005
http://dx.doi.org/10.1007/s10514-010-9213-0
http://dx.doi.org/10.1016/S0004-3702(03)00114-0
http://dx.doi.org/10.1016/S0004-3702(03)00114-0
http://www.cs.utexas.edu/~stober/pdf/stoberFSS09.pdf
http://www.cs.utexas.edu/~stober/pdf/stoberFSS09.pdf
http://dx.doi.org/10.1109/DEVLRN.2010.557885
http://dx.doi.org/10.1162/neco.2009.06-07-554
http://dx.doi.org/10.1162/neco.2009.06-07-554
http://dx.doi.org/10.1016/j.cviu.2009.03.009
http://dx.doi.org/10.1016/j.cviu.2009.03.009
http://dx.doi.org/10.1109/TPAMI.2013.34
http://dx.doi.org/10.1109/TPAMI.2013.34
http://www.eecs.umich.edu/~kuipers/papers/Stober-epirob-09.pdf
http://www.eecs.umich.edu/~kuipers/papers/Stober-epirob-09.pdf
http://www.eecs.umich.edu/~kuipers/research/pubs/Provost-epirob-07.html
http://www.eecs.umich.edu/~kuipers/research/pubs/Provost-epirob-07.html
http://dx.doi.org/10.1080/09540090600768484
http://dx.doi.org/10.1016/j.robot.2008.08.004
http://dx.doi.org/10.1109/DEVLRN.2010.5578869
http://dx.doi.org/10.1109/DEVLRN.2010.5578869
http://dx.doi.org/10.1109/DEVLRN.2008.4640813
http://dx.doi.org/10.1109/DEVLRN.2008.4640813
http://dx.doi.org/10.1109/ICRA.2011.5979844
http://dx.doi.org/10.1109/IROS.2011.6095151
http://dx.doi.org/10.1109/ICRA.2012.6225311
http://dx.doi.org/10.1109/ICRA.2012.6225311

20

[63] A. Censi and R. M. Murray. “Learning diffeomorphism models
of robotic sensorimotor cascades”. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). Saint
Paul, MN, 2012. DOI: 10.1109/ICRA.2012.6225318.

[64] A. Censi. Bootstrapping Vehicles: A Formal Approach to Unsupervised
Sensorimotor Learning Based on Invariance. Tech. rep. California
Institute of Technology, 2012. URL: http://purl.org/censi/2012/phd.

[65] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. The
MIT Press, 1984. ISBN: 0262521121.

[66] H. Le and D. G. Kendall. “The Riemannian Structure of Euclidean
Shape Spaces: A Novel Environment for Statistics”. In: Annals of
Statistics 21.3 (1993).

[67] P. W. Michor and D. Mumford. “Riemannian geometries on spaces
of plane curves”. In: Journal of the European Mathematics Society 8
(2006).

[68] T. Lochmatter and A. Martinoli. “Theoretical analysis of three bio-
inspired plume tracking algorithms”. In: Int. Conf. on Robotics and
Automation. Kobe, Japan, 2009. ISBN: 978-1-4244-2788-8.

[69] J.-S. Gutmann, G. Brisson, E. Eade, P. Fong, and M. Munich. “Vector
field SLAM”. In: Int. Conf. on Robotics and Automation. 2010. DOI:
10.1109/ROBOT.2010.5509509.

[70] J. Neumann, C. Fermüller, and J. Aloimonos. “Polydioptric camera
design and 3D motion estimation”. In: Conf. on Computer Vision and
Pattern Recognition. Vol. 2. IEEE. IEEE, 2003. ISBN: 0-7695-1900-8.
DOI: 10.1109/CVPR.2003.1211483.

[71] M. Grossberg and S. Nayar. “The Raxel Imaging Model and Ray-
Based Calibration”. In: Int. J. of Computer Vision 61.2 (2005). DOI:
10.1023/B:VISI.0000043754.56350.10.

[72] S. Soatto. “Steps Towards a Theory of Visual Information: Active
Perception, Signal-to-Symbol Conversion and the Interplay Between
Sensing and Control”. In: CoRR abs/1110.2053 (2011). URL: http :
//arxiv.org/abs/1110.2053.

[73] D. L. Elliott. Bilinear control systems: matrices in action. Springer,
2009. DOI: 10.1023/b101451.

[74] E. Margolis. “Reconstruction of periodic bandlimited signals from
nonuniform samples”. MA thesis. Technion, 2004. URL: http://webee.
technion.ac.il/people/YoninaEldar/Download/main.pdf.

[75] W. Favoreel, B. De Moor, and P. Van Overschee. “Subspace identi-
fication of bilinear systems subject to white inputs”. In: IEEE Trans.
on Automatic Control 44.6 (1999). ISSN: 0018-9286. DOI: 10.1109/9.
769370.

[76] V. Verdult and M. Verhaegen. “Kernel methods for subspace identifi-
cation of multivariable {LPV} and bilinear systems”. In: Automatica
41.9 (2005). ISSN: 0005-1098. DOI: 10.1016/j.automatica.2005.03.027.

[77] J.-W. van Wingerden and M. Verhaegen. “Subspace identification
of Bilinear and LPV systems for open- and closed-loop data”. In:
Automatica 45.2 (2009). ISSN: 0005-1098. DOI: 10.1016/j.automatica.
2008.08.015.

