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Abstract— We examine the problem of distributed estimation
when only one sensor can take a measurement per time step.
We solve for the optimal recursive estimation algorithm when
the sensor switching schedule is given. We then consider the
effect of noise in communication channels. We also investigate
the problem of determining an optimal sensor switching strategy.
We see that this problem involves searching a tree in general
and propose two strategies for pruning the tree to minimize the
computation. The first is a sliding window strategy motivated
by the Viterbi algorithm, and the second one uses thresholding.
The performance of the algorithms is illustrated using numerical
examples.

I. I NTRODUCTION AND MOTIVATION

Recently there has been a lot of interest in networks of
sensing agents which act cooperatively to obtain the best
parameter estimates possible, (e.g. [1] and the references
therein). Usually the estimate resulting from measurements
from many sensors is better than the estimate of any indi-
vidual sensor in the non-cooperative scenario. The improved
performance comes at the cost of increased complexity. As
pointed out in [1], the advantages of forming sensor networks
are even greater if the sensors are heterogenous. The increased
complexity arises from the needed communication infrastruc-
ture and the need to fuse the measurements to obtain a better
estimate.

Because of the above-mentioned advantages, much attention
has been focused on data fusion of heterogeneous sensor
measurements, as in [2]. Works such as the EYES project [3],
WINS [4], and Smart Dust [5], are examples of systems
implementing such networks. The assumption usually made
in the analysis of such systems is that all the sensors take
measurements at the same time and the data is then fused to
get a better estimate. One example of the multiple data fusion
algorithms available in literature can be found in [6]. The
sensor management issues, if present at all, are in the context
of energy efficiency [7], [8], imperfect localization of sensor
platforms [9], optimal coverage of a given region [9], [10],or
efficient networking and communication protocols [11].

However, in some applications, the use of one sensor places
restrictions on the use of other sensors. This situation exists
whenever simultaneous use of sensors causes interference in
measurements. This is a common problem in robotic systems,
e.g. when acoustic sensors are used for ranging. When the
individual sensor platforms are using sonar range-finding

devices, only one sonar sensor may be active at any time,
so as to isolate the reflected signal appropriately. In such
a case, apart from the issue of optimal multi-sensor data
fusion, there is the additional issue of optimally scheduling the
sensor measurements so as to minimize the error covariance
associated with state estimation.

In this paper, we study the problem of multi-sensor data
fusion when only one sensor is allowed to take a measurement
at every time step. Assuming that measurements are being
exchanged between sensors, we also consider the case of
the communication channels being noisy. We also investigate
the issue of constructing the optimal sensor schedule. In the
case of tracking an object moving amongst dispersed sensing
agents, we seek a sequencing of sonar measurements among
the sensors that best accomplishes this task. While optimiza-
tion of sensor schedules have been examined using optimal or
stochastic control theory techniques, as in [12], [13], solutions
to Ricatti differential equations, and even information-theoretic
methods, as in [14], we pursue two simpler methods, sliding
window and thresholding, for determining an optimal sensing
schedule. These methods trade computation/memory require-
ments for sub-optimality; however, they seem to work well
on the simulation examples. A more detailed description of
the optimizing algorithms can be found in [15]; in this paper
we focus more on setting up the problem and solving for the
optimal data fusing algorithm.

The paper is organized as follows. The next section, sets up
the problem and describes the optimal data-fusion algorithm
for a given sensor schedule. Section III considers the degra-
dation in the performance when this scheme is used in the
presence of communication noise. Section IV considers the
question of choosing the optimal sensor schedule. We present
some methods that obtain sub-optimal sensor schedules, but
have the advantage of simplicity. We demonstrate these algo-
rithms via examples and simulations.

