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Learning diffeomorphism models
of robotic sensorimotor cascades

Andrea Censi

Abstract—The problem of bootstrapping consists in designing
agents that can learn from scratch the model of their sensori-
motor cascade (the series of robot actuators, the external world,
and the robot sensors) and use it to achieve useful tasks. In
principle, we would want to design agents that can work for any
robot dynamics and any robot sensor(s). One of the difficulties
of this problem is the fact that the observations are very high
dimensional, the dynamics is nonlinear, and there is a wide
range of “representation nuisances” to which we would want
the agent to be robust. In this paper, we model the dynamics of
sensorimotor cascades using diffeomorphisms of the sensel space.
We show that this model captures the dynamics of camera and
range-finder data, that it can be used for long-term predictions,
and that it can capture nonlinear phenomena such as a limited
field of view. Moreover, by analyzing the learned diffeomorphisms
it is possible to recover the “linear structure” of the dynamics in
a manner which is independent of the commands representation.

I. INTRODUCTION

In the problem of bootstrapping, we ask whether it is
possible for an agent that wakes up connected to uninterpreted
streams of commands and observations, to learn a model of
its sensorimotor cascade (the series of its actuators, the world
dynamics, and its sensors) and then use it to achieve useful
tasks, with no prior information of its unknown (robotic) body
and the external world (Fig. 1). Learning to use unknown
sensors and actuators is one ability of natural intelligence [1],
[2] that we are not able to replicate yet, and it could be the
key to make robots more reliable, for example by being able
to react to unexpected sensor and actuator faults [3].

The fact that the world states are not observable, and
we do not have available behaviorally relevant features of
the observations prevents the direct application of established
learning techniques, such as reinforcement learning [4]. In fact,
one of the key problems of bootstrapping consists in figuring
out what are the hidden states in the world that provide a causal
explanation of the uninterpreted streams of observations and
commands, in terms of an underlying world dynamics. Using
the control-theory jargon, we could call this an identification
problem; however, standard techniques of control theory are
not useful in this context, as they assume either linear time-
invariant systems (an assumption violated for the simplest of
robots) and/or low dimensional data (while robot sensors can
provide up to 1GB/s of sensory data).

In the literature, the most promising approach to bootstrap-
ping consists in attacking the problem layer by layer, by
constructing hierarchical representations [5]. The first steps
consist in understanding from the observed statistics of the
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Figure 1. In the bootstrapping scenario, we assume that the agent only
has access to uninterpreted streams of observations and commands, and it
does not have any prior knowledge of the “world” (the series of the robot
actuators, the external world, and the robot sensors). We are looking for
models general enough to approximate the dynamics of any robot sensor
and actuator, yet simple enough to allow efficient learning. Moreover, we
want these models to be invariant to what we call “representation nuisances”;
these are static invertible transformations that change the representation but
preserve the informative content of the observations and commands signals.
Identifying the classes of transformations to which the agent is not invariant
allows to recognize the hidden assumptions of the models used by the agent.

data what is a plausible grouping of observations by sen-
sor [6], and recovering the geometry of the sensors [7], [8];
with these steps one can transform scrambled streams into
spatially coherent sensor snapshots. The next steps consist
in understanding what is the effect of actions on the sensor
readings, by progressively abstracting the continuous dynamics
into (possibly discrete) primitives [9], [10]. These first steps
are independent of the task. Policies based on some form of
“intrinsic motivation” [11] allow further understanding of the
world, in terms of “distinctive states” [12], “objects” [13], and
global world geometry [14]. At this point, given a discrete
abstraction in terms of primitives/states, more conventional
learning techniques can be used as the top layer in the
architecture (e.g., temporal difference learning [15]). While
several aspects of what would be a complete bootstrapping
architecture have been demonstrated anecdotally, no agent that
can provably work for general robotic sensors/actuators has
been designed.

Previous work: In previous work, we have been trying
to approach the problem from a control-theory perspective.
We considered three canonical robotic sensors: field-samplers,
range-finders, and cameras. Let y° be the raw readings of such
sensors; where s € S represent an index over the sensels (short
for sensory elements) which ranges over the sensel space S,
and y° is, respectively, field intensity, distance reading, and
luminance at sensel s. Surprisingly, at this low level, the three
sensor dynamics are quite similar, as shown in Table I, which
gives an expression for y° as a function of the robot velocities.
This motivated the search for models that could fit all these
dynamics at the same time.

