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Uncertain semantics, representation nuisances,
and necessary invariance properties of bootstrapping agents

Andrea Censi Richard M. Murray

Abstract—In the problem of bootstrapping, an agent must
learn to use an unknown body, in an unknown world, starting
from zero information about the world, its sensors, and its
actuators. So far, this fascinating problem has not been given
a proper formalization. In this paper, we provide a possible
rigorous definition of one of the key aspects of bootstrapping,
namely the fact that an agent must be able to use “uninterpreted”
observations and commands. We show that this can be formalized
by positing the existence of representation nuisances that act on
the data, and which must be tolerated by an agent. The classes
of nuisances tolerated indirectly encode the assumptions needed
about the world, and therefore the agent’s ability to solve smaller
or larger classes of bootstrapping problem instances. Moreover,
we argue that the behavior of an agent that claims optimality
must actually be invariant to the representation nuisances, and
we discuss several design principles to obtain such invariance.

I. INTRODUCTION

Eventually1, robots are set to leave the structured environ-
ments of the industrial floors and share our lives, be them
patient workers in our houses or embodied as intelligent cars.
Still, there are many challenges ahead for such systems that
must operate in unstructured environment, for long periods of
time, with the necessary safety. The short-term problem, which
is being addressed by projects such as ROS [2], is the software
consolidation of the myriads of algorithms and processes that
make up such a system. The long-term problem is that those
software systems will be much more complicated than current
projects, perhaps exceeding the design complexity which can
be handled by a human: we remember Dijkstra’s admonition
that, ultimately, design complexity must be bounded by the
size of a human skull [3]. It seems that the scarcest resource
for designing robotic systems will not be computation, power,
or an adequate sensory apparatus, but our design ability.

Therefore, it is likely that in the future all applications of
learning will have an increasing role in robotics research. In
particular, we speculate that developmental learning theories
will be most important to design robots robust to unforeseen
changes in their sensors, actuators and environment, and
especially robots who are aware of such changes, according to
Sutton’s verification principle [4], which is an ability sorely
missing at the current state of the art. However, it appears
that the message of the community that gravitates towards
conferences such as ICDL/EpiRob has not been received by a
large part of the more applied roboticists that gravitate towards
conferences such as ICRA, IROS, RSS (except for the few
people dabbling in both). One possible reason is that some of
the problems studied in developmental learning have evaded
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Equations (1)-(2) appear convoluted because they work with
the much abstract definition of system we used. However,
the end result is that we have defined the meaning of a
transformation D �→ h ·D · g; reading right to left, the input
signals are filtered by the group element g; then the system
produces an output, which is filtered according to the group
element h.

C. Defining agents
In the following, we let U be the command space, Y be

the observations space, and world ∈ D(Y,U) represent the
model of everything in between observations and commands.
To formalize the learning agent, we assume that it is composed
of a two-part strategy. The first part consists in learning a
representation of the world (more or less explicit); and in the
second phase, using this representation to do something (or to
estimate something). We model the agent as a tuple of two
functions modeling learning and action.

Definition 4. A bootstrapping agent for a world world ∈
D(Y,U) is a tuple �R, learn, act� such that R is the represen-
tation space, learn ∈ D(U × R,Y) is the learning/exploration
strategy; and act : R → D(U ,Y) is the action/estimation
phase. We denote by learn(world) = r ∈ R the representation
learned after a suitable training phase. We define as A(U ,Y)
the set of all agents interacting with the world through
commands in U and observations Y .

The learning strategy is defined as an element of D(U ×
R,Y), which means it is a dynamical system which has as
input the observations (Y), and as output the commands (U )
that drive the exploration, and the internal representation (R).
In this paper, we treat the representation mostly as an opaque
object.

The acting strategy act is a map from R to D(U ,Y); this
means that the learned representation R is converted into a
dynamical system which will do the actual interacting with the
world. We remark that this dynamical system has, in general,
an internal state. For example, R might include a description
of the sensor calibration and the statistics of the environment;
from that, one generates the dyamical system act(R) which
might include logic for estimation of an internal state (e.g. the
agent’s state in localization, or a complete map in SLAM)1.
Note also that using the abstract Definition 1 does not exclude
any kind randomized behavior for the agent.

Finally, notice that in this discussion we are neglecting all
sorts of problems about how to properly define the training
phase; when to stop it; the tradeoff of exporation/explotation;
etc. All these concerns are important but somewhat orthogonal
to our main interest.

D. Bootstrapping as invariance to the group actions
We have defined the world, the agent, and how the world

transforms under group nuisances. At this point, we can
1Depending on the field, “learning” is sometimes equivalent to “estimation”

(as in learning a map of the environment). In this paper, we use “learning” for
the problem of deriving what we call “representation” of the world dynamics,
and use “estimation” for inferring the state of system, given a known dynamics
(these ideas blur into each other, but it makes sense to use “learning” for the
harder problem).

introduce the main theoretical point of this paper: it is possible
to transform vague constraints such as “the agent has no
assumptions on the model” into precise algebraic conditions
on the world-agent loop; specifically, an agent does not
need certain information if its behavior is invariant to group
nuisances acting on the world that destroy that particular
information. The following is the formal statement.

Definition 5. Let the world world belong to a family of models
W ⊂ D(T,U ,Y). Let the groups GU , GY be left and right
actions on the world world. We say that an agent �R, learn, act�
is invariant to the action of (GU ,GY) for the family W if

(act ◦ learn)(h · world · g) = g−1 · (act ◦ learn)(world) · h−1

for all h ∈ GY , g ∈ GU , and world ∈ W.

