
1

Fault detection and isolation from uninterpreted data
in robotic sensorimotor cascades

Andrea Censi Magnus Håkansson Richard M. Murray

Abstract—One of the challenges in designing the next genera-

tion of robots operating in non-engineered environments is that

there seems to be an infinite amount of causes that make the

sensor data unreliable or actuators ineffective. In this paper, we

discuss what faults are possible to detect using zero modeling

effort: we start from uninterpreted streams of observations and

commands, and without a prior knowledge of a model of the

world. We show that in sensorimotor cascades it is possible

to define static faults independently of a nominal model. We

define an information-theoretic usefulness of a sensor reading

and we show that it captures several kind of sensorimotor faults

frequently encountered in practice. We particularize these ideas

to the case of BDS/BGDS models, proposed in previous work as

suitable candidates for describing generic sensorimotor cascades.

We show several examples with camera and range-finder data,

and we discuss a possible way to integrate these techniques in

an existing robot software architecture.

I. INTRODUCTION

One of the challenges in designing the next generation
of robots operating in non-engineered environments is that
there seems to be an infinite amount of causes that make the
sensor data unreliable or actuators ineffective, from hardware
faults (the sensor physically stops working; the driver is
confused), to software issues (one clock is skewed; the data is
not synchronized), to configuration problems (Joe mounted a
spoiler obstructing the camera on his new autonomous car), to
even less predictable causes (a fly lands on the sensor). In prin-
ciple, each of such problems can be solved using established
techniques: the Bayesian framework gives us a way to model
and identify all disturbances, if we are ready to devote design
effort and computational resources to the endeavor. However,
trying to anticipate all possible nuisances (e.g., including in
the robot architecture a fly-detector continuously running on
the sensor data) seems an untenable option.

In this paper, we consider the question of what sensor and
actuator faults can be detected using zero modeling effort and
relatively cheap inference. Our underlying philosophy is close
to Sutton’s verification principle [1]: the only way to build
reliable systems is making them able to verify the quality of
the models they are using. We start from the situation pictured
in Fig. 1: we only have access to uninterpreted streams of
commands u and observations y. The “world” is the series of
robot actuators, the external world, and the robot sensors. We
do not assume to have a prior model of the world, apart from
standard assumptions like causality. The theory we present
is general for any robot, but the particular models we use
for inference have additional assumptions on the kind of
sensors and actuators (they are tailored to kinematic models
and exteroceptive sensors).

A. Censi and R. Murray are with the Control & Dynamical Systems
department, California Institute of Technology, Pasadena, CA. E-mail: {an-
drea, murray}@cds.caltech.edu. M. Håkansson is with the department of Au-
tomatic Control at Lundt University, Sweden. E-mail: et08mh1@student.lth.se

uninterpreted
observations

uninterpreted
commands

agent

“world”

unknown
sensor(s)

external
world

unknown
actuator(s)

representation
nuisances on
observations

representation
nuisances on
commands

uy

Figure 1. In this paper, we consider the problem of fault detection from a
bootstrapping perspective: we start from streams of uninterpreted observations
and commands, and no knowledge of a model of the “world” (the series of the
robot actuators, the external world, and the robot sensors). We show that many
faults occurring in robotic systems can be detected using simple classes of
models (BDS/BGDS) that are versatile enough to represent different types of
robotic sensors. The robustness of the approach is discussed with reference to
“representation nuisances”, static invertible transformation of the signals that
change the representation but not the informative content of the data. This is
a technical device that allows to explicitly state the limitations of the method
by looking at the transformation to which it is not invariant.

Temporary faults: In the established approach to fault
detection and isolation (see, e.g., [2], [3]) one defines faults
of sensors and actuators as deviation of their behavior from
a nominal model, assumed to represent the “healthy” system,
which can be given or identified from the data. In a robotic
systems, these kind of faults capture several situations of
interest: a fly lands of the sensor; a driver glitch returns all
readings as 0; a robot drives over a bump, thus deviating from a
planarity assumption. The established theory for fault detection
mainly deals with linear systems, which cannot represent
robotic sensorimotor cascades. Regarding this kind of faults,
our contribution in this paper is showing that many of them
can be detected using a black-box modeling of the world using
BDS/BGDS models, introduced in previous work [4], [5] as a
generic representation of robotic sensorimotor cascades.

Static faults in sensorimotor cascades: The other contri-
bution of this paper is the definition of what we call static

faults (as opposed to the others, which we call temporary

faults). These are some examples of static faults: the readings
of a range-finder are permanently occluded by other fixtures
on the robot; the image given by an omnidirectional camera
looking into a conic mirror includes the reflected camera and
part of the robot. In these cases, the interested sensels (short for
“sensory elements”) are technically working, but the implicit
assumption that the sensor is perceiving the environment
is violated. Other examples of static faults we encountered
include: a sensor driver setting the first few readings always
to zero; a range reading that seems to oscillate for no apparent
reason between a valid and invalid value; the last scan line of
a wireless camera always received as white noise. These are
all cases in which one must mark the interested readings as
invalid before using the sensor data, and this is typically done
in an ad hoc manner as part of a tuning process. In these
cases, one does not have a nominal model of the system to
use as a reference; therefore, the established approach to fault
detection is not applicable.

