
Towards Formal Synthesis of Reactive Controllers for Dexterous
Robotic Manipulation

Sandeep Chinchali, Scott C. Livingston, Ufuk Topcu, Joel W. Burdick, and Richard M. Murray

Abstract— In robotic finger gaiting, fingers continuously
manipulate an object until joint limitations or mechanical limi-
tations periodically force a switch of grasp. Current approaches
to gait planning and control are slow, lack formal guarantees on
correctness, and are generally not reactive to changes in object
geometry. To address these issues, we apply advances in formal
methods to model a gait subject to external perturbations
as a two-player game between a finger controller and its
adversarial environment. High-level specifications are expressed
in linear temporal logic (LTL) and low-level control primitives
are designed for continuous kinematics. Simulations of planar
manipulation with our synthesized correct-by-construction gait
controller demonstrate the benefits of this approach.

I. INTRODUCTION

A fundamental challenge in autonomous robotics is the de-
sign of robotic controllers that can manipulate objects as well
as the human hand. Fine manipulation is especially difficult
amidst uncertainties in tactile sensing, object geometry and
pose, and dynamic external perturbations. Even if a robust
controller can be developed for a specific task, it may not
generalize to a wider class of problems.

Motivated by such concerns in the DARPA Urban Chal-
lenge for autonomous cars, Wongpiromsarn applies formal
methods to design reactive controllers [1]. Given linear dy-
namics, control input constraints, and bounded perturbations,
a reachability analysis in an abstraction procedure discretizes
the state space. Linear temporal logic (LTL) is used to
specify a two-player game between a control system and its
adversarial environment, and a correct-by-construction dis-
crete controller in the form of an automaton is synthesized.
The abstraction procedure ensures that transitions in the
automaton can always be made given system dynamics. The
TuLiP Toolbox [2] performs abstraction and employs JTLV
[3] for controller synthesis from LTL specifications. Both
Kress-Gazit et al. [4] and Wongpiromsarn [1] use LTL to
synthesize controllers for sensor-based motion planning. To
our knowledge, this paper is the first work applying formal
methods as in [1]–[4] to dexterous manipulation.

Fearing [5] first demonstrated a finger gait, defined by
Hong et al. [6] as manipulation of a grasped object until
fingers are impeded by mechanical limitations such as reach-
ing workspace boundaries. A limit is addressed by forming
a stable grasp, often a force closure grasp, and repositioning
the limited finger to resume unconstrained manipulation.
Hong et al. construct feasible gaits involving three and four
fingers [6], while Han et al. propose two primitive motions of
substitution and rewind [7]. We consider a robotic hand with

All authors are with the California Institute of Technology, Pasadena,
CA. Address concerns to sandeepc@caltech.edu

three fingers as in Figure 1. Only two grasping fingers are
needed for manipulation while the third auxiliary finger is off
the object. In finger substitution, a secure three-finger grasp is
formed with the auxiliary finger so that a single constrained
finger can be repositioned [7] (Figures 4a–4d). In finger
rewind, multiple fingers can reach limits simultaneously,
prompting each limit to be addressed sequentially.

Xu et al. construct a hybrid controller for finger sub-
stitution to model continuous manipulations punctuated by
discrete grasp transitions [8]. They also use rapidly-exploring
random trees (RRTs), a sampling-based motion planning
algorithm, to identify a sequence of grasps and manipulations
for a gait [9]. Such RRT-based gaiting methods are slow, last-
ing on average about 2.93 hours for each of 20 simulations
of simply rotating a circle. Furthermore, the plan may be
infeasible due to unforeseen disturbances such as finger slip.

Due to the benefit of formal guarantees and natural
modelling of grasp transitions with LTL, we formulate the
gaiting problem in the framework of reactive synthesis.
Specifically, we consider an adversarial environment that
dynamically imposes finger constraints. We first synthesize
a Gait Controller to indefinitely manipulate an object while
addressing limitations as they arise. We also synthesize a
Gait Planner, which is essentially a Gait Controller that
plans between specific configurations of interest. The benefits
of using reactive synthesis are:

Closer to Implementation – An actual controller must react
in real time to slip, limitations, and potential link collisions.

