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Abstract— This paper introduces a new computationally
inexpensive approach to perception and modeling of the
environment that allows fusion of sensory range data of
various types and fidelities while explicitly taking into account
a complete description of uncertainty of the range measure-
ments. This approach makes use of known sensor uncertainty
models to create a single 2.5D digital elevation map whose
accuracy is robust to sensor noise and spurious data. This
approach is particularly suitable for real-time application in
high speed and highly unstructured outdoor environments
for which reasonably accurate and timely vehicle state es-
timates are available. Experimental results are presented in
which LADAR range measurements and state estimates are
combined according to this approach. We provide qualitative
comparison to other classes of environment modeling.

Index Terms— Terrain estimation, sensor fusion, 2.5D ele-
vation mapping, range measurements

I. I NTRODUCTION

Autonomous navigation for mobile robots has much
potential in civilian, commercial, military and space ap-
plications, but has not yet hit its stride in terms of
demonstrating robust, real-time, high-speed operation in
unstructured terrain for which there is noa priori terrain
information available. Success in such an endeavor (and,
indeed, in autonomous navigation in general), requires four
fundamental contributions:localizationwithin the environ-
ment,perception and modelingof the environment,motion
planningthrough the environment andexecutionof planned
motion.

The combined picture of these contributions have been
treated in several contexts. Kelly and Stentz [1] have
provided a thorough system-level overview of the re-
quirements for navigation in rough terrain, as well as a
dynamical-systems oriented approach for vehicle control
in such a situation [2]. Lacroix et al. [3] have developed
and demonstrated a comprehensive approach for navigat-
ing long distances in unknown environments, suitable for
autonomous planetary exploration. Bellutta et al. [4] and
Stentz et al. [5] demonstrated approaches to the terrain
perception problem in particular, for the Demo III XUV
and PerceptOR programs, respectively.

This paper is presented with all four of these fundamen-
tal components in mind (localization, perception, planning
and execution), with a particular focus on theperception

Fig. 1. Bob, Team Caltech’s entry in the 2004 DARPA Grand
Challenge, provides the test data for the results presented. Two
stereovision camera pairs and a Sick LMS-2100 laser rangefinder
are shown mounted above the cab; another Sick unit is mounted
on the bumper. A Kalman Filter achieves state estimates from
differential GPS and IMU input data.

and modeling component, as applied in high-speed navi-
gation in unstructured outdoor environments. Specifically,
the goal addressed is the efficient and robust estimation of
unstructured terrain given noisy state estimates and noisy
range data. Since this terrain estimate is needed for real-
time motion planning, issues of latency and throughput
must be balanced with consideration for accuracy.

Note that a natural division has and can be made within
the modeling component betweenterrain estimationof
the geometric properties of the environment andterrain
classification of the surface and material properties of
objects or regions in the environment. While the terrain
classification problem has received various treatment in
terms of both color and LADAR classification ([4], [6]),
this paper is strictly concerned with the terrain estimation
problem.

There have been several major approaches to the mod-
eling (terrain estimation) component for autonomous nav-
igation. These can be differentiated from each other by
the manner in which the environment is chosen to be
represented, in other words, the type of map that is used.

A large body of robotic literature represents the envi-
ronment as a collection of distinct objects or landmarks
in a landmark map, largely owing to the efficacy of
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this representation in many solutions to the problem of
Simultaneous Localization and Mapping (SLAM; for a
thorough survey, especially as applied to indoor applica-
tions, see [7]). SLAM is particularly useful in applications
where accurate localization estimates are not independently
available.

A second popular type of environment representation
for mobile robotics is theoccupancy grid, which is a
representation of the probability that each cell in the
grid is occupied. Formal Bayesian Filtering methods have
been well-developed for this type of map, and it is well-
suited for navigation through structured terrain such as
indoor environments. Extensions of the occupancy grid
are closely related to the idea of evidence grids pioneered
by Martin and Moravec [8], and these ideas have been
extended to three dimensions in the form ofvoxel maps,
which can provide much more accurate representations of
environments at the cost of greater memory usage.