It is easy to see that, if this condition holds, then the
nuisances have no effect on the agent’s actions (g−1 and g
cancel, and likewise for h). The simplest example is when the
groups represent linear scaling (gains of the actuators, or units
of measuremnts for the observations); if the gain is doubled,
we expect that the produced commands will be halved.

Note also that, while the input-output behavior is un-
changed; the internal representation is allowed to change; what
happens to the internal representation is an interesting question
that we will not investigate in this paper.

III. ANALYSIS FOR BDS SYSTEMS

The point of all of this is that now we have a language to
say exactly what we require of a bootstrapping agent. Here we
apply it to the results in previous work, as a simple example
in preparation to the new results described later.

In previous work, we considered this class of bilinear
models, justifying the choice by saying that it is the simplest
nonlinearity that can represent several sensors. There is some
similarity with other systems considering 3-way interactions
of systems that we intend to investigate in the future [?].

Definition 6. A bilinear dynamics sensor (BDS) if its sensor
y ∈ Rn, u ∈ Rk dynamics, and there exists a (n, n×k) tensor
M such that ẏs = Ms

viy
vui.

We call BDS(n, k) the set of all such systems. Note that
here, in the discrete case, s is an index that spans over 1, . . . , n
sensels; but most considerations are valid if s is a continuous
index over a manifold, with integration instead of summation.
Writing the system in the form ẏ = (M:

:1y)u
1 + (M:

:2y)u
2 +

. . . . makes it clear that the system being bilinear means having
multiple autonomous linear dynamics among which to choose.
A purely affine part (ẏ = · · · + Bu) can be represented by
adding a dummy observation with constant value.

The following is an extension of the agent we studied in
previous work with the language just introduced. Suppose Ωu

is the set of allowable commands (modeling power constraints
etc.).

Proposition 7. Define the agent ABDS(k, n) ∈ A(Rk,Rn),
with representation

�
ys,Psv,Tsvi

�
. The learning phase is de-

fined by the following set of equations. The actions are chosen
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viy
vui.

We call BDS(n, k) the set of all such systems. Note that
here, in the discrete case, s is an index that spans over 1, . . . , n
sensels; but most considerations are valid if s is a continuous
index over a manifold, with integration instead of summation.
Writing the system in the form ẏ = (M:
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Figure 1. A bootstrapping agent interacts with the world (which is the series
of unknown actuators, the external world, and unknown sensors) through two
streams of “uninterpreted” observations and commands. In this paper, we
argue that it is important to characterize exactly what assumptions the agent
makes on these uninterpreted streams, as solving the general case appears out
of reach. We show that the assumptions can be encoded by representation
nuisances (formally described by group actions) that act on the data, and that
the closed-loop agent-world system must be invariant to such nuisances, if
any optimality is claimed for the agent.

time →

(a) Uninterpreted commands

(b) Uninterpreted observations (sensor #1)

(c) Uninterpreted observations (sensor #2)

Figure 2. Raw observations and commands streams for a robotic platform. A
bootstrapping agent must learn to use uninterpreted streams of observations
and commands. This figure shows how such streams appear for an actual
robotic platform (a planar, differential-drive robot). The commands are the
linear and angular velocities. The two observations streams corresponds to 64
randomly sampled sensels of a camera and a range-finder, during one minute
of operation. Can the reader guess which sensor is which?

so far a precise mathematical formalization. This is entirely
reasonable for a field that aims at imitating the complexity of
the human brain, of which—it is safe to say—our colleagues
in neurobiology will not have a clear, complete, functional
description for many decades to come.

In this paper, we venture towards a precise formalization
of one aspect of bootstrapping problems: the idea that the
agent starts its interaction with the world by “uninterpreted”
observations and commands, whose semantics is unknown
(Fig. 1). Note that this problem only interests the first layer
of a complete bootstrapping architecture, but it alone sub-
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sumes entire classes of problems studied in robotics, includ-
ing all problems of intrinsic and extrinsic calibration. Is it
possible to make the concept of “uninterpreted sensors and
commands” mathematically precise? We give a formalization
precise enough for the problem to be described by concrete
mathematical tools, which in this case happens to be group
theory. We give precise and falsifiable conditions for an
optimal agent that claims to use uninterpreted observations
and commands. Those conditions also allow to discuss general
principles for the design of the first stages of an agent’s sensory
processing.

More in detail, Section II discusses the general problem
of bootstrapping, and the impossibility of solving the general
case, thus motivating the search for a way to clearly express
the assumptions needed by an agent. Section III introduces
the idea of “semantic relations”, which map observations and
commands to the proper events in the agent’s internal model
of the world. The assumptions needed by the agent can be
encoded by the largest class of perturbations of the semantic
relations that can be robustly tolerated. These “representation
nuisances” are naturally represented by group actions that act
on the commands and observations streams. Therefore, one
way to look at bootstrapping is as a problem of nuisance re-
jection. However, these nuisances are not time-variant “noise”:
they are fixed (but unknown) transformations that preserve
the informative content of the signals. In Section IV argues
that the information-preserving nature of the nuisances implies
that the evolution of the closed-loop world-agent system must
be exactly invariant to the nuisances, if there is any claim
of optimality. In particular, the agent’s behavior must be
invariant to the observations nuisances, and contra-variant
to the commands nuisances. The last sections discuss three
general design principles to achieve invariance with respect to
observations nuisances: group averaging (Section V), invariant
task design (Section VI) and observations canonization using
pontifical features (Section VII).