Robust – In a motion planning approach, we must know
with certainty at which configurations each finger reaches a
limit. By abstracting away such interferences as environmen-
tally induced, we need not track exactly when such limits will
occur as long as we can adequately respond. This leads to
reactiveness, since a large class of similar disturbances can
be aggregated into a partially unknown environment.

Faster Planning – Motion planning methods operating in
a high dimensional configuration space are slow since they
must plan a long sequence of finger trajectories. In discrete
synthesis, system variables in each state trigger short horizon
planning so that we only consider a manipulation or grasp
transition when explicitly needed.

Systematic – LTL can be used to automatically design
complex strategies with guarantees on correctness.

II. PROBLEM SETUP

In Figure 1, three two-link planar arms rotate an ellipse
at angle f with demanded body velocity Vb = �0 0 ḟ�T .
Palm P and finger base frames Si remain fixed while the two

2012 Int'l Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/cltbm12-icra.html

S0 S1

S2

P

O

f

C0 C1

C2

Fig. 1: Palm P, base Si, and contact Ci frames for a gait.

grasping finger contact frames Ci and Cj move along with
f . A limit is declared if any links are about to collide with
the ellipse or a finger approaches a kinematic singularity.

We follow [10] to describe manipulation kinematics. A
homogenous transformation from frame a to b is represented
by gab, while the adjoint operator Adgab maps velocities
between these frames. Spatial Jacobian Js

si fi maps joint angle
velocities to fingertip spatial velocities. We compose finger
i′s joint angle vector �qi = �q1,i q2,i�T from the first and
second joint angles q1,i and q2,i. Joint angle vector �q =
��qi �q j�T describes a grasp with fingers i and j.

We transform contact coordinate forces � fx fy�T to
wrenches � fx fy 0�T via wrench basis B for a point
contact with friction model,

B = �1 0 0
0 1 0�

T

. (1)

All finger contact wrenches are aggregated into a resultant
net wrench in the object frame via grasp map

G = �AdT
g−1

sici
B AdT

g−1
s jc j

B� . (2)

Grasp map G and wrench basis B form the hand Jacobian

Jh(�q) =
������
BT Ad−1

gsici
Js

si fi(qi) 0
0 BT Ad−1

gs jc j
Js

s j f j
(q j)
������ , (3)

which models finger motion during manipulation by linking�̇q to body velocity Vb as

Jh(�q) �̇q =GTVb. (4)

During a grasp transition, a finger is moved onto or off the
object with kinematics governed by the spatial Jacobian.

Proposition 1 (Thm 5.6, pg 232 of [10]): A two-finger
antipodal grasp is force closure (FC) if and only if the line
bridging the contacts is within both friction cones, the sets
of all forces possible with friction coefficient µ .
We adapt the approach in [11] to determine all antipodal
grasps of a planar object:

1) Divide the object boundary ∂O into two regions param-
eterized by u1,u2 for antipodal point contacts.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

u
1

u
2

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

�

Fig. 2: (Left) FC inequality region for antipodal grasps of
an ellipse with approximation in red. (Right) The colored
spectrum shows target grasps for the red interval on the right.

2) Determine all FC grasps (FC inequality region) by plot-
ting the intersection of the following four inequalities
on the u1,u2 plane, which satisfy Proposition 1:

(�x2− �x1)×(�x1+ �n1−µ �tl) ≥ 0
(�x2− �x1)×(�x1+ �n1+µ �tl) ≤ 0
(�x1− �x2)×(�x2+ �n2−µ �t2) ≥ 0
(�x1− �x2)×(�x2+ �n2+µ �t2) ≤ 0

where �xi(ui) is a point in region i of ∂O, �ni is the inward
normal, and �ti is the tangent to ∂O at �xi .

3) Discretize ∂O into N subintervals. For each, determine
the k ‘target’ intervals such that any two points in the
start and target intervals always form an FC grasp. This
amounts to approximating the FC inequality region with
inscribed rectangles. Store targets in a grasp database.

A high-level plan must be designed to trigger grasp
transitions during a gait. To handle many object geometries,
the controller must expect variation in the configurations
where workspace limits and link collisions occur. We address
uncontrolled configuration variations by modelling them as
adversarial environmental actions.