Submitted, 2012 International Conference on Robotics and Automation (ICRA)
http://www.cds.caltech.edu/~murray/papers/chm12-icra.html

2

Summary: Section II considers the problem of defining
faults in a sensorimotor cascade when a nominal model
is not available. From an information theoretic perspective,
completely “faulty” sensels are those that do not provide
information about the commands, and, symmetrically, com-
pletely “faulty” actuators are those that do not help predict the
observations. Due to the ever present noise in the data, binary
definitions of “faultiness” are not convenient; consequently, we
define a continuous measure of sensel usefulness and actuator
effectiveness. Section III recalls the definitions and proper-
ties of two classes of models called bilinear dynamics sys-

tems (BDS) and bilinear gradient dynamics systems (BGDS).
Section IV shows that in the context of these models, sensels
usefulness is readily computed from the correlation of obser-
vations and predictions based on the model. Section V shows
the practical application of these notions for a robot equipped
with camera sensors. Section VI discusses how sensel fault de-
tection and isolation can be integrated in an existing software
architecture. Section VII shows experiments with a practical
implementation of these ideas, using a robot equipped with a
range-finder sensor. Section VIII offers more discussion about
the assumptions of the method and its invariance properties
to representation nuisances. Finally, Section IX concludes the
paper and offers directions for future work.

II. STATIC FAULTS IN SENSORIMOTOR CASCADES
FROM A BOOTSTRAPPING PERSPECTIVE

In this section, we discuss how to characterize faults in
sensorimotor cascades from the black-box perspective of boot-
strapping. We argue that static faults can be characterized from
an information-theoretic perspective even without access to a
nominal model of the system, and we define the usefulness of
a sensel and the effectiveness of an actuator.

Static faults in sensorimotor cascades: We assume to
start from uninterpreted stream of observations y

t
and

commands ut, and no knowledge of the model of the
world (Fig. 1). In this context, we cannot define faults as
deviation from a given model, because no model is known.
However, we can find an alternative formal characterization of
sensel faults, starting from an informal intuition: which sensels
would we be fine in throwing away? The usual point of view
is that observations are used to estimate states. If a sensel does
not help in observing the world’s state, then we can ignore it.
However, in this formalization, we do not have access either
to internal states of the world or the world model; what we
have are just observations and commands.

We argue that we can use the commands as a proxy for
the internal state, and that the usefulness of a sensel can be

commands
not influencing
the observations

observations
not revealing

the commands

x uaya

ub......yb

“world”
y

Figure 2. We give a characterization of “static faults” in sensorimotor
cascades from an information-theory perspective. Completely faulty sensels
(yb in the figure) are those that do not provide any information about the
commands applied to the system. Faulty actuators (ub in the figure) are those
whose commands do not help in predicting the future observations. To deal
with noisy data, we use continuous versions of these conditions, called sensel

usefulness (Definition 1) and actuator effectiveness (Definition 2).

measure by the information it gives about the commands. This
is illustrated in the diagram in Fig. 2, which shows an analo-
gous statistical version of the classical control-theory concepts
of unobservability and unreachability. The observations y are
divided in two subsets ya and yb. There is no causal link from
the commands u and yb; therefore the knowledge of yb does
not give information about u. This gives a characterization of
faults which works even if yb has very rich statistics compared
to ya. For example, ya could be the image of a camera
connected to the robot, while yb could be connected to a
TV channel continuously looping reruns of “Friends”. Even
though statistical measures (such as entropy) of yb would
probably be higher than ya (most robots do not live such
interesting lives in a Manhattan loft), the knowledge of yb

does not give any information about u. The same can be
said for the commands ub: actuators that do not influence
the observations are useless. This characterization does not
cover all possible faults, only those which are evident when
only the input-output properties of the sensorimotor cascade;
however, this is the best we can do without having a model of
the world, and it seems to fit well the case of robotic sensors:
commands ultimately cause the robot to move, and sensels
must give information about the robot motion.

Formal definition: We say that the i-th sensel of a sensori-
motor cascade (u,y) is useless if u is conditionally indepen-
dent on1

y
i given the other sensels: p(u:t|y:t) = p(u:t|y−i

:t).
However, this definition is not convenient, as “independence”
is a binary property, and does not capture the reality that
sensel quality degrades gracefully. One possibility is defining
a continuous measure of “usefulness” as a distance between
the distributions p1 = p(u:t|y:t) and p2 = p(u:t|y−i

:t).
Unfortunately, to the best of our understanding, the only true
well-defined distance between distributions is that induced by
the Fisher information metric, which is difficult to compute,
and it is really only definable for finite-dimensional family of
distributions [6]. Therefore, we define usefulness of a sensel
without committing to a specific distance, but for a generic
divergence function.

Definition 1. The D-usefulness of the i-th sensel for a given
divergence D, is defined as usefulnessiD = D(p1, p2), where
p1 = p(u:t|y:t) and p2 = p(u:t|y−i

:t).

Actuator faults: The same ideas apply to actuators: if the
knowing the commands given to an actuator does not help in
predicting the observations, that actuator is not “effective”.

Definition 2. The D-effectiveness of the a-th actuator for
a given divergence D, is defined as D(p1, p2), where p1 =
p(y:t|u:t) and p2 = p(y:t|u−a

:t).

This said, in this paper we are mainly concerned with
sensels faults rather than actuator faults, so we will not have
the occasion of using this definition.