The type of map representation desired is highly de-
pendent on the requirements of the specific application for
which it is intended. For high-speed navigation, mainte-
nance of complicated three-dimensional environment mod-
els is undesirable, as one of the co-requisite goals must
be to maintain, process and evaluate the map with the
minimum latency possible. On the other hand, navigation
in unstructured terrain will limit the effectiveness of strictly
2D maps, since vital information about the surface geom-
etry can be lost in these representations.

A suitable middle ground between these approaches, and
the one that represents our framework for development, is
the digital elevation map (DEM), where to each cell in
a Cartesian grid is assigned the height estimate for that
cell. This is a compact representation that is amenable to
computationally fast implementation in terms of storage,
access and evaluation. With this map representation, our
problem statement reduces to the following:Given a set
of noisy range and vehicle state estimates, estimate
the terrain surface elevation of the environment to
provide an effective and efficient means of autonomous
navigation.

Several additional problem parameters will drive our
approach. We will assume that reasonably accurate but
noisy state estimates (3D location, pitch, roll and yaw)
are available to us, and that we can co-register these
state estimates with our range measurements, through the
calibration parameters of our sensors. We further assume
that our sensors are properly calibrated in terms of both
the mounting parameters and intrinsic parameters of the
sensor. The violation of this assumption would result in
mis-registered maps; while there are methods to correct out
calibration error, we leave the integration of these methods
as future work. Finally, by virtue of adopting a digital
elevation map approach, we are making the 2.5D world
assumption; that is, we assume that for each(x, y) cell
location there exists a unique elevation, and that the actual
elevation can mathematically be described as a function,
albeit not necessarily in closed-form. Violation of this

assumption is tolerable, in such cases it may be impossible
to show convergence, but formal proof of convergence is
not a primary goal in this problem formulation.

Approaches to 2.5D terrain surface estimation in out-
door applications typically fall within one of two bipolar
categories in terms of their treatment of uncertainty. The
first approach neglects explicit account of uncertainty by
averaging over the multiple measurements that fall within
a given cell, and/or discarding outliers that fit poorly the
other data associated with the corresponding terrain. The
second approach typically constitutes a Bayesian formu-
lation that constructs an expression for the probability
of a 3D surface, conditional on the collection of range
measurements [9], [10]. This approach, while most ap-
pealing because of its mathematical rigor, suffers a few
drawbacks for our application. It’s formulation requires an
a priori model to which the measurements are compared,
sometimes given as a parametric model whose parameters
can be optimally estimated, neither of which are practical or
desirable for navigation through unknown terrain. Finally,
most methods that can accommodate this problem are not
computationally efficient enough to process data as quickly
and with as much throughput (on the order of thousands
of measurements per second) as is required.

This paper, then, represents the “middle ground” be-
tween these two approaches. It provides a method to take
range sensor uncertainty into explicit account in terrain
estimation that is practical for real-time implementationat
high speeds and data rates. Closely related approaches, in
this respect, include those of Zhang [11], who estimates
local parameters to fit a stereovision point cloud in a given
region to a plane, Kelly and Stentz [2], who use the concept
of a “scatter matrix” to represent the local geometric
uncertainty in a grid, and Montemerlo and Thrun’s recent
approach [12] to accommodate sensor spatial resolution
dependency on range.

The central contribution of this paper is the develop-
ment of an approach for 2.5D terrain estimation which
is amenable to sensor fusion, at the map level, of any
number and variety of range sensors for which sensor
models can be estimated. This approach makes explicit
use of a sensor model and provides an efficient method
of updating the grid cells for each range measurement.
The main advantages of this approach are the generation of
more complete, accurate and robust terrain estimates, along
with a spatial measure of theuncertainty in the terrain
estimate, which may guide new strategies for path planning
or directing sensor attention. We exercise this new method
on real field data of LADAR range measurements that are
co-registered with vehicle state estimates obtained from
a moving vehicle, and provide these raw data for further
research in terrain estimation and autonomous navigation.

