
1

Bootstrapping bilinear models of robotic sensorimotor cascades
Andrea Censi Richard M. Murray

Abstract—We consider the bootstrapping problem, which con-
sists in learning a model of the agent’s sensors and actuators
starting from zero prior information, and we take the problem
of servoing as a cross-modal task to validate the learned models.
We study the class of sensors with bilinear dynamics, for which
the derivative of the observations is a bilinear form of the control
commands and the observations themselves. This class of models
is simple, yet general enough to represent the main phenomena
of three representative sensors (field sampler, camera, and range-
finder), apparently very different from one another. It also allows
a bootstrapping algorithm based on Hebbian learning, and a sim-
ple bioplausible control strategy. The convergence properties of
learning and control are demonstrated with extensive simulations
and by analytical arguments.

I. INTRODUCTION

Two features of natural intelligence that we are far from
emulating in artificial systems are its adaptiveness and gener-
ality. The human neocortex is highly uniform and its parts can
be repurposed; for example, the visual cortex is repurposed to
process tactile information in blind subjects [1]. Reproducing
the same adaptability in artificial systems is a vast problem
considered in various forms (and by various names) in several
fields, such as AI, machine learning, robotics, and the special-
ized (and fairly distinct) fields of epigenetic and developmental
robotics [2], [3].

A rather extreme, yet concrete, version of the problem has
been put forward by Kuipers and colleagues in a long series
of papers (see [4], [5], [6] and references therein). Suppose
that an agent starts its life with no prior information about
its sensors and actuators. It can read the sensors output as
a sequence of values, but no semantics is associated to them.
Likewise, it does not know how the unlabeled commands it can
generate affect the world. The bootstrapping problem concerns
creating a model for its sensorimotor cascade from scratch, and
using it to achieve useful tasks.

Bootstrapping can be seen as an extreme form of system
identification/calibration. Currently, there exist autocalibra-
tion techniques that can estimate parametric models of the
dynamics (for example, the odometric parameters) or the
extrinsic sensor configuration, (although the solutions, rather
than general, tend to be tailored to specific sensors or groups
of sensors), but always the type of sensors/actuators being
calibrated is known a priori. Can a robot learn to use an un-
known sensor and unknown actuators? Can the same learning
algorithm work for a range-finder and a camera? These are, at
the moment, open questions. They are important for practical
robotics applications: it would be extremely convenient, if
you could just attach any sensor to a robot, and the robot

Department of Control & Dynamical Systems, Division of Engineering and
Applied Science, California Institute of Technology, Pasadena, MC 107-81,
91125, CA, USA. E-mail: {andrea,murray}@cds.caltech.edu

would learn how to use it, without tedious programming. More
in general, we believe that robotic systems are the perfect
benchmark for supposedly “universal learning agents”, which
so far have been studied for only perception/classification
tasks [7], or as body-less agents [8].

The most complete exemplification of Kuipers and col-
leagues’ idea of a bootstrapping agent is the Spatial Se-
mantic Hierarchy [9]. They show that it is possible to start
from uninterpreted sensor data and build successive layers of
representation up to a topological map of the environment.
The crucial transition from continuous sensor values to sym-
bolic representations depends on the definition of trackers,
distinctive features in the sensory stream whose behavior is
predicted by the agent’s action. Their work offers several
opportunities for extension. One concern is that their results
remain largely anecdotal, in the sense that they are illustrated
by simulations/experiments, but not by proofs; this makes it
hard to build on them. The other concern is that most of the
results regard the case of range-finders: while they showed,
in principle, that the same design pattern could be applied
to different sensor modalities, it is unclear whether exactly
the same algorithm could be run unchanged for different
sensorimotor cascades. The two aspects of provability and
generality are our focus in this paper.

This paper shows that it is possible to design unsupervised
learning algorithms that learn generative models of a robotics
sensorimotor cascade, for a wide range of sensors, and use
that model to perform useful tasks. Moreover, the model we
consider is simple enough that many of its properties can be
proved theoretically.

Throughout the paper, we consider three classes of sensors:
cameras; range-finders, devices sensing the distance to the
closest obstacle; and field samplers, devices that sample a
generic spatial field, such as the concentration of a chem-
ical substance. We call these three “canonical” sensors, in
the sense that they are representative of many others. For
example, the range-finder abstraction encompasses both sparse

bootstrapping

agent

uninterpreted

values

uninterpreted

commands

unknown

dynamics

unknown

sensor(s)

unknown world

y u

Figure 1. The bootstrapping problem. Can an agent with no prior information
about its sensors and actuators learn a model of its sensorimotor cascade, and
use it for useful tasks? Being able to solve this problem would allow us to
realize truly zero-calibration plug-and-play robotics.

2011 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/cm11-icra.html



2

sonar-like sensors, as well as dense lidar-like sensors. The
camera abstraction encompasses RGB and infrared cameras.
The field-sampler is general enough to represent olfactory and
temperature sensors (see, e.g., [10], [11]). The idea is that,
even if these three sensors do not capture all possible sensors,
they cover enough ground such that, if we present an algorithm
that can work for all of these, then it would be fair to think it is
a “generic” algorithm. As for the robot dynamics, we limit the
analysis to fully actuated robots controlled in velocity (still,
the agent does not know which command is which).

Models are only as good as the actions they generate. To
show that the bootstrapping agent has acquired a useful model
of its sensorimotor cascade, we consider its performance in
the servoing task. Let y be the observations (for example, the
raw pixel intensities returned by a camera), and let u be the
commands. We define servoing as follows.