II. M ODELING AND PROBLEM FORMULATION

A. Problem Set-up

Consider a system evolving as follows

x[k + 1] = Ax[k] + Bw[k], (1)

where x[k] ∈ R
n is the process state at time stepk and

w[k] is the process noise. The process noise is assumed
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white, Gaussian and zero mean with covariance matrixQ. The
process state is observed byN sensors with the measurement
equation for thei-th sensor being

yi[k] = Cix[k] + vi[k], (2)

where yi[k] ∈ R
s is the measurement. The measurement

noises vi[k]’s for the sensors are assumed independent of
each other and of the process noise. Further the noisevi[k]
is assumed to be white, Gaussian and zero mean with co-
variance matrixRi. For the example of tracking a moving
target, (1) and (2) describe the linearization of the target’s
nonlinear dynamical model and the observers’ sensing models,
respectively. It is assumed that only one sensor can be used at
any time. However, unless stated otherwise, we assume that
the measurements are communicated to all the sensors in an
error-free manner. The estimate of thei-th sensor given the
measurements till time stepk−1 is denoted bŷxi[k|k−1], or
in short asx̂i[k]. More generally, let the estimate of thei-th
sensor for the variablez[k], given the measurements till time
stepk − 1, be given aŝzi[k|k − 1], or abbreviated aŝzi[k].
We first pose the question: Assuming that the sensor switching
sequence is given, what is the optimal filtering algorithm for
the i-th node?

B. Optimal Fusion Algorithm

Define the innovation (see, e.g., [16]) for thei-th nodeei[k]
as the difference between the actual measurement at time
step k (yi[k]) and the predicted measurement (ŷi[k|k − 1]).
Assuming that thej-th sensor takes the measurement at time
stepk, we obtain that

ei[k] = yj [k] − Cj x̂i[k|k − 1], (3)

Defining the inner product〈x, y〉 as E
[

xyT
]

, we have the
form of the linear estimator as

x̂i[k + 1|k] =
k

∑

n=0

〈xi[k + 1], ei[n]〉R−1
ei[n]ei[n]

= x̂i[k + 1|k − 1] + 〈xi[k + 1], ei[k]〉R−1
ei[k]ei[k],

whereRei[k] = 〈ei[k], ei[k]〉. However, using (1) gives

x̂i[k + 1|k − 1] = Ax̂i[k|k − 1].

Now define the error by

x̃i[k|k − 1] = x[k] − x̂[k|k − 1]

and let Pi[k|k − 1] be the error covariance. Also define
Ki

k = 〈xi[k +1], ei[k]〉R−1
ei[k]. Then we see that the error state

equation is given by

x̃i[k + 1|k] = (A − Ki
kCj)x̃i[k|k − 1] + Bw[k] − Ki

kvj [k].

By definition, we immediately obtain thatPi[k|k−1]’s evolve
as

Pi[k + 1|k] = (A − Ki
kCj)Pi[k|k − 1](A − Ki

kCj)
T

+BQBT + Ki
kRj(K

i
k)T .

Moreover, since

ei[k] = Cj x̃i[k|k − 1] + vj [k],

we see that

Rei[k] = CjPi[k|k − 1]CT
j + Rj .

Finally using the fact that

〈xi[k], x̃i[k|k − 1]〉 = 〈x̂i[k|k − 1] + x̃i[k|k − 1], x̃i[k|k − 1]〉

= 0 + Pi[k|k − 1],

we compute

Ki
k = APi[k|k − 1]CT

j R−1
ej [k]

Thus we see that the recursive optimal filtering equation is
given by

x̂i[k + 1|k] = Ax̂i[k|k − 1] + Ki
kei[k],

where

Ki
k = APi[k|k − 1]CT

j R−1
ej [k] (4)

Rei[k] = CjPi[k|k − 1]CT
j + Rj (5)

andPi[k|k − 1]’s evolve as

Pi[k + 1|k] = (A − Ki
kCj)Pi[k|k − 1](A − Ki

kCj)
T

+BQBT + Ki
kRj(K

i
k)T . (6)

Assuming the initial statex[0] has zero mean and covariance
Π0, the initial covariance matrix for above recursions is also
given by Pi(0| − 1) = Π0. Note that Pi[k|k − 1] is of
independent interest as it is the error covariance for thei-th
sensor at time stepk when it has processed the measurements
till time stepk− 1. We will refer to it asPi[k] in short. Since
all the nodes have access to the same measurements, there
is only one innovation and hence all the state estimates are
the same. So the subscripti is unnecessary in this case and
Pi[k] = P [k] for all i.