The paper is presented as follows. Section II provides
a formulation of and motivation for our approach. Section
III develops the mathematical preliminaries and derivation
of each of the components of our approach. A description
of the experiment run is given in section IV, and results



are provided in V. Section VI provides a summary of this
work and description of current and future work.

II. FORMULATION OF APPROACH

Traditional simultaneous localization and mapping solu-
tions use both state and range measurements to update the
map and location of the vehicle in the same update. State
measurements (e.g. odometry) are used to update the loca-
tions of landmarks, and conversely, range measurements are
associated with landmarks and used to update the estimate
of the state of the vehicle. Our approach severs the latter
connection, and propagates noisy but reliable state esti-
mates through the usual geometric transformations to get
a 3D description of the uncertainty of each measurement
that encompasses the noise in the state as well as the range
measurement. In this way, the data association problem is
avoided altogether, since range measurements are not used
to update the state of the vehicle.

The approach to estimate the terrain profile is outlined
as follows:

1) Construct a sensor uncertainty model from estimated
raw variances in each of the state estimate variables
(easting, northing, altitude, pitch, roll, yaw) and from
variances associated with the range measurement
(range, azimuth, elevation).

2) Take a range measurement for which the transforma-
tion between the sensor frame and the vehicle frame
is known. This range measurement is transformed
through the uncertainty model in step 1 to achieve
a 3D description of a probability density function
(pdf) for the given measurement.

3) Choose a region of cells around the mean of the pdf
calculated in step 2, and calculate updates for each
of these cells.

4) Update the cells chosen in step 3 according to an
appropriate set of update equations.

III. M ATHEMATICAL PRELIMINARIES

This section provides detailed derivation of one such
implementation of the approach outlined in section II.
Other implementations are possible and are likely to have
their own advantages and disadvantages. Some remarks
about the particular choice of implementation are provided
in the subsections below. Subsection III-A describes an im-
plementation of uncertainty model and range measurement
pdf computation (steps 1 and 2), and subsections III-B and
III-C describes a cell update method implementation (steps
3 and 4). These subsections represent the method used to
achieve the results presented in section V.

A. Uncertainty Model

The following method is presented for computing the
probability density function for a given range measurement.
We refer to the pose of the vehicle at any given time as the
collection of{easting, northing, altitude, pitch, roll, yaw},
denoted{x, y, z, θ, ψ, φ}, defined with respect to some
inertial reference frame. We denote the variance in the es-
timate of each of these quantities as{εx, εy, εz, εθ, εψ, εφ}.

Fig. 2. The coordinate system conventions used in this paper
include descriptions in the global, vehicle and sensor frame.
Visualization of a measurement probability density function as a
fixed-probability error ellipse. Scales are exaggerated for clarity.

These raw state variances can be provided, for example,
from the internal state of a Kalman Filter state estimator,
or they can be estimated offline. Let the measurement in
the sensor frame be defined by its range, azimuth and
elevation, denoted{ρ, α, β} and let the variances in these
quantities be denoted by{ερ, εα, εβ}. We use in each of our
coordinate frames thex-axis forward,y-axis right andz-
axis down convention, and defineθ = ψ = φ = 0 when the
vehicle is flat and pointed north. These coordinate systems
are presented for clarity in Fig. 2.