[78] L. Kneip, F. T. G. Caprari, and R. Siegwart. “Characterization of the
compact Hokuyo URG-04LX 2D laser range scanner”. In: Int. Conf.
on Robotics and Automation. Kobe, Japan, 2009. DOI: 10.1109/ROBOT.
2009.5152579.

[79] G. Chirikjian. Stochastic Models, Information Theory, and Lie Groups,
Volume 1: Classical Results and Geometric Methods. Applied and Nu-
merical Harmonic Analysis. Birkhäuser, 2009. ISBN: 9780817648022.

[80] S. Benhamou. “How many animals really do the Lévy walk? Comment”.
In: Ecology 89.8 (2008). URL: http://www.jstor.org/stable/10.2307/
27650759.

[81] G. Caron, E. Marchand, and E. Mouaddib. “Photometric visual servoing
for omnidirectional cameras”. English. In: Autonomous Robots 35.2-3
(2013). ISSN: 0929-5593. DOI: 10.1007/s10514-013-9342-3.

[82] R. W. Brockett. “Asymptotic Stability and Feedback Stabilization”.
In: Differential Geometric Control Theory. Ed. by R. W. Brockett,
R. S. Millman, and H. J. Sussmann. Boston: Birkhauser, 1983.

[83] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Berlin:
Springer-Verlag, 1999.

[84] A. Censi, A. Nilsson, and R. M. Murray. “Motion planning in observa-
tions space with learned diffeomorphism models.” In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA).
2013.

[85] Y. Lin, E. Sontag, and Y. Wang. “A Smooth Converse Lyapunov
Theorem for Robust Stability”. In: SIAM Journal on Control and
Optimization 34.1 (1996). DOI: 10.1137/S0363012993259981.

[86] S. Foss and T. Konstantopoulos. “An overview of some stochastic
stability methods”. In: Journal of the Operations Research Society of
Japan 47.4 (2004).

[87] C. Pradalier and P. Bessiere. “Perceptual navigation around a sensori-
motor trajectory”. In: Int. Conf. on Robotics and Automation. Vol. 4.
IEEE, 2004.

[88] D. Fontanelli, A. Danesi, F. A. W. Belo, P. Salaris, and A. Bicchi.
“Visual Servoing in the Large”. In: 28.6 (2009). ISSN: 0278-3649. DOI:
10.1177/0278364908097660.

[89] T. Poggio. “The computational magic of the ventral stream”. In: Nature
Precedings (2011). URL: http://hdl.handle.net/10101/npre.2011.6117.2.

http://dx.doi.org/10.1109/ICRA.2012.6225318
http://purl.org/censi/2012/phd
http://dx.doi.org/10.1109/ROBOT.2010.5509509
http://dx.doi.org/10.1109/CVPR.2003.1211483
http://dx.doi.org/10.1023/B:VISI.0000043754.56350.10
http://arxiv.org/abs/1110.2053
http://arxiv.org/abs/1110.2053
http://dx.doi.org/10.1023/b101451
http://webee.technion.ac.il/people/YoninaEldar/Download/main.pdf
http://webee.technion.ac.il/people/YoninaEldar/Download/main.pdf
http://dx.doi.org/10.1109/9.769370
http://dx.doi.org/10.1109/9.769370
http://dx.doi.org/10.1016/j.automatica.2005.03.027
http://dx.doi.org/10.1016/j.automatica.2008.08.015
http://dx.doi.org/10.1016/j.automatica.2008.08.015
http://dx.doi.org/10.1109/ROBOT.2009.5152579
http://dx.doi.org/10.1109/ROBOT.2009.5152579
http://www.jstor.org/stable/10.2307/27650759
http://www.jstor.org/stable/10.2307/27650759
http://dx.doi.org/10.1007/s10514-013-9342-3
http://dx.doi.org/10.1137/S0363012993259981
http://dx.doi.org/10.1177/0278364908097660
http://hdl.handle.net/10101/npre.2011.6117.2

	Introduction
	Related work
	Contribution and outline

	Modeling the Vehicles universe
	Vehicle kinematics
	Maps and environments
	Relative Exteroceptive Robot Sensors
	Vehicles and robots
	Idealized vehicles

	Dynamics of canonical exteroceptive sensors
	Field-samplers
	Range finders
	Vision sensors

	Bilinear Dynamics Sensors
	Why using bilinear dynamics
	Discrete and continuous bds models
	Spatial sampling preserves bilinearity
	Temporal sampling preserves bilinearity to first order

	Learning bilinear dynamics
	A streaming algorithm for learning bds
	Singular case
	Effect of additive noise
	Streaming implementation
	Being careful with indices

	BDS approximations of canonical sensors
	Sufficient exploration

	Learning experiments
	Simulations setup
	Experiments
	Exploration strategy
	Safety supervisor
	Data visualization

	Findings
	Uniform representation
	Robustness
	Sensitivity
	Influence of environment and exploration statistics
	Composability
	Invariance to reference frame

	Servoing tasks
	Gradient-descent based servoing for BDS models
	Servoing based on longer-horizon prediction

	Robustness to model approximations
	A sufficient condition for convergence
	Vision sensor: convergence in spite of hidden states
	Range finder: convergence in spite of nonlinearities
	Convergence for non-ideal vehicles

	Servoing and navigation experiments
	Evaluation of convergence basins
	Navigation experiments

	Conclusions and future work