Problem I.1. Given a goal observation y?, choose u(t) such
that y(t)→ y?.

This is an interesting task to consider because the problem
statement is simple, it makes sense for all sensor modalities,
and the ability to solve it means that the agent has captured a
significant part of its sensorimotor cascade’s actual model.

Our approach has been to study a model which is fairly
general, yet simple enough to be learned and analyzed. In
Section II we consider the abstract class of bilinear dynamics
sensors and we design a two-phase bootstrapping strategy.
During a first unsupervised learning phase, the agent learns
a representation of its sensorimotor cascade using a simple
Hebbian-learning based algorithm. In the second phase, the
control action solving the servoing task is given as a function
of the learned model. In Section III the algorithm is validated
in simulation, for various configurations of the three sensors.
Section IV concerns actually proving that the algorithm works
for the three canonical sensors.

Most of the proofs are omitted and reported in an extended
version of this paper [12].

II. BOOTSTRAPPING BILINEAR DYNAMICS SENSORS

At the heart of bootstrapping, there is a problem of predic-
tion: how do actions change the agent’s view of the world?
Specifically, how do the actions u change y? Any model we
decide to use must be general enough to be applied to different
sensorimotor cascades, must be informative enough so that
we can use it to solve the problem of servoing, and it must
be simple enough so that it is easy to learn and analyze. In
this section, we argue that the simplest yet useful model for
robotics sensorimotor cascades is assuming that ẏ is a bilinear
form of y and u; if this holds exactly, we call the sensor a
bilinear dynamics sensor (BDS). We then study the problem
of learning unsupervisedly the model of a BDS and how to use
that model for servoing.

Notation and formal definitions: We consider sensors com-
posed of a set of sensory elements (sensels) that are physically
related to one another. We write the observations as y =
{ys}s∈Y , where s is the sensel position ranging over the
sensel space Y . In the case of a camera, the sensels span

the visual sphere S2; s corresponds to a pixel’s direction, and
ys to the intensity measured by that pixel. Real robots have
discrete sensors with a finite number of sensels; but to make
the derivation simpler we pretend that the sensel space Y is
continuous. The values returned by the sensors lie in a certain
output space O. For a color camera, O would be the RGB
space; for a range-finder, O would be R+ (distances). For
simplicity, we will just assume O to be R; everything can
be extended to more complicated output spaces. At each time,
the sensor returns the observations as a function from Y to R,
assumed differentiable. A formal signature for the observations
y is y : time→ C1(Y; R).

We assume that there is an inner product defined on
C1(Y; R). This means that we have a way to measure the
dissimilarity of two observations by the norm induced by
the inner product. We use the tensorial notation to represent
the inner product. Let ys represent the value of y at the
sensel s ∈ Y . We put the index up in “ys” with analogy to
covariant tensors. Given two observations y1 and y2, their in-
ner product 〈〈y1,y2〉〉 can be represented by contracting ys

1, y
v
2

with a (0, 2) tensor msv: 〈〈y1,y2〉〉 = msvy
s
1y

v
2 . Here, using

the Einstein convention, summation (integration) is assumed
over indices that appear twice (up and down). The inner
product allows to define a norm ‖y‖2 = 〈〈y,y〉〉 as well as a
conjugation operation y 7→ y∗ by y∗s = msvy

v.
Why using a bilinear model: In the most general case, a

continuous-time dynamical system can be written as ẋ =
f(x,u); y = h(x), where x represents the hidden state. How-
ever, one seldom sees an explicit model of this kind for sensors
such as cameras or range finders, because the function h
should encode all information regarding the environment, and
a closed form is impossible to write except in the simplest
of environments. One alternative representation is focusing on
the observations dynamics ẏ = g(y,u,x). In Section IV we
show that, for the three canonical sensors, this can actually
be written in a closed form. In most cases, the function g
depends on the underlying unobservable state x. An agent that
does not have access to the state x (and its dynamics) cannot
learn such a model. This motivates us to look at approximating
the observations dynamics by disregarding the dependence on
the state, thus looking for models of the form ẏ = g(y,u).
Because the agent has access to y, ẏ, and u, learning the
map g from the data is a well-defined problem.

Rather than trying to learn a generic nonlinear g, which
appears to be a daunting task, especially for cases where y
consists of thousands of elements (pixels of a camera), our
approach has been to keep simplifying the model until one
obtains something tractable. For example, a second-order
linearization of g leads to the expression

ẏ = a +Ay +Bu + C(y,y) +D(y,u) + E(u,u). (II.1)

Here A and B are linear operators, but C,D,E are tensors
(later we make the tensor notation more precise). If y and u
have dimensions n and k, then C,D,E have dimensions,
respectively, n× n× n, n× n× k, and n× k × k.

We can ignore some terms in (II.1) by using some assump-
tions regarding our specific context. For example, if we assume
that u represents a “movement” or “velocity” command, in



3

the sense that if u is 0, then the pose does not change,
and y does not change as well (u = 0 ⇒ ẏ = 0), we
can omit the terms a, Ay and C(y,y), and we are left with
ẏ = Bu +D(y,u) + E(u,u).

If we assume that u is a symmetric velocity commands,
in the sense that applying +u gives the opposite effect of
applying −u, then we can get rid of the E(u,u) term as well.
We are left with the model ẏ = Bu +D(y,u), where D is
a bilinear operator. We can incorporate Bu into the second
term by assuming there is a trivial observation whose value
is always 1. In conclusion, our ansatz for a generic robotic
sensor is a bilinear model of the kind ẏ = D(y,u).