Throughout the paper, we keep the discussion quite general,
but we also give examples of representation nuisances that
are relevant to the case of robotic sensors, and that we have
encountered in our previous research in bootstrapping models
of robotic sensorimotor cascades [5], [6], to which we refer
the reader interested in more concrete examples.

II. BOOTSTRAPPING NEEDS ASSUMPTIONS

We are interested in the interaction of a bootstrapping agent
with an unknown world. The interaction happens through a
stream of observations signals y(t) ∈ Y and commands u(t) ∈
U . The agent does not have previous knowledge neither of the
external world nor of its own sensors and actuators. In fact,
with “world” we refer to the unknown series of actuators,
external world, and sensors. Observations and commands
are “uninterpreted”, in the sense that there is no semantics
associated to them. The task for such an agent can be specified
either by an external reward signal, or it can be described
intrinsically [7]–[9] (for example, understanding the model of
the world is a task in itself that does not need an external
reward signal).

The many uncertainties involved in the problem make
classical techniques not applicable. Control theory techniques
for adaptive systems (e.g., [10]) assume relatively small classes
of models conveniently parametrized. In POMDPs [11], the
uncertainty is only in the observations and in the evolution of a
model that is otherwise known. Deep belief networks [12], [13]
are designed as universal approximators of data distributions,
but they do not deal with actions. Reinforcement learning [14]
gives a mathematical framework to deal with actions in
unknown state spaces, but it does not explain how to build
stateful representations from raw sensory values, which seems
to be the dominant problem.

Fig. 2 shows examples of the uninterpreted data that a
bootstrapping agent should be able to use. Sensels (from
sensory elements) values are shown as intensity levels versus
time. The data comes from a robotic platform. Can you even
guess which one is the range-finder and which one is the
camera? And how would you use such a sensor? This is the
problem that you would need to solve if you were a brain-in-
a-jar that for the first time gets connected to an unknown body
in an unknown world. In fact, this is the problem that your
brain did solve: the cortex of the human brain is an extremely
flexible computational structure that can learn to process
different streams of information; for example, the cortex in
blind subjects rewires itself to process auditory signals [15],
[16] (lower levels of perception do exhibit adaptiveness, but
not so dramatic). Nature gives us a proof of existence that such
kind of problem is solvable, and that, assuming a reductionist
point of view, the computation required appears to be relatively
simple.

Still, we have to be careful when trying to formalize the
problem. At this level of generality, it also includes problems
which would be impossible to solve. In fact, the dynamical
system representing the world could realize a Turing machine,
and it is not difficult to think of a task which would be
equivalent to solving the halting problem. The other risk of
generalization is coming up with general theories that are too
abstract to give any insight for the design of actual agents.
For example, Hutter [17] considers the case of reward-based
agents, with no further assumptions about the world. He gives
a complete characterization of what would be the optimal
agent in such a setting; the results, otherwise very interesting,
are not applicable to real-world agents—for example, the
complexity of the generic optimal algorithm is just too high
for the rich stream of data of robotic sensors. Also, we are
interested in agents interacting with the real world; the general
diagram in Fig. 1 includes the case of a web spider exploring
the web, whose commands are URLs to retrieve, and whose
observations are the retrieved pages. It is unlikely that this
case will give any insight for real-world agents.

All this discussion points to the fact that it is either
impossible, or not really useful, to design agents that work
for any dynamical model for doing any task—in fact, the brain
evolved for a large but finite sets of tasks. Therefore, stating
precisely what are the assumptions on the world needed by a
bootstrapping agent appears as a fundamental step towards a
more formalized theory.
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III. SEMANTICS, ASSUMPTIONS, AND GROUP ACTIONS

In this paper, we aim to formalize part of the assumptions
of a bootstrapping agents regarding the world, in particular
regarding the representation of observations and commands. In
the context of a complete bootstrapping architecture (e.g. [18],
[19]), these assumptions are relevant for the early stages,
where the agent needs to make sense of uninterpreted data
streams, for example by constructing an embedding that
approximates the sensor geometry. If an agent could use
truly “uninterpreted” data streams, then its behavior would be
invariant to any transformation that maintains the information
content (e.g., a shuffling of the bits in the observation vector);
if this is not true, then the agent has assumptions about the
representation of the data; what we describe is a framework
to make these assumptions explicit and to reason about them.

Section III-A defines the concept of semantic relations,
which map the raw observations and commands to facts that
make sense in an internal model of the agent. In bootstrapping,
such maps are not completely known; i.e., the semantics is
uncertain. Section III-B argues that the uncertainty of the
semantic relations can be adequately represented by represen-
tation nuisances acting on observations and commands. The
classes of nuisances that the agent can tolerate encode the
assumptions that the agent has for the signals and therefore
its flexibility. Mathematically, these nuisances are described
as group actions. Section III-C gives several examples of
nuisances relevant to robotics.

A. Semantics is given by maps between σ-algebras
The difference between a traditional design problem and

bootstrapping is that, in a traditional setting, one has: 1) an
internal model of the world; 2) a certain semantics attached
to the commands and observations streams: one can associate
a raw observation to some event or fact relative to the model.