III. BDS AND BGDS MODELS

In this section we recall two classes of models for repre-
senting sensorimotor cascades, introduced in [4], [5].

1We use subscripts to indicate time, and the notation “:t” means “up to
and including time t”. The superscript in y

i indicates the i-th element of the
vector y (later on, if y is a continuous field on a manifold S, we indicate it
with y

s, s ∈ S); and y−i indicates the vector y with the i-th sensel removed.

3

Bilinear dynamics systems (BDS): In the BDS model, we
assume that the observations and commands are vectors of real
numbers: y ∈ Rny , and u ∈ Rnu . The model is parametrized
by a tensor M i

ja
, with three indices i, j, a, with ny ×ny ×nu

elements. The dynamics are described by the relation

ẏ
i

t
= �

j

�
aM

i

ja
y
j

t
u
a

t
+ �

i

t
, (BDS) (1)

where �
i

t
is assumed to be zero-mean gaussian noise. This

model assumes implicitly that the commands u can be inter-
preted as kinematic velocities imposed on the system (if u = 0
then ẏ = 0). The “�” symbols are redundant because
throughout the paper we respect the Einstein convention that
repeated up and down indices are summed over.

Learning is done by computing three tensors N , P , Q:

N
bik = E{ub

ẏ
i
y
k}, P

jk = E{yjyk}, Q
ab = E{ua

u
b}. (2)

Table I summarizes the meaning of the tensors and their
dimensions. We take the symbol “E” to mean the expectation
over the learning data. One can show that E{N bik} =
�

j

�
kQ

ab
M

i

ja
P

jk, therefore an estimate of M can be com-
puted as M̂

i

ja
= �

j

�
kN

bik(P−1
jk

)(Q−1
ab

). For estimating u,
note that, once y is fixed, (1) is linear in u, therefore it can
be recovered using linear least squares.

Bilinear gradient dynamics systems (BGDS): The BGDS
models are a particularization of BDS models, in which it is
assumed that sensels are characterized by their position in a
“sensel space”, and their dynamics only depend on nearby
sensels. Formally, we assume that the observations y are a
scalar function defined on a certain manifold S . We write y

s

t
,

to indicate the value of the observations at a generic spatial
location s ∈ S . For example, in the case of a camera, s ranges
over the pixels. The gradient ∇y has dim(S) components.
We indicate by ∇dy

s

t
the gradient of y in the d-th direction

at location s at time t. The model is parametrized by two
tensor fields B and G on S: at each point s ∈ S , Bs

a
∈ Rnu

and G
ds

a
∈ Rdim(S)×nu . The dynamics are described by the

relation

ẏ
s

t
= �

a

�
d(G

ds

a
∇dy

s

t
+B

s

a
) ua

t
+ �

s

t
, (BGDS) (3)

Table I
NOTATION USED FOR BDS AND BGDS MODELS.

(A) INDICES

indices domain ranges over. . .

a, b 0, . . . , nu − 1 commands
i, j, k 0, . . . , ny − 1 discrete observations

s S continuous observations
d, e, f 0, . . . , dim(S) − 1 gradient directions

(B) TENSORS USED FOR BDS MODELS

tensor shape dimensions

M
i
ja (1, 2) ny × ny × nu BDS dynamics.

N
bik (3, 0) ny × ny × nu Proxy for M used during learning.

P
jk (2, 0) ny × ny Second moment of observations.

Q
ab (2, 0) nu × nu Second moment of commands.

(C) TENSORS USED FOR BGDS MODELS

tensor shape dimensions

G
sd
a (2, 1) |S| × dim(S) × nu Gradient part of dynamics.

B
s
a (1, 1) |S| × nu Affine part of dynamics.

H
sb
e (2, 1) |S| × dim(S) × nu Proxy for G during learning.

C
sb (2, 0) |S| × nu Proxy for B during learning.

R
s
de (1, 2) |S| × dim(S) × dim(S) Statistics of gradients.

with �
s

t
zero-mean gaussian noise. Learning is done by com-

puting the tensors H , C, R, Q:

H
bs

e
= E{ub

ẏ
s∇ey

s}, (4)
C

bs = E{ub
ẏ
s}, (5)

R
s

de
= E{∇dy

s∇ey
s}, (6)

Q
ab = E{ua

u
b}. (7)

Given these quantities, the tensors G and B can be recovered
as Ĝ

ds

a
= �

e

�
b(R

−1)sdeHbs

e
(Q−1

ab
) and B̂

s

a
= �

bC
bs(Q−1

ab
).

Here (R−1)sde denotes the point-wise inverse for the d, e

indices for a fixed s. As in the previous case, for estimating u,
note that, once y is fixed, (1) is linear in u, therefore it can
be recovered using linear least squares.

Note that the BGDS model is more complicated and less
general than a BDS model; however it is more efficient,
because the computational cost for learning and prediction is
linear in the number of sensels (size of the domain S), while
the cost for a BDS model is quadratic in the number of sensels.

IV. SENSEL USEFULNESS IN BDS/BGDS MODELS

This section shows that the usefulness of a sensel in BDS
and BGDS models can be computed as the correlation between
the observed sensel value derivative and the prediction given
by the model. This result depends heavily on the fact that there
is an instantaneous linear relation between ẏ and u.