Definition 1. A sensor is a bilinear dynamics sensor (BDS),
for a certain choice of control commands u, if the derivative
of y depends linearly on u and y. In formulas, there exists a
(1,2) tensor M such that

ẏs = Ms
viy

vui. (II.2)

Bootstrapping and servoing with BDS: As explained in
the introduction, the task we focus is servoing/homing (Prob-
lem I.1). The solutions we study are two-part strategies, com-
posed by a learning and a control phase. In the first learning
phase, the agent builds a representation of its sensorimotor
cascade. Then, the agent uses the representation it has built to
solve the task during the action phase.

In the learning phase, the agent randomly samples control
commands u from any zero-mean distribution with positive
definite covariance. Meanwhile, it estimates three quantities:
the average observation at each sensel y:

ys = E{ys}, (II.3)

the (2, 0) covariance tensor P:

Psv = cov(ys, yv), (II.4)

and the (3, 0) tensor T defined by

Tsvi = E{(ys − ys) ẏvui}. (II.5)

These expectations can be computed online. For example:

ys(k + 1) =
k

k + 1
ys(k) +

1
k + 1

ys(k).

We note that these computations can be implemented on a
neural architecture; equation (II.5) is similar to three-way
Hebbian learning between y, ẏ, and u.

The following proposition establishes that the tensor T,
tends to approximate the tensor M in (II.2).

Lemma 2. Let P, Q be the covariance of y and u. Then the
tensor T tends asymptotically to:

Tsvi = Ms
qjP

qvQij . (II.6)

In the expression (II.6), we can observe a general pattern.
Every quantity that the agent learns ultimately depends on
three factors:

1) The agent’s sensorimotor cascade. In this case, M.
2) The environment statistics. In this case, the covariance P

represents the effect of the specific environment in which

learning takes place. For example, in the case of a
camera, the covariance P depends on the statistics of
the environment texture, and it would change in different
environments.

3) The experience the agent had in such environment. In
this case, Q captures the kind of “training” the agent
had in the environment.

In the control phase, the agent uses the learned tensors T and
P to generate the commands. The following proposition is the
main result of this section.

Proposition 3. Assume that the agent is equipped with a BDS
(Definition 1), that it has learned P and T using equations
(II.4)–(II.5), and Q is positive definite. Then the control law

ui = −(yv − yv
?)∗TsviP−1

vq y
q (II.7)

corresponds to a descent direction of the error metric ‖y−y?‖.
Moreover, if the operators {Ms

viy
v}ki=1 commute, y? is asymp-

totically stable.

Remark 4. It is a classic result [13] that, if a system such
as (II.2) is nonholonomic, there exists no smooth controller
that stabilizes y? asymptotically. In particular (II.7) is smooth
in y, therefore it cannot work in the nonholonomic case. In-
stead, the requirement that the operators {Ms

viy
v}ki=1 commute

is a technical necessity for having a compact proof and can
probably be relaxed.

The bootstrapping strategy has a couple of interesting prop-
erties: the tensors T and P can be learned using simple Heb-
bian learning, and the resulting control strategy is a bilinear
form of the observations y and the error y − y?. These two
properties allow a very efficient engineering implementation,
and at the same time make the algorithm implementable using
neural networks (“bioplausible”). The only operation that is
not bioplausible is computing P−1. This motivates looking
for ways to get around such computation.

Whitening the observations. If the observations had covari-
ance equal to the identity, we could omit the term P−1. This
suggests one way to proceed: find a transformation z = Wy
such that z has unit covariance. In the signal processing
community, the problem of finding a suitable transforma-
tion W is well known and it is called whitening. Numerous
algorithms exist for whitening, most of them having a neural
implementation [14].

Omitting “ P−1” from (II.7). One could also ask whether it
is possible to simply omit P−1 even when it is different from
the identity. We can prove the following technical condition
on P and M that makes it possible to omit the P−1 from (II.7)
and still obtain a suitable minimization strategy.

Proposition 5. Assume that P and M commute, in the sense
that, defining Pq

v = Pqrmrv, it holds that M·qjP
q
· = P·sM

s
·j .

Then the control strategy

ui = −(ys − ys
?)
∗Tsvi (yv)∗ (II.8)

minimizes the error metric V = 1
2e
∗
sP

s
ve

v , where es = ys−ys
?.

We shall discuss the meaning of the commutation condition
when we get to discussing the actual sensors. We will see that



4

in some cases the covariance P acts as a smoothing operation,
and that the tensor M is similar to a gradient operation, and
we will be able to interpret the condition MP = PM in
more intuitive terms as “the gradient commutes with smooth-
ing”. Also note that now the error function depends on the
covariance P; in contrast with the previous proposition, now
the environment statistics influence the actions.

III. SIMULATIONS AND EXPERIMENTS

This section shows that the bootstrapping strategy seems
to work for the three canonical sensors considered; the next
section will justify theoretically some of these findings.

We simulate a planar omnidirectional robot controlled in
velocity. The commands are u = (u1, u2, u3) = (vx,vy,ω).
In our case, simulations are precious because we can try
several different sensor configurations. We simulate a 180deg
range finder, an omnidirectional camera, and a field sampler,
with the sensels placed on a ring. In the three cases, the
observations y are, respectively, the range readings, the lumi-
nance readings, and the field intensity. The extended version
reports more simulations varying the intrinsic and extrinsic
sensor configuration; the results are consistent. We use a
custom simulator. 1 The bootstrapping part consists in placing
the robot in a randomly-generated map at random places
(simulated as a uniform variable on the subset of SE(2) that
does not intersect any obstacle), and simulate the sensor output
y , ẏ when the robot chooses a random command u (simulated
as a Gaussian random variable with spherical covariance).