In particular, we proposed the class of bilinear dynamics
systems (BDS) as a possible candidate in [16]. Given a
discretized observation vector y = {yi}lgigny € R™, and
generic commands u € R!*/, the dynamics are assumed to be



of the form:

U = 2,2 Mjyiuf + €. (BDS) (1)
The model is parametrized by a n, x n, x |u| tensor M.
In [17] we studied bilinear gradient dynamics systems
(BGDS), a more constrained class of models that uses ex-
plicitly the spatial organization of the sensels by assuming the
dynamics to depend on the spatial gradient Vy:

Ui = 2. (GoVay; + By) uf +¢,  (BGDS)  (2)
This model is more complicated, but more efficient, as the
complexity is linear in n, instead of quadratic.

These models still suffer from several limitations. The
biggest limitation is that the commands w are implicitly
assumed to be kinematic velocities (if w = 0 then y = 0).
This means that the models are not robust to a change of
representation of the commands: even if the commands were
kinematic velocities, and the relation (2) held, a reparametriza-
tion of the kind w' = f(u), for a generic nonlinear func-
tion f, would not satisfy a similar relation. The same can
be said for nonlinear transformations of the observations. The
tolerance of “representation nuisances”, shown in Fig. 1 as
the transformation groups G" and GY, is the metric with
which we measure the power of bootstrapping agents [18].
Another qualitative limitation is that BDS/BGDS models do
not represent nonlinear phenomena such as occlusions and
limited field of view.

On the more practical side, we have observed that learning
the model parameters from an instantaneous relation between
derivative and commands like (1) or (2) is not efficient
when the robot motion is very slow, because the change in
observations is small with respect to the sensor noise. For
example, consider a robot moving at 0.5m/s. If the robot has
a range-finder updating at 50Hz, the maximum change that
we expect to see in the readings is around lcm, which is
comparable to the sensor error.

In this paper, we try to solve some of these limitations by
modeling the dynamics of robot sensors as global diffeomor-
phisms between possibly large time steps. Instead of modeling
Y, as a function of y, and u;, we try to model y,, from y,,
where the interval to — ¢; is not necessarily small, and the
commands wu; are assumed to be held fixed for ¢ € [t1, t2].

Overview: Section II describes diffeomorphisms dynamical
systems (DDS), the classes of models that we use in this work,
and how to learn it from data.

Section III describes the application of the theory to camera
data. It is shown that the model can represent the basic motions
of a differential-drive robot; that the learned model can be used
for long-term prediction of observations given a sequence of

Table I
CONTINUOUS DYNAMICS OF CANONICAL ROBOTIC SENSORS

sensor S continuous dynamics (far from occlusions)

field sampler  R3
camera  S?
range-finder ~ S?

gs — Zz Viys,uz +Zz (S % Vye)l w? '
9° = pt >, Viytvt + 3, (s X Vi), w' _
g* =22;(Vilogy® — st)v' + 32, (s x Vi), w'

v € R3 and w € R3 are the robot linear and angular velocities; s is a
continuous index ranging over the “sensel space” S; y(s) is the raw sensor
data (field intensity value, pixel luminance, or range reading); V; is the i-
th component of the spatial gradient with respect to s; u(s) is the nearness
(inverse of the distance to the obstacles).

commands; and that this prediction correctly takes into account
the uncertainty due to the limited field of view.

Section IV describes how properties of the dynamics can
be recovered from the learned models. In particular, using
the distance and “anti-distance” between diffeomorphisms, one
can identify redundant commands, as well as identify couples
of commands that have the opposite effect and that should be
grouped together as part of a “reversible” command. Section V
describes the application of the theory to range-finder data,
using a real robot with a differential-drive, as well as two
simulated robots with unicycle and car-like dynamics.

Section VI discusses the invariance properties of the method
with respect to transformations of the observations and com-
mands. Finally, Section VII concludes the paper and discusses
directions for future work.

II. LEARNING DIFFEOMORPHISMS DYNAMICAL SYSTEMS

This section describes the mathematical preliminaries, the
definition of diffeomorphism dynamical systems (DDS), and
how to learn their parameters from data.