For example, suppose that y = {yi}ni=1 are the readings of
a range-finder. Knowing the semantics of the data means being
able to state propositions such as “If y3 = 4, then there are
no obstacles for 4m in the direction θ3.”. Here E1 =“y3 = 4”
is an event relative to the observations, and F =“there are no
obstacles in the direction θ3” is an event relative to an internal
model of the world. The semantics of the data allows to make
many of such correspondences:

E1 : ”y3 = 4” ↔ F1 : "no obstacles at 30deg for 4m."
E2 : ”y3 = 5” ↔ F2 : "no obstacles at 30deg for 5m."

...
...

...

In this paper, we use “event” in the technical sense of
probability theory, anticipating that any formalization must
be able to deal with uncertainty. Formally, a collections of
events, satisfying certain coherence properties, is called “σ-
algebra” [20]. Here we are dealing with two σ-algebras:
E = {E1, E2, . . . } is the σ-algebra of the observations, and
F = {F1, F2, . . . } contains events (facts) about the internal
model. Thus, having fixed E and F , “knowing the semantics
of the data” can be defined precisely as knowing the map
η : E → F between the two σ-algebras.

We can give a similar construction for the commands. There
is a σ-algebra G = {G1, G2, . . . } whose events correspond to
particular choices of the commands (e.g., G1 =“u2 = 3”), and
these events can be mapped to the σ-algebra F of the model
(e.g., F1 =“angular velocity is 30deg/s”) by a map γ : G → F .

We call the two maps η, γ semantic relations. In a traditional
scenario, these semantic relations are known. In bootstrapping,
they are completely unknown or partially uncertain, and,
anyway, there is no known internal model of the world.

B. Representation nuisances encode agents assumptions

The observations/commands are completely “uninterpreted”
if the maps η, γ are completely unknown; but a bootstrapping
agent that can work with no information at all about the
semantics maps η, γ is only a theoretical possibility. In fact,
suppose that the n range-finder observations are represented by
a string of 16n bits, and, as part of the sensor protocol, these
bits are scrambled and encrypted before being transmitted to
the agent. Encryption is a 1-to-1 map that does not change
the informative content of the observations: it only changes
the map η that maps the particular bit string to the event in
the internal model. Therefore, if one claims that an agent can
work with no assumption whatsoever on η, γ, one is claiming
that such agent is flexible enough to undo any encryption
scheme. Thus it is critical to formalize the assumptions that
bootstrapping agents need.

We show that, instead of describing what assumptions the
agent needs, it is easier to describe what assumptions the
agent does not need, or, equivalently, what nuisances acting
on the semantic relations η, γ the agent can tolerate; these are
representation nuisances that change the representation but not
the informative content of the signals (in other words, they can
be inverted).

Continuing our example with the range-finder, suppose that
there are n readings {yi}ni=1. Usually, when designing robot
behaviors, one assumes that the sensor calibration is known.
This means that the agent knows which direction θi each read-
ings yi belongs to; therefore, one knows the correspondence
between events about the i-th measurement and the portion
of the environment in direction θi. Suppose that we want
to require that the agent does not need the assumption of
having a calibrated sensor, in the sense that it can recover this
information through an intrinsic calibration procedure [21]–
[24]. This can be formalized by saying that the agent is
indifferent to a relabeling of the sensor elements. A relabeling
is represented by a permutation σ, such that the vector of
observations {yi}ni=1 are mapped to the new vector {yσ(i)}ni=1,
where σ(i) is the new label for the i-th sensel.

The set Perm(n) of permutation of sequences of length n is
the simplest example of group. A basic introduction to group
theory can be found in Rothman [25], but for convenience
we recall the few basic notions that we use. A group (G, ∗)
is a set G equipped with an associative operation ∗, such
that, for any two elements g1, g2 in G, also g1 ∗ g2 is in G.
Moreover, there is an identity element e, such that, for all g,
we have g ∗ e = e ∗ g = g; and there exists a g−1 such
that g−1 ∗ g = e. However, in general, the operation is not
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commutative: g1∗g2 �= g2∗g1. One can verify that Perm(n) is
a group, because two permutations can be composed to obtain
a new permutation, and each permutation can be inverted.
Groups are the simplest mathematical object that can be used
to describe invertible transformations applied to the data that
are not commutative. Technically, these transformations are
called group actions. We say that a group G acts on a set Y ,
if there exists an operation “·”, such that for any g in G, and
any y in Y , g·y (read: “g applied to y”) is still an element of Y ,
e ·y = y, and the coherence condition (g1∗g2) ·y = g1 ·(g2 ·y)
is verified.

A group that acts on the observations/commands induces a
perturbation of the semantic relations η, γ. Formally, let GU

be a group acting on the commands u(t) ∈ U , and let GY be
a group acting on the observations y(t) ∈ Y . By acting on
the spaces U , Y , the groups also act on η, γ. For example, if
originally the semantic relation η indicated that

η({y3 = 4}) = ”there are no obstacles in direction θ3", (1)

then if σ ∈ GY = Perm(n), we obtain the new semantic
relation η� = σ · η, such that

η�({y3 = 4}) = ”there are no obstacles in direction θσ(3)".
(2)

In this case, the permutation nuisance perturbs the semantics
of the data by relabeling the observations: the agent still knows
that the range readings yi give information on the presence of
obstacles, but now the direction to which each reading refer
is unknown.

