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Abstract— We examine the problem of distributed estimation devices, only one sonar sensor may be active at any time,
when only one sensor can take a measurement per time step.so as to isolate the reflected signal appropriately. In such
We solve for the optimal recursive estimation algorithm when 5 c55e  apart from the issue of optimal multi-sensor data
the sensor _swn_chlng sche_dulc_a is given. We then co_n5|de_r the1E . th is the additi i £ optimall h tih
effect of noise in communication channels. We also investigate usion, there is the additiona ISSUE.O. OPt'ma y scheuy e_
the problem of determining an optimal sensor switching strategy. SENsSOr measurements so as to minimize the error covariance
We see that this problem involves searching a tree in general associated with state estimation.
and propose two strategies for pruning the tree to minimize the In this paper, we study the prob|em of multi-sensor data
computation. The first is a sliding window strategy motivated 5o when only one sensor is allowed to take a measurement
by the Viterbi algorithm, and the second one uses thresholding. . . .
The performance of the algorithms is illustrated using numerical at every time step. Assuming that measurements are being
examples. exchanged between sensors, we also consider the case of

the communication channels being noisy. We also investigat
|. INTRODUCTION AND MOTIVATION the issue of constructing the optimal sensor schedule.dn th

Recently there has been a lot of interest in networks oése of tracking an object moving amongst dispersed sensing
sensing agents which act cooperatively to obtain the besents, we seek a sequencing of sonar measurements among
parameter estimates possible, (e.g. [1] and the referenttes sensors that best accomplishes this task. While optimiza
therein). Usually the estimate resulting from measuremertion of sensor schedules have been examined using optimal or
from many sensors is better than the estimate of any ingtochastic control theory techniques, as in [12], [13]u8ohs
vidual sensor in the non-cooperative scenario. The imgrovto Ricatti differential equations, and even informatitvedretic
performance comes at the cost of increased complexity. Agthods, as in [14], we pursue two simpler methods, sliding
pointed out in [1], the advantages of forming sensor netaorkindow and thresholding, for determining an optimal segsin
are even greater if the sensors are heterogenous. Thesadreachedule. These methods trade computation/memory require
complexity arises from the needed communication infrastruments for sub-optimality; however, they seem to work well
ture and the need to fuse the measurements to obtain a beitethe simulation examples. A more detailed description of
estimate. the optimizing algorithms can be found in [15]; in this paper

Because of the above-mentioned advantages, much attentienfocus more on setting up the problem and solving for the
has been focused on data fusion of heterogeneous sermgaimal data fusing algorithm.
measurements, as in [2]. Works such as the EYES project [3],The paper is organized as follows. The next section, sets up
WINS [4], and Smart Dust [5], are examples of systenthe problem and describes the optimal data-fusion algarith
implementing such networks. The assumption usually matig a given sensor schedule. Section Il considers the degra
in the analysis of such systems is that all the sensors tadaion in the performance when this scheme is used in the
measurements at the same time and the data is then fusepr&sence of communication noise. Section IV considers the
get a better estimate. One example of the multiple datariusiquestion of choosing the optimal sensor schedule. We presen
algorithms available in literature can be found in [6]. Theome methods that obtain sub-optimal sensor schedules, but
sensor management issues, if present at all, are in thextonteve the advantage of simplicity. We demonstrate these algo
of energy efficiency [7], [8], imperfect localization of smr rithms via examples and simulations.
platforms [9], optimal coverage of a given region [9], [16t,
efficient networking and communication protocols [11].