Preliminaries: Let & be a smooth Riemannian mani-
fold, and let ds(s1,s2) be the geodesic distance between
points s1,s2 € S. Let F(S) be the set of smooth scalar
fields defined on S. Let Diff(S) be the sets of all diffeo-
morphisms (smooth invertible maps) from & to itself. A
diffeomorphism ¢ € Diff(S) maps each point s € S to another
point (s) € S. We define the following distance between
diffeomorphisms:

Dlp1, ¢2) = / ds(¢1(s), 9a(s)) dS. 3

A. Diffeomorphisms dynamical systems

We define a diffeomorphisms dynamical system (DDS) as
a discrete-time dynamical system with state x;, € F(S),
and a finite commands alphabet 2/ = {uy,...,u}. Each
command u; is associated to a diffeomorphism ¢; € Diff(S).
The transition function from the state ax;, at time & to the state
T4 1S given by

4)

where ¢ is the diffeomorphism associated to the command
given at time k. The observations y = {y®}cs are assumed
to be a censored version of x, in the sense that we only can
see the state in a subset V C S:

5_{mi+ez ifseV,
Yk =

ri, =2t (DDS)

5

0 ifs¢V, ©)
where €f is assumed to be additive gaussian noise. This
censoring is needed to model sensors with a limited field of
view.

B. Representing and learning DDS

Suppose that we are given training examples, consisting of
tuples (Yy, jk, Yp41) » Meaning that at time k we observed y,,
then, after applying the command u;,, we observed y,.. Our
objective is estimating the diffeomorphisms ¢;.

We assume that the S domain has been discretized into a
finite number n, of cells {s'}1<;<n, C S, such that the i-th



cell has center s’. We represent a diffeomorphism ¢ by' its
discretized version ¢ : [1,n,] — [1, n,] that associates to each
cell s* another cell s*, such that i = @(i).

Learning can be done independently cell by cell. In fact,
when the j-th command is applied, we expect that, as given
by (4)-(5):

Y1 = y;fj(S)~

This can be discretized in the following way:

210
Z/lsé+1 = Ui ’

Therefore, the value ¢;(i) can be found by maximum-
likelihood as follows:

$;(i) = argminBu—u, {3 — i I} (©)

Assuming we have a bound M on the maximum displacement
over all diffeomorphisms:

max ds (s, ;(s)) < M,
1,8

then the search for i’ will not be needed to be extended to
all cells in the domain, but only on the neighbors of ¢ such
that ds(s?, s" ) < M. This is illustrated in Fig. 2c-2d for 2D
domains. In practice, for each command and for each cell, we
consider a square neighborhood of cells in which to search for
the matching cell.

This simple algorithm has complexity O(p?™AM), where
A is the area of the sensor, p the resolution, and m = dim(S),
because for each of the n, = p™ A cells, we have to consider
a number of neighbors proportional to p™ M. Still, it is
embarrassingly parallel, as the expectations in (6) can be
computed separately, therefore it has decent performance if
one uses vectorized operations, also in interpreted languages
like Python (we obtain 12fps for 100 x 100 domains and
M = 15% of the domain).

C. Estimating and propagating uncertainty

In principle, one could represent each value ¢;(i) as a
random variable, and estimate the full posterior distribution. In
practice, this complexity is not needed in our application, and
we limit ourselves to keeping track of a single scalar measure
of uncertainty Fjl, which we interpret as being proportional
to Trace(cov(ip;(s%))). This uncertainty is computed from the
value of the cost function (6):

05 = By, (i i I}
In practice, this simple model allows to represent the uncer-
tainties due to the limited field of view, in fact we will have
that I'" is very large for cells s’ such that ¢;(s') # V; that
is, for cells whose values cannot be predicted because they
depend on observations outside the field of view V.

'The only problem we encountered with this representation concerns
the computation of the diffeomorphism inverse. In general, the maps ¢ :
[1,ny] — [1,ny] are not invertible because not surjective. The approximation
we use for @~ ! consists in: 1) Averaging over cells if multiple cells
correspond to the same cell (that is, for the cells 4’ such that there are multiple
cells for which @(i1) = @(i2) = -+ = ¢’); 2) Interpolate valid neighbor
values for cells not in Image() (that is, for the cells i’ such that there exist
no ¢ for which ¢(z) = 4’).