C. Optimal Algorithm - Communication Noise Case

Let us assume now that any signal exchanged between sen-
sor nodesi andj is corrupted by additive, zero-mean, Gaussian
white noise,vij . We wish to see how the performance of
the scheme of exchanging measurements between the sensors
outlined above is affected. Going through a similar derivation
as above, we find that (3) is modified to

ei[k] = yj [k] − Cj x̂i[k|k − 1] + vij [k],

assuming that thej-th sensor has taken the measurement
at time stepk. Let us assume the noise vectorζ[k] =
(w[k], vi[k], vij [k])

T to be described by

E
[

ζ[k]ζ[l]T
] 4

=





Q 0 0
0 Ri 0
0 0 Rij



 δ(k − l).

Then, we find that the Kalman filter form remains the same
as before except that (4) becomes

Rei[k] = CjPi[k|k − 1]CT
j +Rj +Rij . (7)



and (6) changes to

Pi[k + 1|k] = (A − Ki
kCj)Pi[k|k − 1](A − Ki

kCj)
T

+ BQBT + Ki
kRj(K

i
k)T + Ki

kRij(K
i
k)T (8)

We note that the only difference from the earlier case is that
the effective measurement noise includes the actual sensor
noise plus the communication noise. Observe, however, that
sending only the measurement from one sensor to the other
might not be the optimal thing to do in this case. Sending
more information (e.g., the state estimates) might lead to better
performance for all the sensors considered together.

III. O PTIMIZATION ALGORITHMS

A. Optimization of the Sensor Schedule

In the analysis presented so far, we have assumed that the
sensor schedule was given. It is obvious that the minimum
error covariance achievable is a function of the sensor sched-
ule. Next, we wish to find the sensor schedule that minimizes
the error covariance over a given time horizon. In this and
subsequent sections, we consider this problem. For simplicity
and without loss of generality, we consider only two sensors
and define the cost function,J , to be the sum of the error
covariance matrices for the two sensors over the running time
of the system:

J =

N
∑

k=0

trace(P1[k] + P2[k]) ,

where, as before,P1[k] andP2[k] are error covariances of the
estimates at time stepk. We have assumed that the system
begins at timek = 0 and goes on tillk = N . In a more
general case, the covariances can be variously weighted to set
up the cost function if getting a good estimate either at some
time steps or for some sensors is more important than others.

We can represent all the possible sensor schedule choices by
a tree structure, as shown in Fig. 1 for the case of two sensors.
Each node on the tree represents the active (ie. measurement-
taking) sensor at its particular time step, with the root defined
to be time zero. The branches from each node correspond
to choosing a particular sensor to be active at the next time
instant. Thus, the path from the root to any node at depthd
represents a particular sensor schedule choice for time steps
0 to d. We can associate with each node the cost function
evaluated using the sensor schedule corresponding to the path
from the root to that node. Obviously, findingthe optimal
sequence requires traversing all the paths from the root to
the leaves in a binary tree (for the case of two sensors). If
the leaves are at a depthN , a total of2N schedules need to
be compared. This procedure might place too high a demand
on the computational and memory resources of the system.
Moreover, in practical applicationsN might not be fixed
a-priori. Hence we need some sort of on-line optimization
procedure. We present some approximations which address
these difficulties.

The basic idea behind the two approximations is to prune
the tree to a manageable size. However, the pruning should
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Fig. 1. The tree structure defined by the various possible choices of sensor
schedules illustrated for the case of 2 sensors.

ensure with a high probability that the optimal sequence is not
lost. The algorithms presented involve choosing some arbitrary
parameters which depend on the problem and the computa-
tion/memory resources available. Choosing these parameters
conservatively will ensure that the sub-optimal solution will be
closer to the optimal solution but it might mean maintaininga
large part of the tree intact. Therein lies the trade-off involved.
However, in the numerical examples studied, relatively liberal
choices keep the tree size fairly small.

B. Sliding Window Algorithm

This algorithm is similar to a pseudo real time version of
the Viterbi algorithm ([17]). We define a window sized where
d < N . The algorithm proceeds as follows:

1) Initialization: Start from root node with timek = 0.
2) Traversal:

a) Traverse all the possible paths in the tree for the
next d levels from the present node.

b) Identify the sensor sequenceSk,Sk+1,Sk+2,. . . ,
Sk+d−1 that yields the minimum cost at the end
of this window of sized.

c) Choose the first sensorSk from the sequence.