However, in some applications, the use of one sensor pladesProblem Set-up
restrictions on the use of other sensors. This situatiost®&xi Consider a system evolving as follows
whenever simultaneous use of sensors causes interfenence i
measurements. This is a common problem in robotic systems, z[k + 1] = Az[k] + Bwlk], Q)
e.g. when acoustic sensors are used for ranging. When theere z[k] € R" is the process state at time stépand
individual sensor platforms are using sonar range-finding[k] is the process noise. The process noise is assumed

Il. MODELING AND PROBLEM FORMULATION


Richard Murray
Text Box
2004 Int'l Conference on Robotics and Autonmation
http://www.cds.caltech.edu/~murray/papers/2003w_chu+04-icra.html



white, Gaussian and zero mean with covariance malriXhe Moreover, since
process state is observed bysensors with the measurement 1 A _ _
equation for thei-th sensor being cilk] = Cji[klk — 1] + v;[k],

where y;[k] € R® is the measurement. The measurement _

noises v;[k]'s for the sensors are assumed independent inally using the fact that

each other and of the process noise. Further the ngigé (w;[k], @i [k|k — 1)) = (@:[k|k — 1] + & [k|k — 1], % [k|k — 1))

is assumed to be white, Gaussian and zero mean with co-

- ; . . =0+ P[k|k — 1],

variance matrixR;. For the example of tracking a moving

target, (1) and (2) describe the linearization of the tasgetve compute

nonlinear dynamical model and the observers’ sensing rapdel

respectively. It is assumed that only one sensor can be used a

any time. However, unless stated otherwise, we assume thafhus we see that the recursive optimal filtering equation is

the measurements are communicated to all the sensors ingamen by

error-free manner. The estimate of tiwh sensor given the

measurements till time stép—1 is denoted byt; [k|k — 1], or

in short asz;[k]. More generally, let the estimate of thigh where

sensor for the variable[k], given the measurements till time

stepk — 1, be given as:;[k|k — 1], or abbreviated as;[k].

We first pose the question: Assuming that the sensor swigchin Re,y = CjPlklk — 1]CjT + R; (5)

sequence is given, what is the optimal filtering algorithm foand Py[k|k — 1]'s evolve as

the i-th node?

Pilk+1k] = (A—KiCj)Pilklk — 1](A - KpCy)"
+BQBT + KiR;(K})T. (6)

we see that
R,y = C;Pklk —1]CT + R;.

Kj, = APi[k|k —1]C] R_

Eilk + 1K) = Adg[k|k — 1] 4+ K} e;[K],

Kj, = AP[klk - 1CTR_ 4

B. Optimal Fusion Algorithm

Define the innovation (see, e.g., [16]) for thh nodee; [£]

as the difference between the actual measurement at tifiRSUMINg the initial state:(0] has zero mean and covariance
stepk (yi[k]) and the predicted measuremept[k|k — 1]). II,, the initial covariance matrix for above recursions is also

Assuming that the-th sensor takes the measurement at tinfdven by P;(0] — 1) = Tlp. Note that Fi[k[k — 1] is of
stepk, we obtain that independent interest as it is the error covariance forittte
sensor at time step when it has processed the measurements
eilk] = y;k] — Cja;klk — 1], (3) till time stepk — 1. We will refer to it asP;[k] in short. Since
all the nodes have access to the same measurements, there
is only one innovation and hence all the state estimates are

the same. So the subscripis unnecessary in this case and

Defining the inner productz,y) as E [zy”], we have the
form of the linear estimator as

) k . P;[k] = P[k] for all 4.
Balk + 1K) = > (@il + 1), ei[n) R L eiln] . . o
=0 ! C. Optimal Algorithm - Communication Noise Case
= &k + 1|k — 1] + (xi[k + 1], e; [k]>Re‘%k} eilk], Let us assume now that any signal exchanged between sen-
) ) sor nodeg andyj is corrupted by additive, zero-mean, Gaussian
where R, () = (ei[k], e:[k]). However, using (1) gives white noise,v;;. We wish to see how the performance of
Filk + 1)k — 1] = Az, [k|k — 1]. the _scheme of _exchanging me_asurements be_tw_een th_e_ sensors
outlined above is affected. Going through a similar deibrat
Now define the error by as above, we find that (3) is modified to
Zilk|k — 1] = x[k] — 2[k|k — 1] eilk] = y;[k] — Cji[klk — 1] + vi;[k],

and let P[k|k — 1] be the error covariance. Also definedssuming that thej-th sensor has taken the measurement
Ki = (z;[k+1],e;[k])R_ L, Then we see that the error staté@t time stepk. Let us assume the noise vectofk] =