The nonlinear kinematics of manipulation render abstrac-
tion as in [1] inapplicable, and feedback linearization ap-
proaches impractical. Accordingly, we construct low-level
control primitives to handle continuous kinematics inde-
pendent of the high-level plan. Primitives are designed to
essentially replicate abstraction. As discussed in Sections VI
and VII, rare circumstances may arise where execution
will not follow the high-level plan since continuous-time
kinematics were unaccounted for in synthesis.

III. PRELIMINARIES

We now follow [1] to introduce reactive synthesis, the
methodology used to solve the informal synthesis problem
described earlier. We consider a turn-based game where an
adversarial environment acts first to control a finite set of
variables E to which the system responds with a disjoint set
of controlled variables S. Let V = S∪E.

Definition 1: The domain of possible valuations of vari-
ables in set V are denoted by dom(V). A state is simply a
specific v ∈ dom(V).

Definition 2: An atomic proposition is a Boolean variable
from set V that can either be True or False in a state v.

Definition 3: An execution s of a discrete-time system is
defined as an infinite sequence of states s = v0v1v2 The
set of all executions of a system is denoted S.

LTL is a formal language used to succintly describe be-
havior of such executions. Starting from atomic propositions,
we use propositional connectives “and” (∧), “or” (∨), “not”
(¬), “implies” (�⇒), and “equivalence” (⇐⇒) to obtain
a propositional formula. Temporal operators include “next”
(#), “always” (2), and “eventually” (3) to express evolution
of the system with time.

We now find executions that satisfy an LTL formula j on
variables from V . At state vi, j can hold at the next step
i+1 (# j), for some j ≥ i (3 j), or all times j ≥ i (2 j) in
the future. In formal synthesis, we desire guarantees that a
formula j is valid for the set of all possible executions S.

Definition 4: The expression s � j indicates execution s
satisfies formula j . A system is termed correct with respect
to specification j if j is satisfied by all executions s ∈ S, in
which case we write S � j .

To allow polynomial time computation of a control strat-
egy, we consider LTL formulae of the Generalized Reactivity
(1) or GR(1) subclass [12]. The assume-guarantee format
(below) ensures if the environment satisfies assumptions
described by je, the system is guaranteed to react according
to js. The winning strategy is a synthesized finite automaton
that guarantees a system response s for every possible
environment action e to eventually achieve system goals. A
GR(1) specification is of the form

�
�je,init∧ �

j∈Jsafety

2 j j
e,t ∧ �

j∈Jgoal

2 3 j j
e,goal
�
�

�⇒ ��js,init∧ �
i∈Isafety

2 j i
s,t ∧ �

i∈Igoal

2 3 j i
s,goal
�
�

All propositional formulae can involve variables from S∪E.
The propositional formulae je,init and js,init describe en-
vironment and system initial conditions. Environment and
system transition formulae j j

e,t and j j
s,t include primed

variables of #E and #S∪#E, respectively. Primed variables
refer to the state of variables in the next state. Since the
environment acts first, j j

e,t are formulae that cannot involve
any system variables in #S (i.e., system variables in the next
time step). Since the system subsequently responds to the
environment, the formula j i

s,t can involve any variables in
#S∪#E. Environment goals j j

e,goal and system goals j j
s,goal

are propositional formulae, so describe sets of states that
must be reached infinitely often.

IV. APPLICATION OF DISCRETE SYNTHESIS TO GAITS

For the ith finger, system variable pi indicates contact with
the object while environment variable li indicates a limit. We
always require at least one minimal grasp mini, one for which
lifting even a single finger loses FC. More complex grasps
are simply superpositions of minimal grasps. In our example,

all two-finger antipodal grasps are minimal, while the only
superposition is a three-finger grasp.

For the Gait Planner, rotation angle f is discretized into
N sectors from 0 to 2p , each represented with a proposition
ti. Two Gait Planners were synthesized for a system with
N = 8 sectors denoted by t0 to t7. Gait Planner 1 begins in t0
with goal of reaching t3. To illustrate more complex behavior
naturally described by LTL, Gait Planner 2 begins in t0 and
must alternate between t1 and t3 infinitely often while never
visiting t4, forcing the rotation direction to switch.

Right and left torque system variables tr and tl allow
rotations between adjacent sectors in the absence of limits.
We assume a gait in ti repositions the grasp suitably well
to allow for unconstrained manipulation until ti−1 or ti+1.
This assumption prevents the environment from persistently
posing limitations that impede progress from sector ti.
Specifically, a flag system variable indicates a gait has just
ended, preventing limits immediately afterwards.