We will also need to propagate the uncertainty. Note that the
DDS representation allows to compress a series of commands
into one supercommand whose diffeomorphism is the compo-
sition of the individual diffeomorphisms. The composition of
commands can keep track of the uncertainty as well. Suppose
that we have two commands u, and u; and that we learned
the two corresponding uncertain diffeomorphisms (@,, ;)
and (Pp,I'y). Then the composite command u. = up © U,
will be represented by the pair (., I'.), where @, is just the
composition of ¢, and @y:

Beli) = @o(5a())
but I'. takes into account both a transport and a diffusion
component: ‘ ) _
s =1 415

C

III. APPLICATION TO CAMERA DATA

This section describes the application of the theory to
camera data for a mobile robot. It is shown that the learned
diffeomorphisms capture the motions, as well as the un-
certainties due to the limited field of view of the camera.
Based on the model, one can obtain long-term predictions of
the observations given a sequence of commands, and these
predictions correctly take into account the uncertainty due to
the limited field of view.

Platform:  We use an Evolution Robotics ERI
robot (Fig. 2a), with a cheap web-cam on board that
gives 320x240 frames at ~7.5Hz. The robot is driven through
a variety of indoor and outdoor environments (Fig. 2b)
for a total of around 50 minutes’. The robot linear and
angular velocities were chosen among the combinations of
w € {=0.2,0,+0.2} rad/s and v € {—0.3,0,+0.3} m/s.

Results: Fig. 3 shows the resulting of the diffeomorphisms
learning applied to this data. Not all combinations of com-
mands are displayed; in particular, those corresponding to the
robot backing up were not chosen frequently enough to obtain
reliable estimates of the corresponding diffeomorphisms.

Because of the fact that we also learn the uncertainty of the
diffeomorphisms, we can correctly predict effects due to the
limited field of view for the camera. For example, for the first
command, corresponding to a pure rotation to the right, we
can predict that for 8 time steps we can predict the left half
of the image, but we will not know anything about the right
half.

IV. INFERRING THE INTRINSIC LINEAR STRUCTURE
OF THE COMMANDS SPACE

Assuming a class of models, such as BDS/BGDS, where the
commands have a linear effect on the dynamics (for example,
if they correspond to kinematic velocities) automatically gives
rich structural properties to the commands space. For example,
the effect of applying u' = 2u is twice larger than the effect
of u; the effect of u = 0 corresponds to a null action, and the
effect of u' = —u is the opposite of . If the commands are
kinematic, this structure can be lost if they are represented
in a nonlinear way, for example if one has available the
commands v’ = f(u) instead of w. In this section, we show
how this structure of the commands space is recovered from

2The log files used are available at http:/purl.org/censi/201 1/diffeo.
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Figure 2. (a) For the first set of experiments we use an Evolution Robotics ER1 with an on-board camera. (b) The robot is driven through a variety of indoor
and outdoor environments. (c¢) To learn the diffeomorphisms, we assume to have a bound on the maximum displacement d(s, ¢(s)) on the manifold S. (d) In
the implementation, we are limited to square domains. The search area around each point is constrained to be a square, with given width and height, which
are tunable parameters that affect the efficiency of the algorithm.
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Figure 3. This figure shows a few of the learned diffeomorphisms learned from the camera data. Each row corresponds to a particular command given to
the robot. The first column shows the effect of the command on the robot pose. The second and third row show the corresponding diffeomorphism, displayed
using phase and modulus. The last four columns show how the learned diffeomorphisms can be used for prediction. The columns show the predicted image
following the application of the command for 1, 2, 4, and 8 time steps. The uncertain parts of the predictions are shown in gray. The visualization of this
uncertainty is done by propagating both the diffeomorphism uncertainty and the image values, as shown in the last two rows, and then blending the values
with a solid gray rectangle according to the predicted uncertainty.



the learned diffeomorphisms if it is present, independently of
the commands representation.

Identifying redundant and null commands: We call a pair of
commands (u;, uy) redundant if they have the same effect on
the observations. If two commands give the same effect, then
one of them can be removed from the commands alphabet.
Redundant commands can be recognized simply by looking
at the distance between the corresponding diffeomorphisms.
Formally, we define the distance Dema(u;, uy) between two
commands as the difference between the corresponding dif-
feomorphisms, normalized by the average distance between
all diffeomorphisms:

D(@jv@k) )
e 3 Dt o)

The normalization makes this a unitless quantity that does not
depend on the size of S. As a special case, commands that have
no effect can be easily identified by considering the distance
of their diffeomorphism from the identity diffeomorphism Zs.