Proposition 3. Assume that: a) the sensorimotor cascade is a

BDS or BGDS (this model assumption is denoted as “M”);

b) the divergence d between two distributions used is the

difference of the trace of the relative information matrices;

c) the second moment of u is isotropic (E{uu∗} = UInu);

then the usefulness of a sensel is a function γ(ρ) = 1
U

ρ
2

1−ρ2 of

only the correlation between the observed derivative ẏ
i

t
and

the derivative ˆ̇yi predicted by the BDS/BGDS model:

usefulness
i

d|M = γ(corr(ˆ̇yi, ẏi)). (8)

The “M” subscript in (8) is a reminder that this is only
valid under the assumption of the system being BDS/BGDS.

Proof: We first note that BDS/BGDS models give an
instantaneous relation among the derivative ẏ and the com-
mands ut; because the commands at time t only influ-
ence the derivative at time t, we can write p(ut|y:t,M)
as p(ut| �yt

, ẏ
t
� ,M). Therefore, we can write the distance

between p1 = p(u:t|y:t,M) and p2 = p(u:t|y−i

:t ,M) as the
time average between the distribution of u conditioned to the
measurements of y and ẏ at time t:

d(p1, p2) = Et{d(p(ut| �yt
, ẏ

t
� ,M), (p(ut|

�
y−i

t
, ẏ−i

t

�
,M)).

Next, we use the fact that the dynamics is linear in u. We can
write both (1) and (3) in the form:

ẏ
i

t
=

�
f i

t

�∗
ut + �

i

t
, (9)

where f i

t
is a vector that depends on the current observa-

tions y
t
. (For the BGDS case, the index i becomes s ∈ S and

the sums in the following become integrals over S).
Because (9) is linear in ut, an estimate of ut can be obtained

using linear least squares. The information matrix of the least-
squares estimate of ut is given by I = cov(u| �y, ẏ�)−1 =�

i
([f i

t
f i

t

∗
)/var(�i

t
). Using the information matrix trace as

4

the distance between distributions, the increment in infor-
mation given by the i-th sensel is Trace(f i

t
f i

t

∗
)/var(�i

t
) =��f i

t

��2 /var(�i
t
): letting p̃1 = p(ut| �yt

, ẏ
t
� ,M) and p̃2 =

(p(ut|
�
y−i

t
, ẏ−i

t

�
,M), we have d(p̃1, p̃2) =

�f i
t�2

var(�it)
. This is

valid for a particular time t and particular observations y
t
.

Averaging over time, we obtain

usefulnessi
d|M =

E{
��f i

t

��2}
var(�i

t
)

. (10)

Not surprisingly, we find out that usefulness is expressed
as a kind of signal-to-noise ratio. Let ˆ̇yi = f i

t

∗
ut be the

predicted change in y given the learned model and the current
observations, and let ẏi

t
be the actual observations. It holds that

ẏ
i

t
= ˆ̇yi+ �

i

t
, where �

i

t
is assumed to be independent of y. Let

ρ
i = corr(ẏi, ˆ̇yi) be the correlation between observations and

model prediction. For any three zero-mean random variables
a, b, c such that a = b + c and E{ac} = 0, it holds that
corr(a, b) = (1 + var(c)/var(b))−1/2

. For ẏ
i
, ˆ̇yi, �i we obtain

ρ
i = (1 + var(�i)/var(ˆ̇yi))−1/2

. As a sanity check, note that
as var(�i) → 0, ρ

i → 1, and as var(�i) → ∞, ρ
i → 0.

An expression for var(ˆ̇yi) can be found easily assuming that
the second moment of u is isotropic (E{uu∗} = UInu

),
as we have var(ˆ̇yi) = var(f i

t

∗
ut) = UE{

��f i

t

��2}. Sub-
stituting this in the previous expression for ρ

i, one gets
ρ
i = (1 + var(�i)/UE{

��f i

t

��2})−1/2
. From this, we obtain

U
E{�f i

t�2}
var(�i) = (ρi)2

1−(ρi)2 , which, together with (10) gives (8).
Note that the right expression blows up for ρ → ±1, but this
corresponds to the case var(�i) → 0, in which also the left-
hand side blows up.

V. APPLICATION TO CAMERA DATA WITH BGDS MODELS

In this section we show an application of the theory to the
case of a robot with camera sensors, using a BGDS model.
Several kinds of static and temporary faults are identified with
zero prior knowledge of the robot sensors and actuators.

Platform: The platform we use is an Evolution Robotics
ER-1 (Fig. 3a). The robot has differential drive dynamics, and
it is commanded in angular and linear velocity. There are two
cheap USB web-cams mounted on board that give 320x240
RGB images at ~7.5 Hz; one is pointing forward, the other
is pointing down towards the ground. Because of a mirror
mounted on the robot, the camera frame includes part of the
robot chassis, the ground, and the environment in front of the
robot, reflected through the mirror (Fig. 3b).

Data: The robot is driven through a series of indoor
office-like, lab-like, and an outdoor campus environment,
at day and night (Fig. 3c). The terrain went from smooth
indoor, to slippery, to bumpy. There were occasionally moving
people around the robot. The linear and angular velocities
were chosen among fixed values: for the angular velocity,
ω ∈ {−0.2, 0,+0.2} rad/s, and for the linear velocity v ∈
{−0.3, 0,+0.3} m/s. Having a discrete number of velocity
commands values is not a requirement of the method, but it
makes the subsequent analysis simpler. The total length of the
logs is about 50 min (about 24,000 camera frames).