3) Sliding the Window:

a) If k = N then quit, else go to the next step.
b) Designate the sensorSk as the root.
c) Update timek = k + 1.
d) Repeat the traversal step.

The arbitrary parameter for this algorithm, mentioned earlier,
is the window sized. If the window size is large enough, the
sequence yielding the lowest cost will resemble the optimal
sequence for the entire time horizon. Also note that when
we slide the window, we already have the error covariances
for the first d − 1 time steps stored; hence they do not
need to be recalculated. Consequently, the method is not very



computationally intensive. In essence, this sliding window
approach employs a less computationally-intensive variation
of theA∗ search algorithm [18] by determining the minimum
cost path over each window rather than the entire tree.

C. Thresholding

This algorithm is similar to that presented in [19], in the
context of choosing the optimal controller from a set of many
possible choices. We define a factorf where f ≥ 1. The
algorithm proceeds as follows:

1) Initialization : Start from root node with costJ = 0.
2) Pruning:

a) Extend the tree by one level (ie. time step) through
all possible paths from the current node.

b) Calculate the minimum cost up to that time step.
c) Prune away any branch that yields the cost greater

thanf times the minimum.
d) For the remaining branches, denote the cost of the

nodes as the cost achieved by moving down the
tree till the node.

3) Update: Consider each node in the next time step as the
root node and repeat the pruning step.

4) After N time steps or a sufficiently large time interval,
declare the optimal sequence to be the one yielding the
minimum cost till that time step.

The intuition behind the method is that any sequence which
yields too high a cost at any intermediate time step would
probably not be the one that yields the minimum cost over-all.
By playing with the factorf , we obtain a trade-off between the
certainty that we would not prune away the optimal sequence
and the number of branches in the tree that need to be
traversed.

IV. SIMULATION RESULTS

A. Example model and cost function

In this section, we walk through an example demonstrating
the application of algorithms developed above. We assume
two sensing vehicles trying to locate a non-cooperating target.
We model the target vehicle with the standard constant ac-
celeration model [20]. This model assumes that the vehicle
has constant acceleration equal to zero except for a small
random perturbation. We assume that the vehicle moves in
two dimensions. Denoting the position of the vehicle in the
two dimensions bypx and py, and the velocities byvx and
vy, we can model the state of the system by the vector

X =
[

px py vx vy

]T
.

With a discretization step size ofh, the dynamics of the vehicle
can be modeled as

X[k + 1] = AX[k] + Bw[k], (9)

where

A =









1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1









B =









h2/2 0
0 h2/2
h 0
0 h









.

Global X axis

Global Y axis

Local Y axis Local X axis

Sensor
angle between
the local and global coordinates

Fig. 2. If the sensor is oriented at an angle to X-axis, measurements need
to be rotated to get their value in the global coordinates.

The termwk represents the noise that models the perturba-
tions to accelerations. The sensor model is the usual sonar
model [21]. Being an echo-based device, it senses only the
range to the target and not the relative velocities. If the sensor
is oriented at an angleθ to the global x-axis (see Fig. 2), it can
be shown ([21]) that the vehicle’s measurement in the global
frame is given by

yglobal[k] =

[

1 0 0 0
0 1 0 0

]

X[k] + R(θ)v[k], (10)

whereR(θ) is the rotation matrix between the local and the
global coordinate systems given by

R(θ) =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

.

The termv[k] in (10) represents the sensor noise. It has
two components, the noise present in the range measurement,
and the effective bearing noise arising from the modeling
of the sonar beam as a sensing cone. The range noise is
usually assumed smaller than the bearing noise. The range
noise increases with the distance of the sensor from the target
and the bearing noise variance can usually be modelled as a
fixed multiple of the range noise variance for a given sensor.
For simplicity, the two noises can be assumed independent.
Thus the covariance matrix ofv(k) is typically given by

R =

[

σ2
range 0

0 r2σ2
bearing

]

,

whereσ2
range is the range noise variance that increases with the

distance to target,r. The bearing noise varianceσ2
bearing can

be modelled to be related to the range noise variance for the
particular sensor.