Identifying reversible commands: We call a pair of com-
mands (u;,uy) reversible if applying u; followed by wuy
brings the system in the initial state, and vice versa. Two
commands would be perfectly reversible if ¢; = @,;1 or,
equivalently, gpj_l = @i, OF Yo ; = p;op, = ZIs.
All of these conditions are equivalent in the continuum case
and without noise, but might give slightly different results in
practice due to numerical approximations and estimation noise.
Somehow arbitrarily, we choose to define the anti-distance of
a commands pair (u;, uy) as

3(D(ej, 01 1) + D9 s o))

e 21 om D@t om)
If the anti-distance is zero, then the command pair is a
perfectly reversible pair. The reason for averaging D(¢p;, gogl)

and D(cpj_l,cpk) choice is that it enforces the symmetry
condition Acmg(u;, ug) = Acma(uk, u;).

Dema(uj, uy) =

Acma(wj, up) =

V. APPLICATION TO RANGE-FINDER DATA

In this section, we apply the theory to sensorimotor cascades
with range-finder data. We preprocess the 1D range-data to
obtain a 2D population code representation (Fig. 3), which
allows to treat range-data using exactly the same code as 2D
images. We try the method on three dynamics: a differential-
drive robot (where the commands are left/right track velocity),
and, in simulation, with a unicycle dynamics (commanded in
linear/angular velocity) and a car-like dynamics (commanded
with steering angle and driving velocity). We show that the
concept of commands distance/anti-distance allows to discover
redundant commands and reversible commands pairs indepen-
dently of the commands representation.

Processing pipeline: The pipeline that we use for processing
the range-finder data is shown in Fig. 4. Starting from a planar
scan (Fig. 4a), we consider the polar representation (Fig. 4b).
Then, we transform the 1D signal into a 2D signal by using
a population code representation (Fig. 4c); each reading y°
is assigned a row of cells, and each cell is assigned a
center ¢**. The activation level of each cell is a function of the
distance between 4 and c>*. Denoting the 2D signal Y**, we
set Y% = f(|y* — c**|) where f is a small Gaussian kernel

(0 = 1% of the range of 3%). Once we have the 2D signal,
we forget its origin as a range-finder scan, and we treat it like
any other image.

Fig. 4 shows also an example of prediction. Starting from
the 2D signal Yj in Fig. 4¢, and a learned diffeomorphism ¢
(represented here by Lena), we obtain the predicted signal Yy
in Fig. 4d by applying 4 times the diffeomorphism ¢ (or, by
first computing ¢’ = popopoy, and then applying ¢’ to Yy,
which is the same, up to numerical errors). For visualizing
the result, we can convert back to range readings (Fig. 4e)
and range scan (Fig. 4f).

Dynamics considered: We consider three common mobile
robot dynamics for wheeled mobile robots: unicycle (Fig. 5a),
car-like (Fig. 6b), and differential-drive (Fig. 7¢). All three
dynamics have two commands: by appropriate normalization
we can assume that u € [—1,+1] x [—1, +1] for all of them.

The unicycle and differential-drive have the same dynamics,
but with different representations of the commands: the linear
and angular velocity of the unicycle are linearly related to
left/right wheel velocity for a differential drive. For the car-
like dynamics, we assume that one command is the driving
velocity, and the other is the instantaneous steering angle. The
car-like dynamics is more restricted than the other two, as the
vehicle cannot turn in place.

Learning data: As an example of a differential-drive robot,
we use a Landroid® robot, with a Hokuyo [19] range-finder on
board. The Hokuyo has a maximum range of 8m and an update
frequency of 10Hz. The field of view of a Hokuyo is 270°,
but the sensor is partially obstructed by the WiFi antennas.
The learning data is taken in a cluttered lab environment,
for a total of about 45 minutes. We use simulated data for
the unicycle and the car-like, simulating a 360° range-finder
with the same range as the Hokuyo. The simulated world
is generated randomly from a collection of randomly placed
polygons; the simulation is tuned to have approximately the
same spatial statistics of the lab environment.

The commands alphabet is composed of the 9 canonical
commands of the form (a, b), for a,b € {—1,0,1}. The effect
on the robot pose of choosing each canonical command is
sketched in the grids in Fig. 5b, 6b, 7b.