Learning: The observations y are set to be the luminance
values of the composite frame obtained by splicing together
the two camera images (Fig. 3b). In this context, the domain S
is the 480 × 320 frame rectangle; when writing y

s, s ranges

over pixels. We do not assume to know the intrinsic calibration
of the camera, which would be the map from S to the visual
sphere S2 (i.e., the direction associated to each pixel). For
the commands u, we set u0 = ω, u1 = v. Observations and
commands are available only at discrete sampling times tk,
in general not evenly spaced. The signals are synchronized
to obtain pairs (utk ,ytk

) by using the frontal camera as the
master signal, and choosing the closest sample in time for
the other two signals.The learning algorithm (formulas (4)-
(7)) needs to know ẏ and ∇y. To compute ẏ, we use a finite-
time difference, setting ẏ

tk
= (y

tk+1
−y

tk−1
)/(tk+1− tk−1).

Before computing the gradients ∇y, we smooth the data using
an isotropic Gaussian filter with σ = 0.5 pixels. The additional
materials2 include videos of the logs, as well as ROS [7]
Bag files containing the post-processed synchronized streams
of y and u. The tensors H and R learned are shown in
Fig. 4ab. From those, one recovers the tensor G (Fig. 4c). The
tensors C,B are not shown. The interpretation of the BGDS
tensors is not intuitive; in the case of a camera, they can be
put in correspondence with average patterns of optic flow (but
this is not quite right, as we never define optic flow). What is
intuitive to see is that corresponding parts of the environment
in the top and bottom frame are given the same intensity (as
in G

s0
1). The sign is inverted if the image is mirrored along

the direction of the gradient (as in G
s1
0).

Sensel usefulness: Fig. 4d shows the estimated sensel
usefulness, which captures a variety of phenomena. The fixed
parts of the image are correctly identified (chassis and wheel).
Also the border between the two camera frames is identified
as an anomaly. Note that these are the pixels that one would
want to mark as invalid before processing the images. It is
interesting to note that the distant parts of the environment
(both in the front camera and in the mirrored image) are given
a lower usefulness score than the rest of the image. This is
probably due to the finite resolution of the sensor: for the
outdoor environments, the robot sees almost no change due to
translational motion, while the BGDS model predicts motion,
as it does not model the distance to the objects (a hidden state).
This is a case in which the model slightly fails in representing
the dynamics of the sensor; still, the usefulness score for those
areas is much larger than the score given to the actual faults.

Temporary actuator faults: Fig. 5 shows the temporary
actuator fault detection. We first learn the BGDS model
from data, and then we compare the estimated command
ût, obtained via least squares from (3), with the recorded
command ut. Subfigures a,b,c correspond to an indoor log,
and d,e,f to an outdoor log. We had chosen these two logs to
display because there is slipping in the indoor log, and bumpy
terrain in the outdoor log; however, we discovered that most
of the detected faults come from other reasons.

We note that the estimated commands are, in general, of
the wrong scale. This is due to the fact that the variation of ẏ
for a camera depends on the distance to the object. By fitting
an averaged model, the BGDS models estimates a reduced
command outdoor and higher command indoor. However, the
sign is generally correct. Therefore, we use the error function

e(ua
, û

a) =

�
max{0,−u

a
û
a} if |ua| �= 0,

|ûa| if |ua| = 0,
(11)

which detects a fault only if the signs of ua and û
a disagree.

2Available at http://purl.org/censi/2011/fault

5

(a) Robotic platform (b) Composite frame

mirrored image

(c) A sample of traversed environments

wheel

images are just
spliced together

occlusions dynamic objects illumination
nuisances

environmental
variations

high-friction
terrain bumpy

terrain

robot frame

Figure 3. (a) For the first set of experiments, we use an Evolution Robotics ER1. There are two webcams mounted on the platform. One is pointing forward,
and the other is pointing towards the ground. There is a mirror mounted on the robot, so that the bottom camera sees the ground, the front environment
through the mirror, and part of the robot frame, including a wheel. (b) The input to the method (the array y = {ys}s∈S) is the grayscale corresponding to
the composite frame. (c) The robot is driven through a variety of indoor and outdoor environments, containing dynamic elements and challenging terrains.

(b) Slices of estimated tensor R

-1 +1
0

0 +1
Legend: All tensors slices are normalized independently
to [-1,+1] and displayed using a blue-red gradient.

Positive quantities are normalized
in [0,1] and shown using a grayscale gradient.

(c) Slices of estimated tensor G (d) Estimated sensel usefulness

strong values

robot frame
and wheels

border between
images

distant part of
the environment

distant part of
the environment

(a) Slices of estimated tensor H

(predicted to be 0;
 displaying noise)

Figure 4. (a-b) A BGDS model (equation 3) is parametrized by two tensors G and B. We estimate the parameters by first learning two tensors H and R

using Hebbian-like learning, by computing the expectation of certain quantities, given by (4)–(7). The tensor Hsb
e can be interpreted as the expectation of the

product of the b-th command and the e-th component of the gradient of y at sensel s. Intuitively, these depend on the distributions of the commands and of
the sensory statistics and must be normalized. For this normalization, one needs the second moment of u (equation (7)) and the tensor R, which gives the
energy of the observed gradients (equation (6)), here shown in (b). Note that there is a strong energy associated to the edges of the fixed features. (c) This
figure shows the slices of the resulting tensor G. Each slice is associated to a command and a gradient direction.