A. LTL specifications
In the following specifications, index i ∈ {1, . . . ,M} repre-

sents a specific finger in an M finger gait. Index k ∈ {1, . . . ,N}
represents the kth of N sectors in the subdivision of f .
We indicate limits on all fingers in an M finger gait by
lall =�i li and some finger limit by lsome =�i li. The subscript
con indicates specifications shared by the Gait Planner
and simpler Controller, while the subscript plan applies
to the Planners only. Thus, a Planner’s GR(1) formula is(je,con∧je,plan) �⇒ (js,con∧js,plan), while a Controller’s
formula lacks conjunctions with any terms with a plan
subscript. In our example with M = 3,

je,init,con∧js,init,con = (¬ lsome∧(p0∧ p1∧¬ p2))
indicates no finger is limited at the initial grasp formed by
fingers 0 and 1.
Environment Assumptions: je,con is a conjunction of A1-4.
(A1) A finger remains limited if it stays on the object:

�
i

2 �(pi∧ li) �⇒ # li�.
(A2) Lifting and repositioning a finger clears the limit:

�
i

2 �¬ pi �⇒ # ¬ li�.
(A3) All fingers cannot be limited simultaneously:

�
i

2 �# ¬ lall�.
(A4) New limits do not spontaneously arise during a gait:

�
i

2 �(lsome∧¬ li) �⇒ # ¬ li�.
(A5) je,plan indicates limits cannot arise right after gaits:

2 (f lag �⇒ # ¬ lsome).
System Properties: js,con is a conjunction of P1-P3.
(P1) Always ensure at least one minimal grasp for FC:

2 # �minsome�.

(P2) At least one original minimal grasp must follow a
superposition of minimal grasps:

2 �(mini∧⋅ ⋅ ⋅∧mink) �⇒ # (mini∨⋅ ⋅ ⋅∨mink)�.
(P3) All minimal grasps for a three-finger gait are:

�
i

2 �(¬ pi∧ �
j∈{1,...,M}�i p j) ⇐⇒ mini�,

The goal jg,con = 2 3 ¬ lsome, added conjunctively into
js,con, is to freely manipulate the object without any limits.
Gait Planner (GP) Properties: jinit,plan = t0∧¬ f lag indicates
starting in t0 without the flag to prevent limits. Conjunction
of GP1-GP7 forms js,plan.
(GP1) Without a limit, a torque shifts f by one sector:

�
k

2 �(tk ∧tr ∧# ¬lsome) �⇒ # tk+1�,
�
k

2 �(tk ∧tl ∧# ¬lsome) �⇒ # tk−1�.
(GP2) Applying a torque does not work if a limit exists:

�
k

2 ��tk ∧(tl ∨tr)∧# lsome� �⇒ # tk�.
(GP3) Do not apply a torque if we already have a limit:

2 # ¬�lsome∧(tr ∨tl)�.
(GP4) The sector can not change if a torque is not applied:

�
k

2 ��tk ∧¬(tl ∨tr)� �⇒ # tk�.
(GP5) Raise a flag if a limit was just cleared by a gait:

2 �(lsome∧# ¬lsome) �⇒ # f lag�.
(GP6) Disallow raising the flag when limits can occur:

2 �(tl ∨tr) �⇒ # ¬ f lag�.
2 �(¬lsome∧# ¬lsome) �⇒ # ¬ f lag�.

(GP7) Do not apply a torque when a grasp is being switched:

2 # ¬�(tl ∨tr)∧(p0∧ p1∧ p2)�.
(GP8) Planner 2 must also switch directions to avoid t4:

2 # ¬t4.

Goals jg,plan1 =2 3 t3 and jg,plan2 = (2 3 t1)∧(2 3 t3)
are incorporated conjunctively into each Planner’s js,plan.