Learned diffeomorphisms: The learned diffeomorphisms are
shown in the grids in Fig. 5c, 6¢, 7c. Here, the diffeomor-
phisms are visualized by their effect on the Lena template.

It turns out that learning diffeomorphisms of the population-
code representation of range-finder data is more challenging
than learning diffeomorphisms of RGB images, because the
data is much sparser (see, e.g., Fig. 4cd). It was surprising
to see that, of all the diffeomorphisms learned, the most
noisy result is for the commands that do not move the robot
(Fig. 6¢, middle row), the reason being that the motion we are
trying to recover is small (actually, zero) with respect to the
sensor noise. This uncertainty is appropriately captured by the
estimate of I' (not shown).

Learned command structure:  Tables 1II, I, IV
show the computed distance Demg(u;,us) and anti-
distance Acmq(u;, ug) for all commands pairs for the three
dynamics considered.

3The Landroid is a prototype produced by iRobot:
http://www.irobot.com/gi/research/Advanced_Platforms/LANdroids_Robot
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Figure 4. This figure shows the pipeline that we use for range-finder data. Starting from the scan (subfigure a) we consider the raw range-readings (i.e., the
polar representation of the scan). Then we use a population code to obtain a 2D image from the 1D data. Once we have the 2D data, we forget about its
origin as a range-finder scan, and we use exactly the same code we used for images. Here we show an example of prediction: one learned diffeomorphism,
here represented by Lena, is applied 4 times to the image in ¢ to obtain the predicted image in d. For visualization purposes, from the 2D image we can go

back to the range readings (subfigure e) and obtain the predicted scan (subfigure f), which shows that the learned diffeomorphism corresponded to a pure
rotation.

F1

y lgjé
_I

far near
+180°
u? 4
0t
0°
u: angular velocity _ : /
u’: linear velocity ! J /|
| -180°
(a) Unicycle dynamics (b) Canonical motions (c) Corresponding learned diffeomorphisms (d) Detail for (0,1) (forward)

Figure 5. In this series of figures, subfigure a illustrates the robot dynamics; in this case, a unicycle dynamics. Subfigure b shows the effect on the robot

pose of the 9 canonical commands. The gray arrows denote the initial pose, and the red/green arrows (for the = and y direction, respectively) show the robot
final pose after applying the motion. Subfigure c¢ shows the effect of the commands on the population code representation for a range-finder scan mounted on
the robot (see Fig. 4 for an explanation of the preprocessing to obtain a 2D image from a 1D scan).
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Figure 6. A car-like dynamics, commanded in driving velocity and instantaneous steering angle, is more restricted than a unicycle as the robot cannot turn
in place. Note that the three commands (0, —1), (0,0), (0,+1) are equivalent and correspond to the robot staying in place.
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Figure 7. A differential-drive dynamics is the same as a unicycle dynamics following a change of representation for the commands; compare subfigure b

with Fig. 5b. The data we use for the differential drive comes from a real robot, mounting a Hokuyo range-finder with a 270° field of view. There are two
antennas in front obstructing the range-finder, therefore the learned diffeomorphisms have two missing stripes.



Table I
DISTANCE AND ANTI-DISTANCE MATRICES FOR UNICYCLE DYNAMICS.

(A) DISTANCE BETWEEN COMMANDS

(B) ANTI-DISTANCE BETWEEN COMMANDS

) (00)[(01)[(0 DO, 1)[(1 1)[(10)[(11)[(1 0] OO [0.D[O- DGO LD, 1)[(10)[(11)[(1 D]
u 00) | - 068 070 I.I9 121 123 086 092 001 00) | - 085 083 097 [.03 .02 134 138 1338
©.D) 093 1.04 092 125 097 086 1.17 ©,D) - 036 107 126 095 1.17 135 108
w0 ©-D - 104 123 091 098 1.18 087 -1 1.07 095 126 1.15 1.06 133
(1,0) 050 053 174 173 175 (1,0) 1.81 1.81 021 058 057
(@D 7 092 173 182 1.66 @D 171 058 097 0.28
(T-D L. - 173 182 166 1D - 057 030 0095
% angular velocity 1.0) - 046 044 1,0) - 190 191
u!: linear velocity 1,0 _ 0.84 1,D ﬂ - 1.84
-L-D - (-1,-1) -
Table III

DISTANCE AND ANTI-DISTANCE MATRICES FOR CAR-LIKE DYNAMICS.