The diagrams in Fig. 5a-d show that slipping and bumpy
terrain are correctly detected; however, most of the detections
correspond to two unexpected effects. We discovered that, due
to the architecture we used for the logging (various Python
scripts on two laptops, communicating via Spread [8]), there
is a large delay between the application of a command, and
the effect of the command, due to the delay in passing the
commands between computers and down to the various layers
of drivers. Therefore, there is an inconsistency detected every
time that commands are switched; these events are detected by
our method as temporary actuator faults. Another quirkiness of
the logs which is detected as a fault is the occasional reduced
frequency of signals (caused by the non-realtime nature of
the software). We do not show here the equivalent temporary
sensels fault detection, which was already demonstrated in [4];
as expected, the strongest signal one gets is for dynamic

objects that move independently of the robot.

VI. INTEGRATING FAULTY SENSELS DETECTION
IN A ROBOT SOFTWARE ARCHITECTURE

We have described a fault detection method which is largely
independent of the robotic sensor and tasks. Therefore, it is
interesting to consider whether it can be just “plugged in”
in an existing architecture, with minimal modification of the
existing components. The architecture we are experimenting
with is shown in Fig. 6. There are three components:

• The traditional controller is largely unchanged. For par-
ticipating in the architecture, one only needs to add a
“panic” signal, and having the data format support the
semantics of an “invalid” sensels.

• A bootstrapping agent is included in a passive role:
it reads observations and commands, and produces the

6

Start of log 20100616_000059 (indoor)

(a) Disagreement between actual and predicted values of commands

Estimated scale
is not correct.

commands delay
slipping

(b) Command #0 (angular velocity) - actual and predicted values

(c) Command #1 (linear velocity) - actual and predicted values

time (s)

Delayed
effects

Estimated scale
is lower.

robot drives
over a bump

apparent rotation
due to bump

synchronization issues

more exciting
visual pattern

not detected
missing data

slipping

… and off
the bump

Start of log 20100616_000059 (outdoor)

Legend: actual commands estimated commands

(d) Disagreement between actual and predicted values of commands

(e) Command #0 (angular velocity) - actual and predicted values

(f) Command #1 (linear velocity) - actual and predicted values

Figure 5. This figure illustrates the detection of temporary actuator faults. Figures a,b,c refer to an indoor run, and d,e,f refer to an outdoor run. Figures
b,c,e,f show estimated and recorded commands. Due to the limitations of BGDS models, the scale of the estimated commands are incorrect. Therefore, for
fault detection we use a measure of disagreement that ignores the scale of the signals, given by (11). The disagreement between predicted and recorded
commands is shown in figures a and d. This disagreement signal detects a wide variety of actuator faults, both physical faults (wheel slipping, violations of
planarity) as well as software faults (the delay between imposing a command and seeing the effects; and data synchronization/frequency issues).

usefulness measure. The model used internally by the
agent is not important to the other components.

• A “glue” component is added, which marks as invalid the
sensels with low usefulness.

The panic signal is useful to implements a simple adaptive
mechanism which does not need fixed thresholds. The signal
is given the semantics that the controller has detected incon-
sistencies in the observations.

The glue marks sensels as invalid if their usefulness is larger
than a threshold α, which starts at 0: at the beginning, all
sensels are marked as valid. When the panic signal is received,
the glue component increases α by a fixed amount until it
reaches a predefined maximum. This allows to discard as few
sensels as needed to make the observations consistent.

VII. APPLICATION TO RANGE-FINDER DATA

Platform: We use a small (~30cm) differential-drive robot
called Landroid3 with a Hokuyo range-finder on board [9], as
well as 4 cameras, and 4 IR distance sensors pointed in the
four orthogonal directions. We disrupted the sensor using two
different configuration, shown in Fig. 7a and Fig. 7d. In the
first configuration, the robot’s WiFi antennas partially obstruct
the sensor. Not all readings impacted end up with a fixed value
because during motion the antennas vibrate; therefore, some
sensels are reliable when the robot is still, and intermittently
reliable during the motion. In the second configuration, we
put some translucent tape in front of the sensor, spanning
approximately 40° of the 270° field of view.

3This is a prototype produced by iRobot. See videos at
http://www.irobot.com/gi/research/Advanced_Platforms/LANdroids_Robot

Data: The model is learned using about 15 minutes of
data. During this period, the robot is programmed to move
by randomly choosing all combinations in {−vmax, 0,+vmax}
for left and right track velocities. Each command is held for
a random period, modeled as an exponential distribution with
intensity 2s; the result is similar to a Levy flight. If the robot
is about to collide, an automatic safety mechanism stops the
logging and returns the robot to a safe position.

Learning details: To make things interesting, the bootstrap-
ping agent is given a vector y ∈ R691 containing both the 687
range-finder readings as well as the 4 IR-readings. All data
is normalized in the [0, 1] interval. The commands u

0, u1 as
the left and right track velocity. We model the sensorimotor
cascade using a BDS, and we learn the model using (2). The
resulting tensors are not shown, but are very much similar
to those reported in [10]. Fig. 7be show the computed sensel
usefulness. The occlusions are correctly identified, as well as
the 4 IR readings (pointing in the four orthogonal directions,
these are too sparse to be fitted by a BDS model).