Our goal in this section is to derive a closed-form
expression for the three-dimensional probability density
function of a measurement, assuming each of the variance
parameters defined above is given by Gaussian white noise.
The location of a range measurement in sensor coordinates
is given by

Ms =





ρ cos α cos β

ρ cos β sin α

ρ sin β



 . (1)

Applying the assumption of Gaussian noise (substituting
ρ → ρ0 + ερ, α → α0 + εα, andβ → β0 + εβ , and making
a small angle approximation on the angle variances, yields
a description of the noisy measurement in the sensor frame.
After some algebra, this noisy measurement can be written
as

Ms = Ms0 + εMs =





ρ0cα0cβ0

ρ0sα0cβ0

ρ0sβ0



 + . . . (2)





cα0cβ0 −ρ0sα0cβ0 −ρ0cα0sβ0

ρ0cα0cβ0 sα0cβ0 −ρ0sα0sβ0

sβ0 0 ρ0cβ0









ερ

εα

εβ





where the functionssin andcos are abbreviated. Note that
the expression above is the combination of a nominal term
equal to the measurement value and an uncertainty term



due to the variances in the sensor measurement. Based on
(2), we can describe the probability density function in the
sensor frame as centered around the nominal (measured)
value with covariance given byΣ = E(εMsεM

T
s ). Our

goal, however, is to get the description of our measurement
in the inertial frame in order to register it to our 2.5D
map. This is done by transforming our measurement from
the sensor frame to the vehicle frame, and then into the
inertial frame. Noise in both of these transformations is
accounted for by replacing the transformation variables
with a nominal value plus additive noise, e.g.x → x0 + εx

or φ → φ0 + εφ. Through this substitution, small angle
linearization, and discarding of higher order terms, first
order statistical expressions for the measurement in the ve-
hicle and inertial frame can be obtained. Using the subscript
syntaxvs to indicate the transformation from the sensor to
the vehicle,0 to indicate the nominal measurement, and the
prefix ε to indicate the first order statistic, the measurement
in the vehicle frame can be written

Mv = Rvs0Ms0 +Rvs0εMs + εRvsMs0 +Ts0 + εTs, (3)

whereR andT represent the rotation and translation of the
associated transformation. Following the same procedure
for transformation of the measurement into the inertial
(global) frame yields a similar expression for the measure-
ment in terms of (3),

Mg = Rgv0Mv + εRgv(Rvs0Ms0 +Ts0)+Tv0 + εTv. (4)

This measurement description in the global frame is the
sum of the nominal sensor measurement (transformed to
the global frame) plus a first-order term that depends upon
the combined variances from the sensor measurement itself
as well as the variances which appear in both of the co-
ordinate transformations. Its elaboration here is prohibited
by space constraints, but it does constitute a closed-form
expression consisting of additions and multiplications that
lends to very fast computation (on the order of microsec-
onds for a single measurement).

Through these noise propagation equations, each mea-
surement can be described as a first-order probability
density function with mean and covariance as derived from
(4). The ellipsoid in Fig. 2 represents a fixed-probability
error surface as computed from one such measurement
description in the global frame.

B. Measurement Discretization

The explicit, computable expression for the measurement
uncertainty resulting from the analysis of Section III-A
will, in general, extend over multiple cells in a gridded
map for a single measurement. It is therefore necessary to
devise an appropriate way to determine which cells should
be updated, and how they should be updated, for each
measurement.

Subsection III-C describes the method we use to update
a single cell given normally distributed cell input measure-
mentszk that are described by their meanzm and variance
σz. This section describes the way in which a single 3-D

measurement and associated uncertainty model is converted
into a number of cell input measurements.

Simplifying assumptions were made about the equations
presented in Section III-A so that the uncertainty of a single
measurement can be represented by first order statistics as
a multivariate Gaussian. The shape and orientation of the
Gaussian for each measurement depends on the direction
of the sensor measurement as well as the variance in sensor
range measurement and variances in vehicle position and
orientation. The measurement is parameterized by a center
µ ∈ R

3 and a covarianceΣ ∈ R
3×3, and is represented by

the equation

p(x) =
1

(2π)3/2
√

det Σ
exp

[

−1

2
(x − µ)T Σ−1(x − µ)

]

(5)
where p(x) = p(x, y, z) is the probability that the mea-
surement actually came from a surface atx.