We found out that, if one uses environment shapes which are
too simple, the learned model will pick up the characteristic
of the environment. For example, if a robot with a 360deg
range-finder is always placed in a room of the same size,
say 10m, it will learn that, if the readings in front measure
1m, it is likely that the readings in the back measure 9m —
this knowledge is represented implicitly in the estimated co-
variance matrix, which will report strong negative correlation
between readings in front and in the back. We do not want
to see these effects, which are not representative of the real
world, and to prevent them we simulate random environments
composed of randomly sampled polygonal walls (the extended
version has pictures of the random environments). It seems
that, as long as there is some variability, the results are
largely independent of the details of how the randomness
is introduced. These observations motivated the definition of
the environment’s symmetry group (Definition 11) and how it
affects the observation covariance.

For simulating a camera sensor, one should choose a random
texture for the surfaces: for example, sample a luminance
value independently for each 20cm section of the surface, and
smooth the result. Choosing structured inputs such as sinusoids
introduces unwanted correlation. This motivated the definition
of monotone environment (Definition 15).

For the field sampler, we simulated a random distribution
of point sources with quadratic decay.

Figures 2 onward show the learned tensors. In all figures,
blue means negative and red positive; each figure is normal-

1The Python/C++ source code is available at http://purl.org/censi/2010/boot.

ized independently from the others. Subfigures b–c show the
covariance (P) and information (P−1) tensors of the simulated
sensors. These tensors are given as a function of the sensels
position s, v. In these three simulated agents, where the sensels
are disposed on a semicircle, we let s, v be the angle with
respect to the robot front. The covariance encodes information
on the sensel topology. For the camera and range-finder, the
covariance is sparse and local: only sensels that are very close
to each other are correlated, and the correlation is a function
of the sensels distance. The covariance/information matrix act
very similarly to convolution/deconvolution operators.

Subfigures d–f show the learned tensor T. If there are n
sensels and 3 commands, then T is a n × n × 3 tensor. We
show the 3 bidimensional slices Tsv(1), Tsv(2), Tsv(3). For
example, the slice Tsv(1) describes how the linear velocity vx

is related to y(s) and ẏ(v). Subfigures g-i show the normalized
tensor TP−1 used in the control law (II.7). While T depends
on the environment (because of the internal dependence on the
covariance P, which depends on the environment statistics),
TP−1 cancels out the environmental contribution. Perhaps the
results for range-finder and camera are easier to interpret. If
one imagines the slices Tsvi as linear operators that, applied
to y, give ẏ, it is evident that the agent learns local spatial
gradients; we shall see this theoretically.

We also tried the learning algorithm with real range-
finder data from the Rawseeds project2 [15], and we ob-
tained similar results, which convinced us of the validity
of the simulations. In this case, rather than static pictures,
we give links to videos that show the learning in real time.
video:LaserDisplay3 shows the observations, which consists
in the data from two Sick range-finders spliced together.
video:LaserBDSLearning4 shows the evolution of the ten-
sor T, which is qualitatively similar to the simulation results.
video:LaserCorr5 shows the evolution of the covariance P:
due to the fact that the robot visits regular, structured envi-
ronments (e.g., corridors), the variance is different at each
sensel, and the correlation is not only a function of the sensels
distance (see [16] for analogous conclusions for camera data).

Figures 5 onward show the convergence properties of the
control law (II.7) and the simplified control law (II.8), in
simulation. We are interested in evaluating the radius of
convergence. We sample numerous environments and goal
configurations; then we compute the control law in a volume
around the goal configuration. We show the results as “success
maps”: we slice the q = (x, y, θ) volume at the three planes
(x, y), (x, θ), (θ, y), and we count the percentage of times the
control law pointed the robot in the right direction, meaning
that it would have decreased the distance to the goal6. Light
green means > 99%; see the caption for the other values. For
the field sampler and camera (Fig. 5-6), we can see that the
control law (II.7) gives local convergence, while the simplified

2Data available at http://www.rawseeds.org.
3 http://purl.org/censi/2010/be#LaserDisplay
4 http://purl.org/censi/2010/be#LaserBDSLearning
5 http://purl.org/censi/2010/be#LaserCorr
6In formulas: let the goal be q = (x, y, θ) = (0, 0, 0). Then a “successful”

command is one for which d‖q‖/dt ∝ xu1 + yu2 + θu3 < 0. Note that
here we treat SE(2) locally as a subset of R3.

http://purl.org/censi/2010/boot
http://purl.org/censi/2010/be#LaserDisplay
http://purl.org/censi/2010/be#LaserBDSLearning
http://purl.org/censi/2010/be#LaserCorr
http://www.rawseeds.org
http://purl.org/censi/2010/be#LaserDisplay
http://purl.org/censi/2010/be#LaserBDSLearning
http://purl.org/censi/2010/be#LaserCorr


5

(a) Robot (b) Psv (c) P−1
sv (d) Tsv(1) – vx (e) Tsv(2) – vy (f) Tsv(3) – ω (g)(TP-1)

s(1)
v –

vx

(h) (TP-1)
s(2)
v

– vy

(i) (TP-1)
s(3)
v –

ω

Figure 2. Tensors learned for robot with a field sampler, with sensels placed on a 360deg ring. Each axis corresponds to an angle on the ring. Red means
positive; blue negative; white zero. Subfigures b–c show correlation and information matrix, as a function of the sensel positions s, v ∈ Y , which can be
thought of the angle on the sensor ring. The correlation is almost identically 1; this depends on the statistics of the field we simulated. Figure d–f show the
three slices of the learned tensor T, for the three commands (vx,vy ,ω). The tensor element Tisv represents the interaction between the i-th command, the
observation ys and the derivative ẏv . Figures g–i show the 3 slices of the normalized tensor TP−1. (Images best seen in color.)