Results: In these experiments, the traditional controller
consists of a simple sensor-based exploration algorithm that
takes the range-finder data as input to build a local map on
which to plan. The algorithm sends out a panic signal if the
range readings are inside a given threshold equal to the robot
safety radius. Fig.7cf show the results of applying the adaptive
sensel selection algorithm on this robot. When the episode
starts, the bootstrapping agent already has a model of the
sensorimotor cascade, based on which it computed a useful-
ness measure of the sensels. In the beginning, the traditional
controller panics as there is no safe action to take. The adaptive
algorithm removes the need of defining a fixed threshold for
reliability. The “glue” starts operating around t = 10. It
detects the panic signal from the exploration agent, and begins

7

Figure 7. This figure illustrates the behavior of the architecture described in Fig. 6. In these experiments, the sensels y are the union of the range-finder
sensels plus 4 IR sensors. (a) In the first configuration, the range-finder is obstructed by the robot’s antennas. Moreover, the antennas vibrate during motion,
so that the readings change in time. (b) The resulting sensor reliability curve (obtained by a BDS model) clearly shows the antennas and the IR sensors as
static faults. (c) At the beginning of the run, the controller has no available action to take, because from its point of view the robot is already colliding with
obstacles (the readings from the antennas appear to be inside the robot radius). The controller alerts the glue component in Fig. 6 of this impossibility with
a panic signal. In response to the panic signal, the glue component raises the threshold (initially set to 0) for sensels to be consider reliable (this adaptive
response removes the need of defining a fixed threshold). (d) Invalid sensels are displayed her with black lines. Once those sensels are marked as invalid,
the controller gets out of the panic mode and starts moving. (e) In the second sets of experiments, a translucent piece of plastic is suspended in front of the
sensor. In (g) one can see that more and more sensels are progressively removed, until all problematic sensels are removed, and the controller gets out of the
panic mode and resumes normal operation.

increasingly marking unreliable sensels as invalid. In the first
case (subfigure c), the problematic sensels are removed almost
instantaneously; in the second case (subfigure f) one can notice
the gradual increase in the fraction of invalid sensels removed.
When all the invalid sensels are removed, the exploration
algorithm returns in the normal operation mode and the robot
starts exploring.

VIII. DISCUSSION

When does this work—the evident assumptions: The method
described in this paper works only under certain assumptions,
which we recall here. Firstly, there is the assumption that
the data comes from a robotic sensorimotor cascade. This
assumption allows the information-theoretic characterization
of faults described in Section II. Then, one has to assume
that this theoretical notion of faults corresponds to the real
phenomena of interest. We have shown that this is the case
for many faults (dead sensels, de-synchronized data, sensor
occlusions, etc.), but there certainly are others that would not
be detected with this criterion. The definition of faults we

use is independent of the class of models used; however, in
practice, one has to commit to a class of models, and assume
that it is expressive enough to represent the physical systems
of interest. In this paper we used BDS/BGDS models. Albeit
they do not fully capture the dynamics of cameras (because of
the hidden state of nearness) and range-finders (because of an
unmodeled nonlinearity [5]), the approximation seems to be
good enough to detect many of the common faults. Their main
limitation is that they implicitly assume that the commands u
are kinematic commands (velocities imposed to a rigid body),
so they would fail if u represented torques/forces or was a
nonlinear function of kinematic commands.

...and the hidden assumptions: In a recent paper [11], we
argued that, while the goal of bootstrapping is to design agents
that have no prior assumptions on the model, it is actually
very hard to do so, as most methods have more or less
hidden assumptions about the world. One way to highlight the
hidden assumptions of a method is to consider its sensibility
to “representation nuisances” applied to the observations and
commands; these are represented by GY and GU in Fig. 1.
These nuisances are fixed, invertible transformations of the

8

signals; they change the representation but not the informative
content. Therefore, one expects that the result of the method
(in this case, the detected faults) be invariant to such changes.
If this is not the case, it means that there are hidden assump-
tions in the method, or that there are certain unstated biases.

In [4] we discussed the invariance of BDS models to
linear transformations of observations and commands, and
the invariance of BGDS models to reparametrization of the
domain S. However, it turns out that it is actually very hard
to maintain these invariance properties in practice, as they can
be broken by seemingly innocuous operations. For example, in
the experiments in Section V, the images are smoothed with a
gaussian isotropic kernel of σ = 0.5 pixels prior to computing
the gradients. This operation is standard in computer vision,
but it hides two arbitrary choices. Firstly, the filter contains an
arbitrary scale. This means that if the image was scaled up to
twice the resolution, the effective scale of the filter would be
halved. In some sense, choosing an arbitrary constant biases
the agent towards features of a certain scale. Even worse is
the effect of an arbitrary diffeomorphism: the gaussian filter
is isotropic only for a certain parametrization and it is not
invariant even to simple linear transformations such as shear.
As another example, for computing the derivative ẏ, we used
the usual finite-difference approximation, another operation
above suspicion. However, note that this is not invariant to
the time step used. This means that, if we had the same
observations, but coming at twice the frequency, we could have
obtained different results, even though the sampling frequency
has nothing to do with the faulty status of the sensor/actuator
(using a higher-order filter would not help either).