(A) DISTANCE BETWEEN COMMANDS

(B) ANTI-DISTANCE BETWEEN COMMANDS

; 00 [O,D ][O D LY [TLD], 1)[(10)[(11)[(1 D] 00 [O,D O DO, 1)[(1 1)[(10)[(11)[(1 D]
w (0,0) - 0.65 0.66 085 1.51 094 0.85 096 149 (0,0) - 1.20 1.22 1.05 1.04 1.66 1.01 1.03
0,1) 0.56 0.75 140 097 076 097 1.39 0,1) - 1.10 095 1.07 1.56 0.91 157 1.07
(0,-1) - 0.78 143 096 0.79 097 141 0,-1) - 098 1.07 158 093 159 1.03
J uf (1,0) I 1.02 096 091 122 1.30 (1,0) I- I - 1.29 140 041 1.19 1.03
(I,I) - 1.85 129 2.01 0.89 (I,T) - 090 1.04 025 1091
(1,-1) = - 1.23 0.80 2.00 (1,-1) JJ - 1.14 2.02 0.23
. _ T,0) - 098 099 1,0) - 138 130
S o CLD -~ - 185 CLD | | - .-lc - 091
(-1,-1) - (-1,-1) -
Table IV

DISTANCE AND ANTI-DISTANCE MATRIX FOR LANDROID (DIFFERENTIAL DRIVE).

(A) DISTANCE BETWEEN COMMANDS

(B) ANTI-DISTANCE BETWEEN COMMANDS

(00)[(01)[(0 DO (LD [(L-D[CLO) LD D] (00)[(01)[(0 DO LD, 1)[( 10)[( T 1)[( D]
w0 ul ©0,0) T34 125 141 089 149 052 089 086 ©.0) 108 146 107 132 133 126
©,0 - 112 055 088 081 134 174 087 ©,D - 176 208 149 221 114 139 1.46
0D - 129 090 137 124 162 096 0D 180 136 192 151 1.73 133
(ED) - - 095 067 145 179 0.96 (KV) 156 229 1.06 133 151
w0 left wheel velocity (8] .J 1.06 092 130 0.54 @D 170 135 163 095
ul: right wheel velocity aT-D u - 151 186 1.03 T-D - 136 126 1.65
Lo |= - 092 087 L) - 201 133
(GRY) b I- - 124 LD - 160
G-1.-1) - G-1.-D -
For example, for the unicycle the reversible pairs (i.e., fixed in time) invertible transformations that act on

are <(_17 _1)5 (17 1)>’ <(1a O)a (_L O)>’ <(Oa +1)7 (Oa _1)>7
((—=1,1),(1,—1)), and these are given the smaller values of
anti-distance in Table IIIb. The unicycle commands have a
native linear structure, so reversible pairs are of the form
((a> b)’ (_a7 _b)>'

The car-like dynamics has the three null and redundant
commands: (0,0), (0,1), and (0, —1); these correspond to the
driving velocity set to zero, and their corresponding diffeo-
morphism is the identity. The detected reversible pairs are
<(17O)7 (_17 O)> ) <(1, 1)7 (_L 1)> ) <(17 _1)7 (_17 _1>>; these
are of the form ((a, b), (—a, b)), which shows that the dynam-
ics of the car-like is not linear in the original representation.
Yet, we are able infer the linear structure from the analysis of
the learned diffeomorphisms.

For the differential-drive dynamics, learned with real data,
the pairs with the two lowest anti-distance are {((1,0), (—1,0))
and ((1,1),(—1,—1)). Then, there are a few false matches
which have lower anti-distance than the other two pairs of
reversible commands ({(0,1), (0, —1)) and ((—1,1), (1, —1)).
This is probably due to the fact that computing the inverse
of a diffeomorphism is very sensitive to noise, and currently
we do not take into account the estimated diffeomorphism
uncertainty, which is very large in this case, due to the limited
field of view, and the antennas occlusions.