€; k .
equation is given by . (w[k], v;[k], vi;[k])" to be described by
Pilk + 1)k] = (A — KiC))ai[k|k — 1] + Buw[k] — Kiv;[k]. @ 0 0
Bilk + 1[k] = (A~ KLC))@[k{k — 1] + Bulk] — Kjv, K] el 2 0 B o )et-n.
By definition, we immediately obtain tha;[k|k — 1]'s evolve 0 0 Ry
as

Then, we find that the Kalman filter form remains the same
Plk+1k] = (A—KLC)Pklk—1](A— Kic;)T as before except that (4) becomes
+BQBT + KiR;(K})T. Rewy = CyPilklk —1CT+R; +Ry;. 7)
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and (6) changes to
Pilk +1k] = (A — K,C;)P;[k|k — 1)(A — K,.C;)" Sanor 1
+ BQBT + K]ZCR] (Ki)T + K;;R”(K]ZC)T (8) Sensor 2
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We note that the only difference from the earlier case is that
the effective measurement noise includes the actual sensor
noise plus the communication noise. Observe, however, that
sending only the measurement from one sensor to the other
might not be the optimal thing to do in this case. Sending
more information (e.g., the state estimates) might leacktteb
performance for all the sensors considered together. Sensor 1

Sensor 1

Sensor 2

:

Sensor 2

Root

5

Sensor 1

:

Sensor 2

[11. OPTIMIZATION ALGORITHMS S
A. Optimization of the Sensor Schedule Sefsor 1

In the analysis presented so far, we have assumed that the Sensor 2
sensor schedule was given. It is obvious that the minimum Sensor 2
error covariance achievable is a function of the sensordsche t=0 t=1 t=2 =3
ule. Next, we wish to find the sensor schedule that minimizri?J
the error covariance over a given time horizon. In this a
subsequent sections, we consider this problem. For siityplic
and without loss of generality, we consider only two sensors
and define the cost function], to be the sum of the error €nsure with a high probability that the optimal sequencets n

covariance matrices for the two sensors over the running tid®st. The algorithms presented involve choosing somerarfit
of the system: parameters which depend on the problem and the computa-

tion/memory resources available. Choosing these parasnete
conservatively will ensure that the sub-optimal solutiah ke
closer to the optimal solution but it might mean maintaining
large part of the tree intact. Therein lies the trade-ofblaed.

where, as before k] and (k] are error covariances of theygyever, in the numerical examples studied, relativelgrit
estimates at time step. We have assumed that the systemngices keep the tree size fairly small.

begins at timek = 0 and goes on tillk = N. In a more

general case, the covariances can be variously weighteet toB Sliding Window Algorithm

up the cost function if getting a good estimate either at someThjs algorithm is similar to a pseudo real time version of

time steps or for some sensors is more important than othefs Viterbi algorithm ([17]). We define a window sidewhere
We can represent all the possible sensor schedule choicegihy V. The algorithm proceeds as follows:

a tree structure, as shown in Fig. 1 for the.casg of two SeNnsors)y |nitialization Start from root node with timé = 0.

Each node on the tree represents the active (ie. measmtemeni) Traversal

taking) sensor at its particular time step, with the root roefi T

to be time zero. The branches from each node correspond

to choosing a particular sensor to be active at the next time

instant. Thus, the path from the root to any node at depth

represents a particular sensor schedule choice for tinmes ste

0 to d. We can associate with each node the cost function .

. : c) Choose the first sensél;, from the sequence.

evaluated using the sensor schedule corresponding to the pa 7 .

from the root to that node. Obviously, findirtge optimal ) Sliding the Window

sequence requires traversing all the paths from the root to @) If k=N then quit, else go to the next step.

the leaves in a binary tree (for the case of two sensors). If b) Designate the senséf; as the root.

the leaves are at a depf¥, a total of2" schedules need to ) Update timek =k + 1.

be compared. This procedure might place too high a demand  d) Repeat the traversal step.

on the computational and memory resources of the systefime arbitrary parameter for this algorithm, mentionediegr!