At this point, we have a way to characterize precisely what
are the assumptions for an agent: an agent’s assumptions are
described by two groups GY ,GU acting on U , Y , such that
the agent can tolerate a perturbation of its observations and
commands given by the actions of GY ,GU . The larger the
groups, the more flexible the agent is. For an agent that cannot
tolerate any disturbance, we would let (GY ,GU ) = (Id, Id),
where Id is the identity group {e}.

In Section IV we shall give an argument that the behavior
of an optimal agent should be exactly invariant to these
nuisances; but before that, in the next section, we give some
examples of nuisances that are relevant for robotics.

C. Some representation nuisance relevant for robotics
Table I shows some representative examples of group nui-

sances relevant for robotics.
Sensel values permutations: We already discussed permuta-

tions: a permutation nuisance represents the fact that the agent
makes no assumptions on the ordering of the sensels in the
observation vector.

Linear transformations: Linear transformations are the sim-
plest case of nuisances that somehow mix the different signals.
Let GL(n) be the set of all invertible n×n matrices. This is a
group under the operation of matrix multiplication. The action
of A ∈ GL(n) to the observation vector y ∈ Rn maps each
sensel value into a linear combination of all other values: yi
is mapped to

�
j A

j
iyj . This class of nuisances can be used

to encode the fact that the agent needs no assumptions on the
units used in the observation vector.

Uniform and non-uniform sensel warping: Let Diff(R)
be the set of diffeomorphisms (smooth invertible functions)
from R to itself. These form a group, because the com-
position of two diffeomorphisms is an associative operation
that produces another diffeomorphism, and an inverse always
exists. Suppose that y ∈ Rn. A map f ∈ Diff(R) acts on
the observations by mapping yi �→ f(yi). A diffeomorphism
nuisance is in general a nonlinear monotone function: the only
information preserved is the order relation between of values:
a < b ⇔ f(a) < f(b). This means that an agent indifferent to
sensel values diffeomorphisms can still have assumptions on
concepts such as “less intense” and “more intense”, but cannot
assume an absolute scale. More generally, we can imagine that
there is a different nuisance fi ∈ Diff(R) for each observation:
yi �→ fi(yi). In this case, much more structure (correlation,
etc.) is possibly destroyed.

Sensel space diffeomorphism: Assume that the observations
are a field {ys}, where s ∈ S is a spatial index that spans
the sensel space S , which is assumed to be a differentiable
manifold. For example, suppose the sensor is a camera, and S
is the visual sphere. A diffeomorphism nuisance ϕ ∈ Diff(S)
maps ys �→ yϕ(s). The meaning of a diffeomorphism nuisance
is that the agent does not know the position of its sensels on
the visual sphere; using the computer vision jargon, the sensor
is not intrinsically calibrated.

General automorphisms: The largest group of nuisances
that we might consider is the group of automorphisms Aut(Y):
it includes all possible 1-to-1 maps from the set Y to itself.
This includes arbitrary encryption of the bit representation of
the data, and it corresponds to the agent having no assumption
whatsoever for the representation of the observations. An
agent that can tolerate such nuisances is most likely only a
theoretical possibility if the cardinality of Y is large.

Table I
GROUPS NUISANCES ACTING ON THE OBSERVATIONS

nuisance group GY Y action

Sensels values
permutation

σ ∈ Perm(n) Xn
yi �→ yσ(i)

Linear
transformation

A ∈ GL(n) Rn
yi �→

�
j A

j
iyj

Sensel space
diffeomorphism

f ∈ Diff(S) C(S;R) ys �→ yϕ(s), s ∈ S

Uniform
sensel warping

f ∈ Diff(R) Rn
yi �→ f(yi)

Non-uniform
sensel warping

{fi} ∈ (Diff(R))n Rn
yi �→ fi(yi)

Generic
mapping

ϕ ∈ Aut(Y) any y(t) �→ f(y(t))

The third column shows what are the assumptions on the observations space Y
for the nuisance to make sense. For permutations, Y = Xn indicates that each
sensel value yi must belong to the same space Xn; for the diffeomorphisms,
Y = C(S;R) indicates that the observations are a continuous function over
some manifold S; automorphisms make sense for any Y ; and for the others
we assume Y = Rn.
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IV. INVARIANCE AND CONTRA-VARIANCE

In this section, we claim that not only the agent’s behavior
should be robust to the representation nuisances, but the overall
evolution of the system must be invariant as well, if the agent
has any claim of optimality. For the sake of this discussion,
the optimality criterion can be either the performance with
respect to an external signal, as well as intrinsic motivation:
what matters is that the optimality is “physically grounded”,
in the sense that it does not depend on the representation of
the observations/commands streams.

We need a separate discussion for the observations and the
commands. For the observations (Section IV-B) the agent’s
behavior must be invariant to the nuisance; for the commands
(Section IV-C), the agent must be contra-variant, because
those nuisances must be compensated.

A. The closed-loop system must be invariant to nuisances
We have defined what is the meaning of the nuisances that

appear in Fig. 1: instead of the observations y(t), the agent
observes g · y(t), with g a fixed, unknown element of GY ;
and, likewise, the commands u(t) chosen by the agent are
corrupted by the action of the group GU . The larger the groups
GU , GY , the closer we are to the situation of completely
uninterpreted data.