VI. DISCUSSION

Invariance analysis: Fig. 1 shows the representation nui-
sances G" and GY acting on the commands and the obser-
vations, respectively. These are to be interpreted as static

the signals, by changing their representation but not their
informative content. Representation nuisances are a technical
device that allows to characterize the hidden assumptions
of agents by their invariance properties [18]. In principle, a
generic bootstrapping agent should not care about the repre-
sentation of the data, however, in practice, one has to choose
a particular class of models, and this choice often implies
several hidden assumptions about the data. For example, we
noticed in the introduction that BDS/BGDS models are not
robust to a nonlinear reparametrization of w: if the dynamics
is linear in w, it cannot be affine also in f(u), for f a
generic nonlinear transformation. This non-invariance can be
interpreted as a bias of the class of models towards capturing
only a certain representation of a given system. It will likely
never be practical to obtain agents which are invariant to
all possible representation nuisances; however, it is important
to do this invariance analysis to understand the limits of a
proposed class of models and to measure progress towards
solving the general problem.

For the models used in this paper, we notice the following
invariance properties. As for the commands, the method is
invariant to any reparametrization of the kind v’ = f(u), as
we only use the commands values as labels.

As for the observations, we notice that the DDS class of
models is closed with respect to diffeomorphisms of &, in
the sense that, if the dynamics of the observations y° can be
represented by a DDS, then also the dynamics of z° = y“‘(s),
for any « € Diff(S) can be represented as a DDS. This implies
several invariance properties with respect to reparametrization



of the original data. For example, let p(d) be the range-
finder reading as a function of the direction #. Suppose that,
instead of the range-finder readings p(6), the sensor provided
the readings () = ¢g(p(f)), for any nonlinear invertible
function g : Rt — RT. It is easy to see that, once the
readings are transformed to the 2D representation of Fig. 4c,
the effect of g would simply be a diffeomorphism of the 2D
domain. Therefore, we conclude that the method is robust
to a (continuous) change of representation of the original
readings. As another example, in the case of the camera,
robustness to a diffeomorphism « means that the method is not
dependent on knowing the precise camera calibration (i.e., the
direction of each pixel on the visual sphere), as the unknown
camera calibration can be thought as a unknown arbitrary
diffeomorphism from the domain S (the camera frame) to the
visual sphere S2.

Unfortunately, the distance (3) that we used so far is not
invariant to diffeomorphisms, in the sense that D(a o @1, 0
p2) # D(p1, 2). This means that the thresholds to commands
distances and anti-distances to decide if commands pairs are
redundant or reversible pairs would have to be re-tuned if the
parametrization of S change.

Relation to discrete diffeomorphisms: The discretization
of diffeomorphisms that we used in this paper is intuitive
but does not conserve certain important properties. Discrete
geometry is a discipline concerned with the discretization
of objects in differential geometry to a discrete domain,
and finds applications in area such as fluid mechanics and
computer graphics. Gawlik ef. al. [20] describe the discrete
diffeomorphism group: if a certain manifold is approximated
with a simplicial complex of n cells, discrete diffeomorphisms
are represented as a certain subfamily of n x n stochastic
matrices, in a way such that properties of continuous diffeo-
morphisms are preserved in the discretized version. In practice,
using stochastic matrices allows each cell to correspond to
multiple cells, even without considering uncertainty. Using
such representation would probably improve the accuracy
of the representation, but the possible accuracy gains are
to be weighted with the increased computational complexity
(from O(n) of the current method to O(n?) of the discrete
diffeomorphism group, even without considering uncertainty).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a new candidate model for
describing the dynamics of robotic sensorimotor cascade. With
respect to previous work (BDS/BGDS models), it improves on
several fronts: it is less sensitive to instantaneous sensor noise,
it does not rely on a linear structure for the commands (but can
recover it if it is present), it allows to represent uncertainties
due to occlusions or limited field of view, it allows long-term
prediction, and its representation allows the compressibility of
sequence of commands into one supercommand. However, it
is much more expensive to learn.

There are a number of possible directions for future work.
In this paper we have assumed that the alphabet U/ =
{w1, ..., up,} is given. However, in practice, one has that the
commands naturally live in a continuous domain; for example
U = [~1,+1]'l. An open problem is designing an agent that
starts from the continuous domain, and automatically chooses
a discrete set of actions that are the best representation of the

dynamics given finite computational resources and learning
time. This appears to be relevant for planning problems (ser-
voing, exploration, etc.) where the dynamics of the platform is
abstracted away using this representation, and planning is done
completely in observation space. The estimation problem can
be improved as well: for now, each cell of the diffeomorphism
is estimated separately from the others but introducing some
kind of regularization would help. However, it is unclear how
to do this in a way which is invariant to reparametrization
of the domain, and that can tolerate the noise introduced by
faulty sensels.
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