(a) Robot (b) Psv (c) P−1
sv (d) Tsv(1) – vx (e) Tsv(2) – vy (f) Tsv(3) – ω (g)(TP-1)

s(1)
v –

vx

(h) (TP-1)
s(2)
v

– vy

(i) (TP-1)
s(3)
v –

ω

Figure 3. Tensors learned for robot with omnidirectional camera. See Fig. 2 for a general description of the figures. All pictures are a functions of two
sensels s, v ∈ Y , which corresponds to the pixel orientation. In b–c, we can see that the covariance matrix of a camera is sparse and local: only nearby
sensels interact. Figures d–f show the learned tensor T; if one interprets each slice as a linear operator that, applied to y, gives ẏ, it is clear that all three
represents functions of the gradient of y. Depending on the particular environment, the gradient is more or less smoothed by the covariance. This is confirmed
theoretically – see Fig. 8. Figures g–i represent the slices of the normalized tensor TP−1: here the effect of the environment statistics are factored away and
an even more local operator is obtained.

(a) Robot (b) Psv (c) P−1
sv (d) Tsv(1) – vx (e) Tsv(2) – vy (f) Tsv(3) – ω (g)(TP-1)

s(1)
v –

vx

(h) (TP-1)
s(2)
v

– vy

(i) (TP-1)
s(3)
v –

ω

Figure 4. Tensors learned for robot with range-finder (180deg FOV). See Fig. 2 for a general description of the figures. It is interesting to compare these
results with the camera results in Fig. 3. The covariance is less local: this means that, in the environment we simulated, the range readings are more correlated
than the covariance; that is, they change less abruptly. As a consequence, the tensor T is less local than the corresponding tensor for the camera. Figures g–i
show that the normalized tensor TP−1, where the effect of the environment statistics is removed, has a more local character.

convergence
for (II.7)

→
(a) x, y plane (b) y, θ plane (c) θ, x plane

convergence
for (II.8)

→
(d) x, y plane (e) y, θ plane (f) θ, x plane

Figure 5. Statistics of the convergence of the two control laws for robot with a field sampler, with sensels placed on a 360deg ring. Figures (a)-(c) show the
results for the simplified control law (II.8), the figures (d)-(f) show the results for the control law (II.7). We put the goal at the origin, and considered starting
positions sampled in a 1m×1m×45deg parallelepiped around the goal. We show the convergence results along three slices in the planes x, y, y, θ, θ, x. The
figures show the percentage of times (over 200 trials with random environments) that the control law indicated a direction decreasing the error metric. The
color scale is: 0% <25% >25% >50% >75% >95% 100%. These figures are best seen on a computer screen.

convergence
for (II.7)

→
(a) x, y plane (b) y, θ plane (c) θ, x plane

convergence
for (II.8)

→
(d) x, y plane (e) y, θ plane (f) θ, x plane

Figure 6. Convergence results for robot with omnidirectional camera. See the caption of Fig. 5 for an explanation of the color scales.

convergence
for (II.7)

→
(a) x, y plane (b) y, θ plane (c) θ, x plane

convergence
for (II.7)

→
(d) x, y plane (e) y, θ plane (f) θ, x plane

Figure 7. Convergence results for robot with range-finder (180deg FOV). See the caption of Fig. 5 for an explanation of the color scales. For the range-finder,
both control laws have large convergence radius.



6

version (II.8) has worse performance. For the range-finder
(Fig. 7), both give robust convergence.

The rest of the paper is dedicated to proving the results
suggested by the simulations.

IV. ANALYSIS FOR THE THREE CANONICAL SENSORS

In the previous section, we showed by simulation that
bootstrapping works for the three canonical sensors. In this
section, we consider the problem of justifying this theoreti-
cally. The main results are summarized in Fig. 8. In summary,
the three canonical sensors have something in common at a
certain level of abstraction, as can been seen by the fact that
their bootstrapped tensors are formally very similar. Because
the camera and range-finder are not precisely BDS, we have
to provide separate proofs of convergence. We need several
preliminary results.

We start with a series of definitions and results common for
all sensors. We assume the reader to be familiar with basic
Lie group theory [17]. Using the standard notation, given a
group G and two elements a, b ∈ G, we indicate their product
as ab ∈ G , and a−1 is the inverse of a.

Definition 6. Let C be the configuration space in which the
robot moves. We assume that C is a subgroup of SE(3).

Example. Examples of subgroups of SE(3) are: SE(3) itself;
SE(2) (planar rototranslations), SO(3) (pure rotations), R3

(pure translations).

We assume that the underlying dynamics is a rigid body
controlled in velocity. For C = SE(3) the commands u are
the linear and angular velocity v, ω. Let t ∈ R3, R ∈ SO(3)
be position and attitude, and ·̂ be the hat map [17]. Then the
dynamics are ṫ = Rv; Ṙ = Rω̂.