The diagram of Fig. 1 might look familiar; note, however,
that usually nuisances are taken to be “noise”, that is, time-
variable quantities that perturb the signals and lose infor-
mation, thereby irremediably degrading the performance of
the agent. In this case, instead, the nuisances are fixed but
unknown, and they preserve information: because they are
groups actions, it is always possible to find the group element
that reverses their effect. The nuisances do not change, in
principle, what is possible for the agent to do: therefore, an
optimal agent must necessarily act as to make the closed-loop
system invariant to the nuisances.

B. Invariance to observations nuisances
It turns out that there is an asymmetry for the cases of

observations and commands nuisances. For the observations,
it is clear that the actions of the agent must be invariant to the
observations nuisances. Let u(t) = Θ({y(t),y(t − 1), . . . })
be the actions of the agents as a function Θ of the history of
the observations {y(t),y(t−1), . . . }. Then, it must hold that,
for any g ∈ GY ,

Θ({g ·y(t), g ·y(t−1), . . . }) = Θ({y(t),y(t−1), . . . }). (3)

A simple example of this optimality principle is in the pattern
recognition problem, where decision rules should be invariant
to position, orientation, and scale of the pattern, and this nec-
essary invariance guides the design of detectors (e.g., [26]);
in that case, the nuisance group consists of Euclidean trans-
formation of the plane plus scaling.

The case of observations nuisances seems to be the simplest
of the two, because this invariance can be achieved using
some preprocessing of the observations that can be relatively
independent of the rest of the agent. In the next sections we
shall see three design principles to achieve this invariance.

C. Contra-variance to commands nuisances
Group nuisances acting on the commands seem to be

harder to handle. The commands u(t) chosen by the agent
are corrupted by a group GU , so that the world receives
the commands u�(t) = g · u(t), where g is an unknown
element of GU . Note that the agent never sees the corrupted
signal u�(t) directly; it can only be aware of the nuisance by
its effect on the world; and, rather than being invariant to the
nuisances, the agent must be able to compensate them. If the
optimal commands were u(t) in the case without nuisances,
then the optimal commands in the case of a nuisance g must
be g−1 · u(t), where g−1 is the inverse of g with respect
to the group operation. In that case, the nuisance would be
compensated, because g ·(g−1 ·u(t)) = (g∗g−1)·u(t) = u(t).
Technically, this is called contra-variance. Unfortunately, no
principled, generic way is known to achieve this contra-
variance.

V. INVARIANCE BY GROUP AVERAGING

Having established that invariance of to the observations
nuisances is a worthy goal, we now turn to the question of how
to achieve it. In particular, the interesting question is whether
there are some design principles that give some guidance in
designing the agent.

One general method found in the literature is group av-
eraging. Assume the nuisance group G is applied to the
data y0 ∈ Y , so that y = g · y0 is observed instead of y0,
with g being an arbitrary element of G. Assume that one
must compute an action from y, and this computation must
be invariant to G; however, one only has a rule f which is
not invariant to G, in the sense that f(y0) �= f(g · y0). Then,
one can simply average over the group, to obtain a smoothed
version of f that is invariant by construction. Assuming G
compact [27], the averaged f can be written by integrating
over the Haar measure for the group

fG(y) =

ˆ
G
f(g · y)dG, (4)

This is a “brute force” approach to achieve invariance:
there is no guarantee that the resulting fG achieves a better
performance than f ; in the worst case, the function fG gets
smoothed too much and becomes a constant, which is invariant
but rather useless.

VI. INVARIANCE BY INVARIANT TASK DESIGN

If the agent task is specified intrinsically (as opposed
to an external reward signal), an indirect way to achieve
invariance to the observations nuisances is to make sure that
the invariance is captured by the task itself. Suppose that the
task is represented by a known objective function J(y,u), that
the agent must minimize with respect to u. If the objective
function is invariant to the nuisances acting, then, whatever
approach the agent takes to minimize J , the resulting behavior
will be invariant.

Technically, the property that must be verified is that

J(g · y,u) = J(y,u), for all g ∈ GY . (5)
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An example in the literature is in “natural” actor-critic algo-
rithms [28] where the objective is shown to be invariant to a
reparametrization, which acts as the nuisance in that problem.

A. Example with a servoing task

We give a more concrete example with reference to a
robotic agent. In previous work [5], we studied bootstrapping
problems where the intrinsic task is servoing: given a goal ob-
servations y�, choose the commands u such that y(t) → y�.
This is an example of an intrinsic task that makes sense for
multiple sensor modalities; in fact, we used it to show that
the same bootstrapping agent can deal with multiple sensors
(camera, range-finder, and field sampler).

One way to solve the problem is to pose it as minimizing
the objective function

J(y(t),u) = �y(t+ 1)− y��22, (6)

where the dependence on u is implicit in the fact that we are
considering the next observation y(t+ 1).

Suppose now that the nuisance group GL(n) acts on the
observations. Then we can show that the using the objective
function (6) cannot result in an optimal agent. This is because
a scaling of the observation changes the relative importance
of each sensel. Therefore, an agent minimizing (6) cannot be
optimal in any sense, because its behavior depends on the
representation nuisance.

One way to obtain invariance is to consider a slightly
modified error function:

J �(y(t),u) = (y(t+ 1)− y�)T (cov{y})−1 (y(t+ 1)− y�).
(7)

One can verify that this objective function is invariant to the
nuisance: if a nuisance A ∈ GL(n) maps y �→ Ay, then
cov{y} �→ Acov{y}AT ; therefore, J � is invariant to the
nuisance.