Moreover, in practical applicationsV might not be fixed is the window sizel. If the window size is large enough, the

a-priori. Hence we need some sort of on-line optimizatiosequence yielding the lowest cost will resemble the optimal

procedure. We present some approximations which addresgjuence for the entire time horizon. Also note that when

these difficulties. we slide the window, we already have the error covariances
The basic idea behind the two approximations is to prurier the first d — 1 time steps stored; hence they do not

the tree to a manageable size. However, the pruning shonkkd to be recalculated. Consequently, the method is ngt ver

5

S

. 1. The tree structure defined by the various possiblécekmf sensor
hedules illustrated for the case of 2 sensors.

N
J= Z trace( Py [k] + Py[k]),
k=0

a) Traverse all the possible paths in the tree for the
nextd levels from the present node.

b) Identify the sensor sequenc®;,Sk+1,Sk+2,. -,
Sk+d—1 that yields the minimum cost at the end
of this window of sized.




Global Y axis

computationally intensive. In essence, this sliding wimdo _

approach employs a less computationally-intensive variat Local Vaxis 7 LocalXaxis

of the A* search algorithm [18] by determining the minimum

cost path over each window rather than the entire tree. /

C. Thresho|ding Sensor ;neg:gcbaell;%eglobalcoordine
This algorithm is similar to that presented in [19], in the

context of choosing the optimal controller from a set of many Slobal X s

possible choices. We define a factfrwhere f > 1. The

algorithm proceeds as follows: Fig. 2. If the sensor is oriented at an angle to X-axis, measentés need
1) Initialization : Start from root node with cosf = 0. to be rotated to get their value in the global coordinates.

2) Pruning

a) Extend the tree by one level (ie. time step) throug{ahe termwy, represents the noise that models the perturba-

all possible paths from the current node. . . .
o ; tions to accelerations. The sensor model is the usual sonar
b) Calculate the minimum cost up to that time step. . . .
! model [21]. Being an echo-based device, it senses only the
¢) Prune away any branch that yields the cost greater ) .
. . range to the target and not the relative velocities. If thesee
than f times the minimum. is oriented at an angkto the global x-axis (see Fig. 2), it can
d) For the remaining branches, denote the cost of thie 9 9 9. 2),

nodes as the cost achieved by moving down tr}ee shown ([21]) that the vehicle’s measurement in the global

tree till the node. fame is given by
3) Update Consider each node in the next time step as the
root node and repeat the pruning step. Ygloball k] = { 0
4) After N time steps or a sufficiently large time interval,
declare the optimal sequence to be the one yielding t&ere £(

= O
o O

8 } X[k + ROk,  (10)

) is the rotation matrix between the local and the

minimum cost till that time step. global coordinate systems given by
The intuition behind the method is that any sequence which [ cos(f) —sin(h)
yields too high a cost at any intermediate time step would R(0) = sin(0) cos(0)

probably not be the one that yields the minimum cost over-all

By playing with the factorf, we obtain a trade-off between the The termu[k] in (10) represents the sensor noise. It has

certainty that we would not prune away the optimal sequenB#0 components, the noise present in the range measurement,

and the number of branches in the tree that need to ®ed the effective bearing noise arising from the modeling

traversed. of the sonar beam as a sensing cone. The range noise is

usually assumed smaller than the bearing noise. The range

noise increases with the distance of the sensor from thettarg

A. Example model and cost function and the bearing noise variance can usually be modelled as a
In this section, we walk through an example demonstratirigged multiple of the range noise variance for a given sensor.

the application of algorithms developed above. We assurRer simplicity, the two noises can be assumed independent.

two sensing vehicles trying to locate a non-cooperatingetar Thus the covariance matrix ef(k) is typically given by

We model the target vehicle with the standard constant ac- 5

celeration model [20]. This model assumes that the vehicle R — | Frange 5 o 0 7

has constant acceleration equal to zero except for a small 0 " Obearing

random perturbation. We assume that the vehicle movesmilrp]

two dimensions. Denoting the position of the vehicle in th

two dimensions by, andp,, and the velocities by, and

vy, We can model the state of the system by the vector

]T

IV. SIMULATION RESULTS

ereop,ngeis the range noise variance that increases with the
fistance to target;. The bearing noise varianQgg,, i, can
be modelled to be related to the range noise variance for the
particular sensor.