In the numerical example, we consider the valueh = 0.2.
The process noise is considered to have covariance matrixQ
given by

Q =

[

0.0100 0
0 0.0262

]

.

We consider two sensors. The first sensor is placed at position
corresponding toθ = 0◦ (see Fig. 3.) It is closer to the target
and accordingly the range noise is comparatively smaller. The
second sensor is given to be at a position corresponding to
θ = −90◦. Specifically the numerical values of the sensor
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Fig. 3. Sensor orientation for the simulation examples.
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noise covariances considered are

R1 =

[

0.0003 0
0 0.0273

]

R2 =

[

0.0018 0
0 0.0110

]

.

Thus after rotation,R1 remains the same whileR2 is trans-
formed to

R2 =

[

0.0110 0
0 0.0018

]

.

We compare the algorithm performances over a time horizon
of 20 steps. The cost function is simply the sum of the trace
of the error covariance matrices of the two sensors from time
k = 0 to time k = 20.

B. Choosing any one sensor always is not optimal

Note that the simple strategy of always choosing the closer
sensor (sensor 1) is not optimal. We compare the strategy of
choosing only sensor 1 or only sensor 2 with a randomly
generated strategy that uses both the sensors with the sensor
schedule [1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2] over the 20
time steps. The sum of traces of the error covariances of the
two sensors for the three strategies as a function of time is
shown in Fig. 4.

We see that even a random sensor switching strategy can
help to bring down the cost. At any time step, the errors are
much more if any single sensor is being used. In fact summed
over the entire time horizon, we see that the switching strategy
helps to bring down the cost by about 24% over any of the
single sensor strategies.
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Fig. 5. Percent improvement in cost due to sensor switching as communi-
cation noise is increased.

C. Effect of communication noise

In this section, we consider the same example but add
communication noise in the channel between the two sensors.
The noise covariance is given by

R12 =

[

α 0
0 α

]

.

We consider the cost function as the sum of the traces of the
error covariances of the two sensors over the time horizon
[0, 20]. Fig. 5 shows the improvement in cost by the sensor
switching strategy given above over always using sensor 2 as
the parameterα is varied over small values. Asα increases, we
see the communication noise rapidly deteriorates the efficiency
obtained by sensor switching since it deteriorates the estimates
of both the sensors.

As noted earlier, in the presence of communication noise,
sending measurements might not be the optimal thing to do.

D. Performance of the sliding window algorithm

In this section we study the performance of the sliding
window algorithm described earlier. We consider the same
example and cost function as before. Fig. 6 shows the im-
provement in the cost due to the predicted (sub)-optimal sensor
sequence over using only sensor 2 as a function of varying
window sizes.

It can be seen from the figure that even a window size of
k = 1 leads to more than42% improvement in the cost by
predicting a good sensor switching strategy.

E. Performance of the thresholding algorithm

We now consider the thresholding algorithm presented ear-
lier. The example and cost function considered are the same.
Fig. 7 shows the improvement in cost due to the optimal sensor
sequence predicted by the thresholding protocol as the cut-off
factor f is varied.

A large improvement can be obtained by using a fairly small
thresholding factor. Forf = 1, the improvement is over42%.
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strategy as predicted by the sliding window scheme.
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strategy as predicted by the thresholding scheme.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we looked at the problem of distributed esti-
mation when only one sensor is allowed to take a measurement
per time step. We saw that exchanging measurements between
sensors is sufficient if the communication channel is noiseless
and solved for the optimal recursive estimation algorithm.We
looked at performance degradation when communication noise
is present. Then we investigated the problem of determiningan
optimal sensor switching strategy. We saw that this problemin-
volves searching a tree in general and proposed two strategies
for pruning the tree to keep the computation tractable. Some
examples demonstrating these algorithms were presented.

The work can potentially be extended in many ways. Ex-
amining better strategies for addressing communication noise
and types of channels are of interest. Additionally, this work
hints at possibilities for maneuvering mobile sensor platforms
to further improve the estimate.
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