VII. INVARIANCE BY PONTIFICAL CANONIZATION

Soatto [29] introduced a principled way to achieve in-
variance to group nuisances that can be generalized to our
case. The basic idea is to use of “pontifical features” to
define “canonical” representatives of the data that are invariant
to the nuisances (Section VII-A). We generalize the idea
to use “weak” pontifical features that identify a canonical
element up to a transformation (Section VII-B). Then we apply
the theory to the case of bootstrapping (Section VII-C) and
study canonization procedures for the nuisances previously
introduced (Table II).

A. Pontifical features identify canonical representations

It is convenient to first discuss the theory with relation to
static observations. Suppose that some process produces data
y ∈ Y , which is then corrupted by a group nuisance G, so that
we observe ỹ = g · y, with g being an arbitrary and unknown
element of G. Thus, for each original y, we can potentially
observe any element of the set G · y � {g · y | g ∈ G}, which
is called the orbit of y. Pontifical features allow to choose,

for each orbit G ·y, a canonical representation, thus achieving
invariance with respect to the group nuisance.

Definition 1. A map φ : Y �→ R≥1, is a strong pontifical
feature for the group G acting on Y if, fixed y, the equation

φ(g · y) = 0, g ∈ G, (8)

has exactly one solution in G, which is denoted by gφy ∈ G.

Equation (8) can be interpreted as follows: φ(y) = 0 is
a certain property that the data need satisfy; the fact that
φ(g·y) = 0 is always solvable for g means that one can always
find an element of the nuisance group that transforms the data
as to satisfy that property. Such a feature is called “pontifical”
because it identifies a “canonical” representation. In fact,
suppose that we observe the data y1 = g1 · y, where g1 ∈ G
is the unknown nuisance acting on the pristine data y. If we
know a strong pontifical feature φ, we can solve (8) to find gφy1

and then compute the representation ŷ = gφy1
· y1.

Definition 2. The canonical representation of y corresponding
to the strong pontifical feature φ is the element ŷ = gφy · y,
which by construction satisfies φ(ŷ) = 0.

The canonical representation ŷ does not depend on the
particular group nuisance g1 that corrupted the data in the
first place, and it is unique for each orbit2.

Example 3. Suppose we have a signal y ∈ Rn, with yi > 0,
representing intensity values (thus the positivity constraint)
that are corrupted by an unknown gain k > 0, which maps
y �→ ky. One can obtain a canonical representation using
the mapping y �→ y/�y�2. Here, the unknown gain can be
represented by the group nuisance G = (R+

0 ,×), and the
strong pontifical feature used is φ(y) = �y�2 − 1.

B. Weak pontifical features identify heresy subgroups

A strong pontifical feature can be a rare luxury. In practice,
we often have available features which do not quite identify a
unique canonical representation.

Definition 4. A map φ : Y �→ R≥1 is a weak pontifical
feature for the group G acting on Y if, once a data y is fixed,
the constraint equation (8) has a non-empty set of solutions
{h·gφy |h ∈ Hφ

y } ⊂ G, where gφy ∈ G and Hφ
y is a subgroup G.

According to this definition, a strong pontifical feature is a
particular case of a weak pontifical feature where Hφ

y is the
identity group. If we only have a weak pontifical feature, we
can choose multiple elements {gi} ⊂ Gφ

y to compute a set of
transformed data {ŷi} = {gi·y}, all of them satisfying φ(ŷi) =
0. There cannot be multiple “canonical” elements, thus all of
them (possibly except one, which we do not know anyway)

2 In fact, suppose that, instead of y1 = g1 ·y, we had observed y2 = g2 ·y
(same original data y, different group nuisance g2). Let ŷi = g

φ
yi · yi be

the result of canonization. By construction, we know that φ(ŷi) = φ(gφyi ·
gi · y) = 0. By virtue of associativity of group action, this can be written as
φ((gφyigi) · y) = 0. Because φ is pontifical, given a fixed y, there is only
one solution to the group element acting on it. Thus g

φ
y1g1 = g

φ
y2g2 and

consequently ŷ1 = (gφy1g1) · y = (gφy2g2) · y = ŷ2.
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Table II
PONTIFICAL-FEATURE BASED CANONIZATION OF NUISANCES

nuisance group G,
action on W

pontifical feature
constraint φ(W) = 0

canonization map heresy subgroup
HW ≤ G

Sensel values bias v ∈ Rn

yi(t) �→ yi(t) + vi

E{yi} = 0 vφ
W = −E{yi} Id

Linear
transformation

A ∈ GL(n)
yi(t) �→ A

i
jyi(t)

cov(y) = I Aφ
W = cov(y)−

1
2 O(n)

Sensel space
diffeomorphism

ϕ ∈ Diff(S)
y(s, t) �→ y(ϕ(s), t)

cov(∇y) = αI For S = S1:
ϕ
φ
W(θ) = c± α ∫θ0 (var{∇y(β)})−

1
2 dβ

Isom(S)

Non-uniform
sensel warping

f ∈ Diff(R)
yi(t) �→ fi(yi(t))

yi ∼ Uniform(0, 1) f
φ
W : yi(t) �→ percentile(yi(t), yT) (±1,×)

must be “heretic”, hence we call Hφ
y the heresy subgroup of φ

with respect to G.
A weak pontifical feature still helps in achieving invariance,

by allowing a partial canonization that reduces the nuisance
group G to the smaller subgroup Hφ

y . This suggests a modular
architecture where pontifical features are used in succession
to reduce the original nuisance group to incrementally smaller
uncertainties, until complete invariance is achieved.