We already introduced the sensel space Y , but it has not
been given any structure yet. Here we characterize it by its
interaction with C.

Definition 7. Let Y be the sensel space. We assume that it
is a metric space, where for two sensel positions s1, s2 ∈
Y , the function d(s1, s2) indicates the distances between the
positions. We also assume that there is a left action of C on Y .
In particular, for every q ∈ C and s ∈ Y , we can define the
element qs ∈ Y , and q1(q2s) = (q1q2)s.

Example. For example, for a pan-tilt-roll “robotic” camera,
Y = S2, C = SO(3), and the action qs corresponds to
applying the rotation q to s ∈ S2.

Finally, we have to give some structure to the world
around the robot. “World” is everything needed to compute
the sensor output, apart from the robot pose. For a range-
finder, the world includes the 3D environment structure; for
a camera, it includes the texture, reflectance, and illumination
information as well. We use a construction typical of stochastic
geometry [18]: we assume that the set of worlds W can be
factorized into a “shape” and “pose” component, in the sense
that, for each world, there are many others that share the
same shape (including color, texture, etc.), but rototranslated.
Therefore, we let W ≡ S × SE(3), where S is called shape

space. We write an element of W as a tuple 〈s,p〉, with s ∈ S

and p ∈ SE(3).
All three sensors are “relative”, in the following sense.

Definition 8. Given a sensel space Y , a pose space C, and a
shape-pose space W ≡ S×SE(3), the map y : W×C×Y → O

corresponds to a relative sensor if the following two properties
hold for all x ∈ C.

y(〈s,p〉 , q, s) = y(〈s, xp〉 , xq, s) [P1] (IV.9)

y(〈s,p〉 , q, s) = y(〈s,p〉 , qx−1, xs) [P2] (IV.10)

Remark 9. Property P1 corresponds to the fact that there is
an intrinsic ambiguity in choosing the frame of reference. The
world and the robot have both a pose with respect to some
fixed coordinate frame, but the output of the sensor depends
only of the relative pose q−1p (let x = q−1 in (IV.9) to
see this fact). Property P2 describes the fact that the robot is
“carrying” the sensor: ultimately the output at sensel s depends
only on qs, therefore it is invariant if we apply x to s and
multiply q by x on the right.

The bootstrapping strategy proposed in Section II, specifi-
cally equations (II.3)-(II.5), is described by means of statistical
operators such as expectations. To predict the outcome, we
have to specify something about the probability distribution
of the stimuli that the agent experienced. Firstly, we give it a
name.

Definition 10. Let pT(〈s,p〉 , q) be the training probability
distribution of worlds/poses that the agent has experienced
during its bootstrapping phase.

We want the training distribution to have some regularity.
We describe the regularity with the language of Lie groups.

Definition 11. Define the set symmetry group of pT as the sub-
group Sym of C such that, for all x ∈ Sym, pT(〈s,p〉 , q) =
pT(〈s, xp〉 , q).

Example. Consider a planar robot (C = SE(2)), and assume
we believe that, at the end of bootstrapping, the robot ex-
perience did not privilege one particular orientation over the
others. Then we would set Sym to be the group of planar
rotations.

At this point we are ready to give a technical definition and
relative proposition, on which many other results are based.

Definition 12. Consider two couples of sensels (s1, v1),
(s2, v2), where s1, v1, s2, v2 ∈ Y . We call the training distri-
bution mixing if d(s1, v1) = d(s2, v2) implies that there exists
a x ∈ Sym such that (s2, v2) = (xs1, xv1).

Proposition 13. For a mixing training distribution, the ex-
pectation of any function of two sensels s, v ∈ Y is only a
function of their distance; for all functions φ, we can write
E{φ(ys, yv)} as ϕ(d(s, v)) for some other function ϕ.

Corollary 14. For a relative sensor in the mixing case, the
covariance of two sensels is a function of only their distance:
cov(ys, yv) = f(d(v, s)).

We define a property of the environment useful in the future.



7

Pure BDS? Y Sensor dynamics Bootstrapped tensors Convergence
proof for (II.7)

Convergence
proof for (II.8)

Field sampler Yes. R3 ẏs = ∇iy
svi

+(s×∇ys)i ωi
Tsvi = ∇R3

j PsvQij

Tsv(i+3) = (s×∇R3
Psv)jQ

ij

Yes. Yes for
translation.

Camera No.
(hidden state)

R3 × S2 ẏs = µs∇iy
svi

+(s×∇ys)i ωi
Tsvi = µs∇S2

j PsvQij

Tsv(i+3) = (s×∇S2Psv)jQ
ij

Yes. Yes for rotation.

Range-finder No.
(nonlinearity)

R3 × S2 ẏs = (∇i log ys − s∗i )vi

+(s×∇ys)i ωi
Tsvi = ∇S2

j β(Psv)Qij

Tsv(i+3) = (s×∇S2Psv)jQ
ij

Yes for rotation. Yes for rotation.

Figure 8. Summary of the results in this section. The third column shows the equation for the sensor dynamics: as one can see, these three apparently
different sensors have a somewhat similar dynamics. The next column shows the tensor learned; for the camera and range-finder, which are not exactly BDS,
these tensors could be considered a “projection” of the nonlinear dynamics to the BDS space. The last two columns indicates whether we have a formal
proof that the general control laws for BDS work for the particular sensors—see the text for details. The tensor P is the covariance of y; the tensor Q is the
covariance of u; µs is the average nearness (inverse of distance) in direction s.