With an elevation grid representation of the environment,
each cellCij in the grid can be reasonably assigned the
height probability function

pij(z) =

∫ ∫

Cij

p(x, y, z) dy dx. (6)

This function cannot be considered a probability density
function, however, because the total integral ofpij(z) is not
equal to 1. A normalization of this function is necessary
to use it as a pdf for input to the Kalman Filter update
equations of Section III-C. One option for normalization
would be a scaling of the function byαij so that

αij

∫

∞

−∞

pij(z) dz = 1. (7)

The implementation of this method, however, has the
significant drawback that the cells far from the center of a
measurement will have variances that are similar to those
of the cells near the center of the measurement. For cells far
away from the measurement, the fact thatpij(z) is much
smaller should correspond to a high variance associated
with the measurement. Our solution, then, is to find the
meanµij of pij(z) and then to normalizepij(z) by setting
the standard deviation of the normalized Gaussian pdf to

σij =
1

pij(µ)
√

2π
. (8)

Cells close to the center of the measurement, therefore,
will have higher value ofpij(µ) and a lower variance. Cells
far from the center of the measurement will have lower
pij(µ) and hence a higher variance.

In a practical implementation, it is necessary to decide
which cells are to be updated for any given measurement.
There are options for how to specify this. One method for
doing so for a Gaussianp(x) is to update any cell whose
center lies within aχ-confidence ellipse. Another is to
update those cells for which the peak probability is greater
than some threshold. A third is to say that we will update
the cells whose centers lie within a specified geometric
shape (rectangle, circle, ellipse). In the implementation



described in Section V, this last method was used for
the sake of ease of implementation. Also for practical
considerations, the integral in equation 6 was approximated
by

pij(z) ≈ p(xi, yj , z)∆x∆y (9)

where the center of cellCij is (xi, yj) and the resolution
of the grid is specified by∆x and∆y.

C. Cell Update Equations

The update equation that governs each cell is a Kalman
Filter whose state is equal to the scalar height estimate
for the cell. Since there are no independent dynamics
associated with the height of a cell, the state propagation
equations are simply identity, and the height estimate is
purely a result of updates from measurements whose(x, y)
coordinates land near that cell. In this manner, cells in the
map receive a flurry of updates when a series of sensor
measurements pass over it, but are otherwise unchanged.
This results in an efficient means of updating cells during
high-speed navigation.

An abbreviated version of the Kalman Filter measure-
ment update equations (see for example [13]) is

Kk = Pk−1H
T (HPk−1H

T + R)−1 (10)

x̂k = x̂k−1 + Kk(zk − Hx̂k−1) (11)

Pk = (I − KkH)Pk−1 (12)

In our case, the state vector is actually the scalar height
of a cell, which is also the massaged form of our measure-
ment, so theH term is equal to unity. The error covariance
P is equal to the variance in the height estimateσ2

h andR is
equal to the variance in the measurement height,σ2

m. It can
be shown from these equations that the update equations
reduce to

x̂k =
σ2

hzm + σ2

zx

σ2

h + σ2
z

(13)

Pk =
σ2

hσ2

z

σ2

h + σ2
z

(14)

These are the equations used to update the height and
variance in height for the cells that are chosen to be updated
according to the methods of section III-B.

IV. D ESCRIPTION OFEXPERIMENT

Experiments were run using Bob (Fig. 1), a instrumented
and actuated sport-utility vehicle that served as Team
Caltech’s entry in the 2004 DARPA Grand Challenge. Bob
is equipped with two pair of stereovision cameras and two
2D scanning laser rangefinders mounted horizontally. For
tests of these new algorithms, simultaneous state and range
data (from the cab-mounted LADAR unit only) was taken
at approximately 5Hz and a manually controlled path was
driven through a handcrafted course.