Example 5. To continue the previous example, consider the
case of a multiplicative scalar gain k ∈ R acting on a signal
y ∈ Rn (we dropped the positivity constraint, allowing yi �
0). A reasonable normalization step consists in computing
y �→ y/�y�2, or y �→ −y/�y�2. The two possible choices arise
because the feature φ(y) = �y�2−1 is only a weak pontifical
feature for the group G = (R,×), and its corresponding
heresy subgroup is Hφ

y = ({−1,+1},×). To achieve complete
invariance, we can use a successive canonization stage, by
using, for example, the feature φ�(y) = sign(y1)− 1.

C. Examples of invariance via canonization

To apply this theory to the case of bootstrapping, we have
to be careful that, even though we have been considering
instantaneous nuisances, we aim at obtaining a canonization
of the whole dynamical system W representing the world that
produces those observations. Instead of canonizing the single
observation, what we need to do is finding a canonization Ŵ
of W. Consequently, a pontifical feature φ(W) is, in general,
a function of statistics of the complete time series of observa-
tions and commands.

1) Canonization of sensel values bias: The simplest case
is compensating for a bias in the measurements. Here, the
group GY is simply the vector space Rn equipped with
addition as the group operation. The pontifical feature that
we can use is

φ(W) = E{y} = 0. (9)

Note the feature is a function of the entire dynamical sys-
tem W, and is written using a statistical operation, in this case,
the expectation of the observations. By solving the equation
φ(g ·W) = 0, we obtain that the canonical transformation is
gφW = −E{y}, and the canonical representation Ŵ is W in
series with an instantaneous filter which removes the mean.

We note that, in this case, φ is a strong pontifical feature,
therefore its heresy group is the identity group.

2) Canonization of sensel value linear transformation:
Another simple example is the case of GY = GL(n) acting on
the observations y(t) ∈ Rn. The nuisances maps y �→ Ay,
where A ∈ GL(n) is any invertible matrix. Consider the
candidate feature

φ(W) = cov{y}− I. (10)

where cov indicates the variance-covariance matrix of the
observations. One solution of the canonization transformation
is given by gφW = (cov{y})−

1
2 , where the square root is

taken in the sense of the operator square root [30]. One
can verify that such transformation, called whitening in the
signal processing literature [31], guarantees that the covariance
matrix of the data be the the identity matrix.

In this case, the feature φ is only a weak pontifical feature,
because we can find other solutions. For example, gφW =
−cov{y}− 1

2 is a different canonization transformation which
still satisfies the feature constraint. In general, one finds that a
successive mapping y �→ My preserves the covariance matrix
if and only if M is an orthogonal matrix, and the orthogonal
group is the heresy group for the feature.

3) Canonization of sensel space diffeomorphism: As a
slightly more advanced example, we consider the case of a
diffeomorphism nuisance, as introduced in Section III-C. We
can show that a weak pontifical feature is

φ(W) = cov{∇sy(s)}− αI, s ∈ S, (11)

where α > 0 is a parameter to be determined. Suppose that
we are talking about an image. We are imposing that the
covariance of the image gradients is constant at each point
of the sensel space S . A diffeomorphism nuisance dilates
or expands certain parts of the image; this pontifical feature
ensures that the statistics are uniform on the visual sphere.

Let ϕ ∈ Diff(S) be a group element acting on the image.
The constraint equation φ(ϕ ·W) = 0 can be written as

Jcov{∇sy(s)}J∗ = I, s ∈ S, (12)

where J = ∂ϕ/∂s is the Jacobian of the transformation;
note that, even if ϕ is in general nonlinear, the gradients are
transformed linearly by the Jacobian. Equation (12) needs to
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be integrated to obtain the canonization transformation3. Also
in this case the feature is only a weak feature, and we can
identify the group of isometries of S as the heresy group
for the feature. In fact, another diffeomorphism preserves the
feature if and only if the Jacobian is orthogonal everywhere,
and this implies that the diffeomorphism is an isometry [32].

VIII. CONCLUSIONS

It is critical to establish what are the assumptions about a
world that a bootstrapping agent needs, as it appears extremely
hard to solve the problem in full generality. In classical control
problems, one has assumptions about the family of models
under consideration (e.g., linear systems); in bootstrapping
problems there are in addition assumptions about the seman-
tics of the data. We showed that those assumptions can be
described by the representation nuisances acting on the agent’s
semantic relations that the agent can tolerate.

Moreover, for an agent that claims any kind of optimality,
it is necessary that the world-agent loop is exactly invariant
to such nuisances. The agent behavior must be invariant to
the nuisances acting on the observations, and contra-variant
to those acting on the commands. For the nuisances acting the
observations, we described three design principles to achieve
the required invariance (group averaging, task invariance, and
pontifical features), and we gave several examples for the
nuisances common in a robotic system.

This shows that it is possible to formalize problems that
at first sight are quite vague (the observations and commands
are “uninterpreted”) so that they can be approached with the
relevant mathematical tools. Future work involves understand-
ing whether generic design principles can be established for
the nuisances on the commands, and whether this formalisms
of group nuisances is useful for understanding properties of
bootstrapping agents at a higher level than the instantaneous
continuous/analog sensorimotor interaction considered here.

Acknowledgments. Thanks to Scott Livingston for the
many insightful comments on a very short notice.
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