Definition 15. We call the environment monotone if the
covariance of the values of two sensels is a monotone function
of the distance between the sensels7.

4.1 Analysis of field sampler: We start with our definition
of a field sampler.

Definition 16. Let the sensels space be Y = R3. The sensor y
is a field sampler if there exists a field H : R3 → R such that
ys = H(t + Rs), where t ∈ R3 and R ∈ SO(3) are the agent
position and attitude.

We can show that a field tensor is indeed a perfect BDS,
and therefore all the relevant results from Section II apply.

Proposition 17. A field sampler is a BDS, because its obser-
vations dynamics are bilinear in y and u = (v,ω):

ẏs = (∇iy
s)vi + (s×∇ys)iω

i.

We can compute the exact form for the learned tensor T.
Assuming the general case of a fully actuated rigid body
in SE(3), the tensor T has 6 components for the last index.
The first three (1 ≤ i ≤ 3) correspond to linear velocity, and
the last three (4 ≤ i ≤ 6) to the angular velocity.

Proposition 18. The learned tensor for a field sampler is

Tsvi = ∇jPsvQij , (IV.11)

Tsv(i+3) = (s×∇Psv)j Qij . (IV.12)

Proof: We show the computation for the linear velocity
components:

Tsvi , E{(ys − ys) ẏvvi} = E{(ys − ys) (∇jy
v)vjvi}

= ∇jE{(ys − ys) yv}E{vjvi} = ∇jPsvQij .

The formula for the others is obtained similarly.

Proposition 19. For a mixing training distribution, the con-
dition of Proposition 5 are satisfied for pure translation
(C = R3), and hence the simplified control (II.8) can be used.

Proof: Proposition 5 requires us to verify that we can
interchange the order of ∇ and P in (IV.11). Because the
environment is mixing, we know from Proposition 13 that
the covariance can be written as a function of the sensel
distance: Psv = f(d(s, v)). Therefore, when P is used as
a linear operator, it corresponds to smoothing with a radially

7Not all environments are monotone; see [12] for a counterexample.

symmetric function. Noting that in R3 gradient and radially
symmetric smoothing commute concludes the proof.

In conclusion, a field sampler is a sensor whose dynamics
is precisely that of a BDS, and therefore, the analysis is quick
and compact.

4.2 Analysis of camera: In general, the sensel space of a
camera is Y = R3× S2: each pixel captures the light arriving
to a particular focus point (in R3) from a particular direction
on the unit sphere (S2). For simplicity, we consider a central
camera with only one focus point, so that the sensel space is
just Y = {0} × S2.

Proposition 20. Let ys, s ∈ S2, be the luminance signal
captured by the camera. Let µs be the nearness, the inverse
of the distance in direction s. Then the dynamics of y are

ẏs = µs∇iy
svi + (s×∇ys)iω

i. (IV.13)

See [19] for a proof. From this it follows that a camera is a
BDS only for pure rotation, or with the environment at infinity,
because of the dependence on the hidden state µ.

However, we can show that a useful BDS approximation
can be learned. What happens is that, when learning the
observation dynamics, the hidden state µs gets filtered out
and appears only as a multiplicative factor in the BDS tensor.

Proposition 21. Assuming that nearness and luminance are
independent in pT, the learned tensors for a camera are

Tsvi = µs∇jPsvQij , (IV.14)

Tsv(i+3) = (s×∇Psv)j Qij .

Because the camera is not a BDS, we cannot use the
stock results for convergence. However, the control law (II.7),
when instantiated for the camera, has the same form as the
one we studied in our previous work on bioplausible visual
control [19]. Referring to those results, we can say that (II.7)
locally converges. As for the convergence of the simplified
control (II.8), we can prove the analogous of Proposition 19,
this time for rotation rather than translation.

Proposition 22. In a mixing environment, ignoring the con-
ditions at the borders of the sensels area, the condition in
Proposition 5 is satisfied for rotations (C = SO(3)), and hence
the simplified control law (II.8) can be used.

Proof: (sketch) The proof is based on interpreting the
covariance operator as a convolution operator on the sphere,



8

proving that it is self-adjoint, and exploiting its commutation
properties with rotation.

4.3 Analysis for range-finder: Each reading of a range-
finder measures the distance from a an origin point (in R3)
to the closest obstacle in a certain direction (in S2). Like
the camera, in principle, the sensel space for a range-finder
is Y = R3 × S2, but for simplicity we consider the case
where all rays have the same origin. We start by providing an
expression for the observation dynamics—even though range-
finders are popular sensors, we could not find this in the
published literature.

Proposition 23. Let ys be the range reading (distance to the
obstacle in direction s). Then the dynamics of a range-finder
are

ẏs = (∇i log ys − s∗i )vi + (s×∇ys)i ωi. (IV.15)

Note that the rotational part is exactly the same as the
camera model (IV.13), because rotation has the same effect
on range and luminance data. The “−s∗i ” term means that if
the velocity v is in the direction on s, then the range decreases
(the remaining nonlinear term ∇i log σs is less intuitive).

We can prove the following regarding the bootstrapping
strategy.

Proposition 24. If the training distribution is mixing (Defini-
tion 12) and the environment is monotone (Definition 15) the
learned tensors for a range-finder are

Tsvi = ∇jβ(Psv)Qij , (IV.16)

Tsv(i+3) = (s×∇Psv)j Qij ,

where β(Psv) is an element-wise scalar function of Psv .