The course consisted of a flat dry lakebed with hand-
placed obstacles at measured locations on the course.
Included in the set of obstacles are three approximately
1m tall by 1m radius buckets, three coolers of approximate

Fig. 3. The map resulting from the naive approach of replacing
cell data with the height of the new measurement if the new
measurement is higher than the old.

dimension 1m by 0.5m by 0.5m, and a calibration target
of height and width 1m by 1m. Although the algorithms
presented here are intended for high-speed operations, the
experiments were run at moderate speeds in order to use
the data to demonstrate the effectiveness of the algorithm
under controlled conditions.

While demonstrated at moderate speeds, the algorithms
developed based on sections II and III are able to run at
very fast rates (processing the LADAR range measurements
– 201 per scan at5Hz scan rate – was demonstrated in
real-time with a latency of a few tens of milliseconds on
a 1.5GHz Pentium 4 processor). A thorough quantitative
analysis of the algorithms performance at high speeds has
not yet been done.

V. RESULTS

The dotted line in Figs. 3 and 4 represents the path that
was taken by Bob during one data run. The maps created in
each of these figures are both 0.25m× 0.25m resolution,
and represent the application of two different map esti-
mation approaches. The first, naive method processed the
data according to a method that neglected considerations
of uncertainty in the measurement, and simply replaced the
data in the map at the appropriate cell with the maximum of
the measurement height and the current height in the cell,
if any. The resultant map using this method is shown in
Fig. 3. The second approach (Fig. 4) represents the result
of the map update method presented in section II, with
the cell containing the measurement mean and the eight
cells immediately surrounding it receiving updates for each
measurement.

The resulting terrain maps in Figs. 3 and 4 are coded
with intensity proportional to height. Cells that are coded
white represent no data assignments. Several qualitative
comparisons can be made from these results. First, most
strikingly, the maps provided by the new approach provided
in this paper result in much more complete terrain maps



Fig. 4. The map resulting from the new approach, which updates
a small region of cells for each measurement according to our
update method.

Fig. 5. A zoomed portion of Figs. 3 and 4 (on the left and right,
respectively) near relative location(170, 170)m. Note that the sensor
fusion method fills in the obstacle more fully and reduces the effect of
spurious measurements.

than the simpler approach, meaning that many fewer cells
remain assigned with no data. This is a direct result of
updating a local region of cells for a given measurement.
Secondly, this new approach tends to pick out obstacles
more clearly than the naive approach, as seen for example
in the zoomed image in Fig. 5. Third, the fused data method
of creating the terrain maps has a smoothing effect on the
terrain estimate. This is an expected effect of the algorithm.

Also note that for both methods of terrain estimation,
registration errors are apparent for those obstacles that are
passed more than once in the course of the experiment
(those in the figures with less than about150m relative
easting). This effect is one disadvantage of not attempting
to correct the state estimate with the range measurements,
as is done in SLAM approaches. Application-specific con-
siderations must be made when deciding whether this trade-
off is desired.

VI. SUMMARY AND FUTURE WORK

The main contribution of this paper is to provide an
approach to real-time 2.5D terrain estimation that explicitly
uses sensor models in its formulation, including the effect
of noisy but reliable state estimates. One such imple-
mentation of this approach was presented along with a

qualitative analysis of its performance. It is expected that
other implementations of this approach will be able to show
marked improvement in terrain estimation for high-speed
navigation through unknown and unstructured terrains.

This paper is intended as a baseline for research into
computationally inexpensive methods of real-time digital
elevation mapping approriate for high-speed navigation. It
serves as a springboard to more mathematically formal
approaches that are still amenable to processing at high
speeds and high data rates. Future work includes develop-
ment of such approaches, and providing rigorous quantita-
tive analysis and comparison of different techniques.

Specific potential areas for future work include the
development of data-driven sensor uncertainty models, as
they may show marked improvement over the Gaussian
assumption on the measurement model. We also intend to
extend this general method to sensor fusion at the map
level of multiple types of sensors, including combined
stereovision and LADAR.
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