B. Control Strategy
Consider the TuLiP-synthesized Gait Controller of Fig-

ure 3. In any of the three free manipulation states, indicated
by a self connection, the two grasping fingers pi and p j and
absence of any limit l indicates unconstrained rotation. The
three edges emanating from free manipulation nodes indicate
possible environment limits, prompting the automaton to
place the appropriate auxiliary finger on the object, indicated
by the presence of all p. The absence of pi at the next step
indicates finger i is lifted off the object to address limitation
li. The system satisfies its goal by countering limits to always
arrive at a new free manipulation node. The synthesized
strategies for Gait Planners 1 and 2 comprise 64 and 106
states respectively.

 p0 , p1

 p0, p1, l1

 p0, p1, l0

 p0, p1, l0, l1

 p2, p0, p1, l1

 p2, p0, p1, l0

 p2, p0, p1, l0, l1

 p2, p0, l1

 p2, p1, l0

 p2, p1, l0, l1

 p2 , p0

 p2, p0, l0

 p2, p0, l2

 p2, p0, l2, l0

 p2, p0, p1, l2

 p2, p0, p1, l2, l0

 p0, p1, l2

 p0, p1, l2, l0

 p2 , p1

 p2, p1, l1 p2, p1, l2 p2, p1, l2, l1

 p2, p0, p1, l2, l1

 p0, p1, l2, l1

Fig. 3: The Gait Controller moves fingers p in each state to
react to all possible limits l in finger rewind. If a variable
name is not included in a graph node label, then it is false
at that node.

TABLE I: Mapping Function

pi ∧ p j ∧¬ pk ∧¬ lsome Manipulate
pi ∧ p j ∧¬ pk ∧ lsome Grasp Select
pi ∧ p j ∧ pk ∧ lsome Finger Move (on then lift)

V. SYSTEM ARCHITECTURE

To realize a controller, variables active in each state must
be translated using a Mapping Function to control primitives,
executable code that produces output such as moving the
fingers. In a Mapping Function such as in Table I, states
described by propositional formulae in the left column are
linked to corresponding primitives in the right column. We
developed a parser to search through a TuLiP automaton
and insert in each state the appropriate control primitive
indicated by the Mapping Function to create a Matlab
state machine. This generic parser is a significant step in

TABLE II: Results for Gaiting Elliptical Objects. Friction µ
and ellipse axes a and b are varied to measure the resulting
net rotation Df , simulation time Dt, and success of the gait.

µ (○) a(m) b(m) Df (○) Dt (s) Works?
45 .06 1.3a 318.22 14.8 Yes

40, 35,
30

.07 1.1a 643.3 29.3, 28.6,
26.2

Yes

35, 30 .07 1.1a 643.3 28.6, 26.2 Yes, Yes
45 .08 1.1a 523.9 28.2 Yes

45, 35 .065 1.25a 628.5, 234.9 28.3, n�a Yes, No
30, 25,

20
.08 1.0a 612.4, 225.4,

225.4
26.4, n�a,

n�a Yes, No,
No

Algorithm 1 Manipulate Primitive
procedure MANIPULATE (qinit , l0, l1, l2, finit)

while not (l0 or l1 or l2) do
Jh(q)q̇ ←GTVb
li← Collision Detect (qi, f) or WS limit (qi)
l j ← Collision Detect (q j, f) or WS limit (q j)

end while
return q f , l0 , l1, l2, f f

end procedure

function COLLISION DETECT (i, qi, f)�xlinki ← Discretize Links (len1, len2, Si, qi)
for all (�x ∈ �xlinki) do

if (Relative Location (�x, f) == inside) then
collision← true
break

end if
end for
return collision

end function

function WS LIMIT (qi, l0, l1, l2, i)
if (∥q i

2∥< qpreset) then
li← true

end if
return l0, l1, l2

end function

automation since it allows for systematic translation from
high-level specifications to executable code.

We designed the MANIPULATE, FINGER MOVE, and
GRASP SELECT primitives (Algorithms 1–3). MANIPULATE
simulates kinematics with Jh until COLLISION DETECT or
WS LIMIT (“workspace limit”) stop numerical integration.
FINGER MOVE uses Corke’s Matlab Robotics Toolbox [13]
to move the auxiliary finger along a Cartesian space tra-
jectory to form or break a grasp. Finger i’s trajectory tra j
from qinit,i to final configuration qmv,i clears limit li if
the finger is lifted off the object. This is determined by
RELATIVE LOCATION, which indicates the position of point
xbody relative to an ellipse with axes 2a and 2b at angle f .