In the numerical example, we consider the value- 0.2.

X = [ Pz Py Uz Uy . . . . :
The process noise is considered to have covariance m@trix

With a discretization step size 6f the dynamics of the vehicle

given by
can be modeled as o0 0.0100 0
X[k + 1] = AX[k] + Buwl[k], 9) - 0 00262 |-
where We consider two sensors. The first sensor is placed at positio
1 0 A O h2/2 0 corresponding t@ = 0° (see Fig. 3.) It is closer to the target
01 0 h 0 h2%/2 and accordingly the range noise is comparatively smallee. T
A= B = ) o o ;
0 01 O h 0 second sensor is given to be at a position corresponding to
0 0 0 1 0 h 60 = —90°. Specifically the numerical values of the sensor
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Fig. 3. Sensor orientation for the simulation examples.
Fig. 5. Percent improvement in cost due to sensor switchingoasmini-

0.04 : : : cation noise is increased.

0.035 See e 08

0.08 L ] C. Effect of communication noise
= 002 ,occ°°°°ceee? b In this section, we consider the same example but add
§ 002 ] communication noise in the channel between the two sensors.

The noise covariance is given by

—— Random sensor switching Rio = a 0
0.005¢ o Using only sensor 1 I 12 0 1% :

+ Using only sensor 2

0 ° Timiostep 1 2 We consider the cost function as the sum of the traces of the

error covariances of the two sensors over the time horizon

[0,20]. Fig. 5 shows the improvement in cost by the sensor

switching strategy given above over always using sensor 2 as

noise covariances considered are the parameted is_var?ed over sma!l values. Asincreases,we
see the communication noise rapidly deteriorates the effoyi

{ 0.0003 0 } { 0.0018 0 } . obtained by sensor switching since it deteriorates thenastis

0 0.0273 0 0.0110 of both the sensors.
Thus after rotation?; remains the same whil® is trans-  As noted earlier, in the presence of communication noise,

formed to 0.0110 0 } sending measurements might not be the optimal thing to do.

Ry = [ 0  0.0018 o _
) ) ~ D. Performance of the sliding window algorithm
We compare the algorithm performances over a time horizon

of 20 steps. The cost function is simply the sum of the trace!n this section we study the performance of the sliding
of the error covariance matrices of the two sensors from titdéndow algorithm described earlier. We consider the same
L = 0 to time k = 20. example and cost function as before. Fig. 6 shows the im-

. ) i provement in the cost due to the predicted (sub)-optima@en
B. Choosing any one sensor always is not optimal sequence over using only sensor 2 as a function of varying
Note that the simple strategy of always choosing the closgidow sizes.
sensor (sensor 1) is not optimal. We compare the strategy oft can be seen from the figure that even a window size of
choosing only sensor 1 or only sensor 2 with a randomly — 1 |eads to more tha#2% improvement in the cost by
generated strategy that uses both the sensors with thersepsédicting a good sensor switching strategy.
schedule[1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2] over the 20
time steps. The sum of traces of _the error cova_riances_of t@_g Performance of the thresholding algorithm
two sensors for the three strategies as a function of time is
shown in Fig. 4. We now consider the thresholding algorithm presented ear-
We see that even a random sensor switching strategy d¢@n The example and cost function considered are the same.
help to bring down the cost. At any time step, the errors afdég. 7 shows the improvement in cost due to the optimal sensor
much more if any single sensor is being used. In fact summeelquence predicted by the thresholding protocol as theftut-
over the entire time horizon, we see that the switchingexgsat factor f is varied.
helps to bring down the cost by about 24% over any of the A large improvement can be obtained by using a fairly small
single sensor strategies. thresholding factor. Fof = 1, the improvement is ovet2%.

Fig. 4. Sensor switching helps to bring the cost down.

R = Ry =
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