The difficulty of maintaining the invariance properties is
what keeps us sticking to simple models (BDS and BGDS), for
which the invariance properties are easy to understand, rather
than to look for more expressive models or more sophisticated
learning techniques. For example, the elements of the various
tensors are estimated independently from one another, even
though it is reasonable to expect that the variation be smooth
in s, except at edges, which could be achieved by regulariza-
tion techniques (see, e.g., [12]). We noticed the similarities
of the BGDS models applied to camera data to “optic flow
fields”; several improvements are possible to make estimation
more robust (see, e.g. [13]). Markov random fields [14] have
been shown to learn very high-order statistics of raw data,
and such techniques could help in fault detection. However,
all these techniques come with a large amount of complexity

controller

robot

glue
bootstrapping

agent

sanitized ypanic
signal

sensel
usefulness

(a) Traditional
 architecture

(b) Proposed architecture

u
y

u
yu

y

robot

controller

Figure 6. We consider an architecture (right), in which an extra layer is
put between a traditional controller and robot. A bootstrapping agent builds
an internal model of the sensorimotor cascade, and produces a “sensels
usefulness” signal. The traditional controller is modified to include a “panic”
signal, which signals to a “glue” component when no action can be taken
based on current observations. The glue marks sensels as invalid in inverse
order of usefulness until the panic signals lasts. This minimal architecture
change allows the robot to deal with sensor obstruction and various failures
modes, by progressively marking sensels as invalid, without committing to
predefined thresholds.

and parameters, while we saw that, from a bootstrapping
perspective, it is hard to justify in an absolute sense even
simple operations such as gaussian smoothing.

IX. CONCLUSIONS AND FUTURE WORK

Designing agents that are more “aware” of the quality of
their sensor data and the effectiveness of their actuators seems
to be one of the keys for a more widespread adoption of
robots in non-engineered, natural environments. A zero-prior-
information approach, such as the one described in this paper,
seems an attractive option for those cases in which one expects
to not be able to model every possible disturbance that might
appear during the system operation.

As for future work, we mention the ever-lasting problem
of studying models that are able to capture a larger class of
systems (for example robots with dynamics more complicated
than pure kinematics implied by BDS/BGDS models; see [15]
for preliminary work) as well as with being invariant to a larger
class of nuisances (e.g., nonlinear scaling of sensel values).
More on the engineering side, it is interesting to think of ways
to give an active role of the fault detection mechanism (e.g., in
case of doubts on the fault status, take control of the platform
to do some self-diagnostic maneuver).

Acknowledgments. We are grateful to Larry Matthies,
Thomas Werne, and Marco Pavone at JPL for lending the Lan-
droid platform and assisting with the software development.

REFERENCES

[1] A. Stoytchev, “Some Basic Principles of Developmental Robotics,” IEEE

Trans. on Autonomous Mental Development, vol. 1, no. 2, 2009. DOI.
[2] S. Simani, C. Fantuzzi, and R. J. Patton, Model-based Fault Diagnosis

in Dynamic Systems Using Identification Techniques. Advances in
Industrial Control, Springer, 2002.

[3] S. X. Ding, Model-based fault diagnosis techniques. Springer, 2008.
[4] A. Censi and R. M. Murray, “Bootstrapping sensorimotor cascades: a

group-theoretic perspective,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2011. (link).
[5] A. Censi and R. M. Murray, “Bootstrapping bilinear models of robotic

sensorimotor cascades,” in Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA), 2011. (link).
[6] S. Amari and H. Nagaoka, Methods of information geometry, vol. 191.

Oxford University Press, 2000.
[7] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[8] Y. Amir, C. Danilov, M. M. Amir, J. Schultz, and J. Stanton, “The
Spread toolkit: Architecture and performance,” Tech. Rep. CNDS-2004-
1, Johns Hopkins University, Center for Networking and Distributed
Systems, Baltimore, MD, USA, 2004. (link).

[9] L. Kneip, F. T. G. Caprari, and R. Siegwart, “Characterization of the
compact hokuyo URG-04LX 2d laser range scanner,” in Int. Conf. on

Robotics and Automation, (Kobe, Japan), 2009.
[10] A. Censi and R. M. Murray, “Bootstrapping bilinear models of robotic

sensorimotor cascades,” in Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA), 2011. (link).
[11] A. Censi and R. M. Murray, “Uncertain semantics, representation

nuisances, and necessary invariance properties of bootstrapping agents,”
in Joint IEEE International Conference on Development and Learning

and Epigenetic Robotics, 2011.
[12] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative

regularization method for total variation-based image restoration,” Simul,
vol. 4, 2005.

[13] R. Roberts, C. Potthast, and F. Dellaert, “Learning general optical flow
subspaces for egomotion estimation and detection of motion anomalies,”
in Conf. on Computer Vision and Pattern Recognition, 2009. DOI.

[14] A. Saxena, S. Chung, and A. Ng, “3-d depth reconstruction from a single
still image,” International Journal of Computer Vision, vol. 76, 2008.
10.1007/s11263-007-0071-y. (link).

[15] A. Censi and R. M. Murray, “Learning diffeomorphism models of
robotic sensorimotor cascades,” 2011. Technical report. (link).