Once fingers reach limits, GRASP SELECT computes a
new three-finger grasp. Since a finger will be lifted next, the

Algorithm 2 Finger Move Primitive
procedure FINGER MOVE (i, qmv,i, l0, l1, l2, qinit,i, f)

tra j← Cartesian Trajectory (qinit,i, qmv,i)
if (Relative Location (�xmove, f) == outside) then

li← false
end if
return qmv,i , l0 , l1, l2, tra j

end procedure

function RELATIVE LOCATION (�xbody, f)

W← x2
body
a2 + y2

body
b2 −1

if (W > 0) then return outside
else if (W < 0) then return inside
else return on
end if

end function

original finger that remains, indicated by stay, must form a
FC grasp with auxiliary finger aux. The grasp database from
Section II yields many ‘target’ grasps for finger aux, but
some trajectories to these points may cause link collisions.
Only ‘target’ grasps leading to collision free trajectories are
added to a feasible list. GET FEASIBLE uses a heuristic
to select a grasp from the feasible list to ensure a long
manipulation before new limits. The direction of rotation
indicated by demanded velocity wdem = ḟ prompts selection
of either the right or leftmost point in the feasible list.

VI. RESULTS AND FUTURE WORK

We simulated the Matlab controller of Section V gaiting
an ellipse with fingers of link lengths len1 = .02 m and
len2 = .01 m. To experimentally demonstrate robustness, we
varied semi–minor axis a, semi–major axis b, and mutual
friction coefficient µ as in Table II. Since the controller
was able to rotate ellipses virtually indefinitely, we manually
terminated the simulation to measure net rotation Df and
simulation time Dt. The latter quantity was only measured
if the simulation was successful. Figures 4a–4f illustrate
the gait in the first row of Table II. The short horizon
plans enacted by the gait controller allow gait planning
and execution on the order of seconds as compared to
hours for RRT methods [9]. The ability to gait ellipses of
varied geometries despite different configurations at which
limits occur justifies both the claim of reactiveness and
the design choice of abstracting limits as environmentally
induced. Decreasing µ makes it harder to grasp an object
since fewer antipodal grasps can be formed. Though results
indicate success with coefficients as low as µ = 30○, three
failures occurred when FINGER MOVE could not find a
simple collision-free trajectory to any of the small set of
next target grasps allowed by the lower µ . Since the discrete
strategy assumes primitives can always find a feasible next
grasp, this mismatch halts progress as discussed at the end
of this section.

Gait Planner 1 successfully gaited a circle between t0 and

Algorithm 3 Grasp Select Primitive
procedure GRASP SELECT (qaux, grasp database, f , l0,
l1, l2)

if li == true and l j == true then
stay ← maxi (li == true)

else
stay ← get indx (l == false)

end if
DB indx ← get index (�xstay,body)
for targ ID = 1→ num targets (DB index) do

[�xstart , �xend] ← grasp database (DB indx, targ ID)
for �x f inal ∈ [�xstart , �xend] do

tra j← Cartesian Trajectory (qaux, q f inal)
if (∀�x ∈ tra j : Rel. Loc. (�x, f) ≠ inside) then

append (feasible list, �x f inal)
end if

end for
end for�xgrasp ← Get Feasible (feasible list, wdem)
return �xgrasp

end procedure

function GET FEASIBLE (feasible list, wdem)
if (wdem > 0) then�xgrasp← leftmost (feasible list)
else�xgrasp← rightmost (feasible list)
end if
return �xgrasp

end function

t3. Gait Planner 2 manipulated a circle from t0 to t3, switched
direction, revisited t1, switched direction again, and made
progress until it reached a limitation in t2. The controller
had just finished a gait and, by assumption, did not expect a
limit to immediately impede progress again. This assumption
violation caused the system to not react to the limit, stagnate
in t2, and not satisfy its goal. Analysis of system execu-
tion until the error (which spanned 27 states with 6 grasp
switches) indicated selection of ‘suboptimal’ grasps which
quickly led to limits after only minimal rotation. Such lack of
progress compounds until the object can not be rotated as far
as required by the high-level plan. Figures 4j–4m illustrate a
suboptimal sequence. The system should quickly re-compute
a plan to gait the object again as it had done successfully
multiple times before the nominal assumption violation. In
future work we will apply the patching algorithm of [14] to
extensions of our finger gait planner.