Because range-finders and cameras are equivalent under
pure rotations, it is immediate to show convergence of (II.7)
in that case. In particular, the equivalent of Proposition 22
holds. It is instead challenging to prove convergence of (II.7)
for translation. The main reason is that P−1 does not cancel
the term β(P) in (IV.16), due to the nonlinearity of β.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a contribution to the vast problem of
bootstrapping, which consists in estimating and using models
of a sensorimotor cascade, starting from uninterpreted com-
mands and observations. We have shown that the abstraction
of bilinear dynamics sensors (BDS) is general yet powerful
enough to represent the main phenomena of a representative
selection of robotics sensors (field samplers, cameras, and
range-finders).

To the best of our knowledge, this is the first presentation of
a bootstrapping agent that can provably learn to use a variety of
sensors to solve the same cross-modality task. The algorithm
is also simple, consisting only of a few lines of code; it is fast,
being extremely parallelizable. With respect to the approach
of Kuipers and his group, we focused on a more “continuous”
rather than a “symbolic” solution, and this made it possible
to actually prove strong results concerning the convergence of
the learning process and the control law. The extended version

of this work contains further development of the theory and
an example application to real world robots.

So far we have been focusing more on the sensors rather
than actuators, as we only considered the case of fully-
actuated velocity control. Previous work [19] suggests that
control in velocity can be extended to control in forces/torques
with relatively little effort. Instead, it seems more challenging
learning a hidden state and its dynamics. This would be useful
in the case of a camera, where the observation dynamics
depends on the nearness. The other challenge is learning a
more nonlinear model (perhaps by learning additional levels
of Taylor approximations after the bilinear terms); this would
be useful in the case of the range-finder, which is not a pure
BDS for its nonlinearity.

REFERENCES

[1] Cohen and et al., “Functional relevance of cross-modal plasticity in blind
humans,” Nature, vol. 389, no. 6647, pp. 180–183, 1997.

[2] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: a survey,” Connection Science, vol. 15, pp. 151–190, 2003.

[3] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa,
M. Ogino, and C. Yoshida, “Cognitive developmental robotics: A
survey,” IEEE Trans. on Autonomous Mental Development, vol. 1, no. 1,
pp. 12 –34, 2009.

[4] B. Kuipers, “An intellectual history of the Spatial Semantic Hierarchy,”
Robotics and cognitive approaches to spatial mapping, vol. 38, pp. 243–
264, 2008.

[5] J. Stober, L. Fishgold, and B. Kuipers, “Learning the sensorimotor struc-
ture of the foveated retina,” in Proceedings of the Ninth International
Conference on Epigenetic Robotics People, 2009.

[6] J. Stober, L. Fishgold, and B. Kuipers, “Sensor map discovery for
developing robots,” in AAAI Fall Symposia Series: Manifold Learning
and Its Applications, 2009.

[7] D. George and J. Hawkins, “Towards a mathematical theory of cortical
micro-circuits,” PLoS Comput Biol, vol. 5, p. e1000532, 10 2009.

[8] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Berlin: Springer, 2004.

[9] B. Kuipers, “The Spatial Semantic Hierarchy,” Artificial Intelligence,
vol. 119, no. 1-2, 2000.

[10] T. Lochmatter and A. Martinoli, “Theoretical analysis of three bio-
inspired plume tracking algorithms,” in Proceedings of the IEEE Con-
ference on Robotics and Automation, 2009.

[11] J.-S. Gutmann, G. Brisson, E. Eade, P. Fong, and M. Munich, “Vector
field slam,” in Proceedings of the IEEE Conference on Robotics and
Automation, 2010.

[12] A. Censi and R. M. Murray, “Bootstrapping multilinear models for
robotic sensorimotor cascades,” Tech. Rep. CaltechCDSTR:2010.003,
California Institute of Technology, Pasadena, CA, 2010. Available at
http://purl.org/censi/2010/boot .

[13] R. W. Brockett, “Asymptotic stability and feedback stabilization,” in
Differential Geometric Control Theory (R. S. M. R. W. Brockett and
H. J. Sussmann, eds.), pp. 181–191, Boston: Birkhauser, 1983.

[14] S. C. Douglas and A. Cichocki, “Neural networks for blind decorrelation
of signals,” IEEE Trans. on Signal Processing, vol. 45, no. 11, pp. 2829
–2842, 1997.

[15] Ceriani and et al., “Rawseeds ground truth collection systems for indoor
self-localization and mapping,” Auton. Robots, vol. 27, no. 4, pp. 353–
371, 2009.

[16] E. Grossmann, J. A. Gaspar, and F. Orabona, “Discrete camera calibra-
tion from pixel streams,” Computer Vision and Image Understanding,
vol. 114, no. 2, pp. 198 – 209, 2010.

[17] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. Berlin:
Springer-Verlag, 1999.

[18] H. Le and D. G. Kendall, “The Riemannian structure of Euclidean shape
spaces: A novel environment for statistics,” Annals of Statistics, vol. 21,
no. 3, pp. 1225–1271, 1993.

[19] S. Han, A. Censi, A. D. Straw, and R. M. Murray, “A bio-plausible de-
sign for visual pose stabilization,” Tech. Rep. CaltechCDSTR:2010.001,
California Institute of Technology, 2010. (a reduced version to appear
in IROS’10).

http://purl.org/censi/2010/boot

	Introduction
	Bootstrapping bilinear dynamics sensors 
	Simulations and experiments 
	Analysis for the three canonical sensors
	Conclusions and future work 
	References