Though robustness is clearly demonstrated, few, poten-
tially preventable failures arise due to mismatches between
assumptions of the discrete controller and capabilities of
the continuous primitives. For example, in the case where
feasible grasps are limited by µ , FINGER MOVE could plan
more complex trajectories to target grasps. For Gait Planner
2’s error, we could meet environmental assumptions by

increasing the number of sectors N to allow easier progress
before reaching limits. Future work is directed towards
formal synthesis that incorporates nonlinear continuous kine-
matics and provides guarantees on correctness in terms of
parameters such as µ , a, b, and sector size N.

VII. CONCLUSION

The long term goal of our research is to enable more
sophisticated robotic behaviors, for which the complexity
of intertwining high-level reasoning, actuation, and sensor
fusion renders ad-hoc design of provably correct controllers
virtually infeasible. As illustrated in this paper, reactive
synthesis potentially provides a powerful design approach,
rooted in underlying formal guarantees, to design the next
generation of autonomous manipulation platforms.

ACKNOWLEDGMENTS

This work is partially supported by the Boeing Corporation.

REFERENCES

[1] T. Wongpiromsarn, “Formal methods for design and verification of
embedded control systems : application to an autonomous vehicle,”
Ph.D. dissertation, California Institute of Technology, 2010.

[2] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. Murray, “TuLiP:
a software toolbox for receding horizon temporal logic planning,” in
Proc. Hybrid Systems: Computation and Control, 2011.

[3] A. Pnueli, Y. Sa’ar, and L. Zuck, “JTLV: A framework for
developing verification algorithms,” in Computer Aided Verifica-
tion, vol. 6174, 2010, pp. 171–174, associated tool available at
http://jtlv.ysaar.net/.

[4] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-based temporal logic motion planning,” in Proc. IEEE Int’l
Conf. on Robotics and Automation, 2007, pp. 3116–3121.

[5] R. Fearing, “Implementing a force strategy for object re-orientation,”
in Proc. IEEE Int’l Conf. on Robotics and Automation, 1986, pp. 96–
102.

[6] J. Hong, G. Lafferriere, B. Mishra, and X. Tan, “Fine manipulation
with multifinger hands,” in Proc. IEEE Int’l Conf. on Robotics and
Automation, 1990, pp. 1568–1573.

[7] L. Han and J. Trinkle, “The instantaneous kinematics of manipulation,”
in Proc. IEEE Int’l Conf. on Robotics and Automation, 1998, pp. 1944–
1949.

[8] J. Xu and Z. Li, “A kinematic model of finger gaits by multifingered
hand as hybrid automaton,” IEEE Trans. on Automation Science and
Engineering, pp. 467–479, 2008.

[9] J. Xu, T.-K. Koo, and Z. Li, “Sampling-based finger gaits planning
for multifingered robotic hand,” Autonomous Robots, vol. 28, pp. 385–
402, 2010.

[10] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[11] B. Faverjon and J. Ponce, “On computing two-finger force-closure
grasps of curved 2d objects,” in Proc. IEEE Int’l Conf. on Robotics
and Automation, 1991, pp. 424–429.

[12] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive (1)
designs,” in Verification, Model Checking, and Abstract Interpretation.
Springer, 2006, pp. 364–380.

[13] P. Corke, “A robotics toolbox for MATLAB,” IEEE Robotics and
Automation Magazine, vol. 3, no. 1, pp. 24–32, 1996.

[14] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in Proc. IEEE
Int’l Conf. on Robotics and Automation, 2012, in press.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(a) Start

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(b) End of Manipulate. Grasp Targets in
green.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(c) Switch of grasp

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(d) End of Manipulate

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(e) Switch of grasp

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(f) Final Configuration

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(g) Start gait of circle

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(h) Finger reaches limit

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(i) Switch of grasp

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(j) A suboptimal grasp.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(k) Manipulate only rotates the object mini-
mally until the bottom finger reaches a limit.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(l) The auxiliary finger can only reach the
leftmost grasp targets in green.

50 100 150 200 250 300 350 400

50

100

150

200

250

300

(m) The resulting grasp is suboptimal again,
as the top finger will quickly reach a limita-
tion with minimal rotation, illustrating how
problems compound.

Fig. 4: Subfigures a - f show a successful gait of an ellipse, g - i show frames from a gait of a circle, and j - m explain
problematic grasps from Gait Planner 2.

