
Synthesis of Control Protocols for Switched Electrical Power Systems for
Commercial Applications with Safety Specifications

Benson Christalin1, Michele Colledanchise2, Petter Ögren2 Richard Murray1

Abstract— This paper presents a method for synthesizing
fault tolerant control protocols for a deterministic discrete event
system subject to safety specifications. The system discussed
in the paper is modeled as a finite state machine (FSM)
and Behavior Tree (BT). The synthesis procedure involves
formulating the policy problem as a shortest path dynamic
programming problem, and performing a backward search
from the desire sates or behavior to the initial configuration.
The search is performed over all possible states when applied
to the FSM, or over all possible actions when applied to the
BT. The resulting strategy minimizes the number of actions
performed to meet operational objectives without violating
safety conditions. The effectiveness of the procedure on FSMs
and BTs is demonstrated through three examples of switched
electrical power systems for commercial applications.

I. INTRODUCTION AND MOTIVATION

In an effort to facilitate the increasing complexity and
automation of smart systems, there has been a growing
demand for reliable and efficient electrical power systems
(EPS). Computational complexity theory provides tools to
handle modeling, analyzing, and ensuring reliability of the
intricate circuitry and operation of these safety critical elec-
trical power systems. These tools enable the synthesis of
control protocols that allow an electrical power system to
quickly actuate to meet system objectives, while maintaining
safe operating conditions. The synthesis of reactive control
protocols involves modeling the system, safety, and mission
specifications in a tractable form, and designing an algorithm
that uses the specifications and outputs an optimal policy.
This paper details the construction of two independent mod-
els of the electrical power system, provides an algorithm to
synthesize reactive controllers, evaluates complexity of the
algorithm in relation to the models, and demonstrates the
realizability of the control protocols.

Synthesizing the controls protocols requires examining the
event space, and constructing sequential decisions to achieve
goals under uncertainty. There has been work conducted
that implements correct-by-construction control synthesis to
power allocation and distribution in aircraft electric power
systems [1] [2]. These papers use linear temporal logic (LTL)
specifications to synthesize a controller that is guaranteed,
by construction, to satisfy formalized properties. The LTL
specifications accounted only for safety and requires GR(1)

1The authors are with the Department of Control and Dynami-
cal Systems, California Institute of Technology, Pasadena, CA, USA
bchrista@caltech.edu

2The authors are with the Computer Vision and Active Perception Lab.,
Centre for Autonomous Systems, School of Computer Science and Com-
munication, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden { miccol|petter}@kth.se

design. Using the collection of mathematical tools afforded
by dynamic programming this paper demonstrates the syn-
thesis of a reactive controller for an electrical power system,
modeled by a finite state machine (FSM) diagram and a
behavior tree (BT), and outlines the extension needed to
account for liveness specifications. Furthermore, multiple
electrical power system topologies are discussed in this
paper. The first allow readers to gain an intuition for the
synthesis algorithm, the second example is motivated by
an experimental test fixture used to validate automatically
synthesized reactive control protocols [3], and the last is an
industrial application from [4], seen in figure 11, demonstrat-
ing feasibility and scalability of the synthesis procedure.

The electrical power system exemplifies a discrete event
system. Such a modeling approach is fitting since this
paper only considers actuation of an electrical power system
occurring at finite time intervals, assumes the state of the
electric power system is static unless triggered, and the
information is represented in discrete form. A FSM and
BT was used to model the electrical power system. The
FSM for the electrical power system can be represented by
a directed graph known as a FSM diagram. The nodes of
the graph are the states of the system and the edges are
transitions. With such an abstraction one can describe the
necessary conditions to reach certain states using modal logic
[5]. Furthermore, state transition diagrams are intrinsically
sequential in nature, which aligns with the assumptions for
actuation of the electrical power system. However, state
transition diagrams can be infeasible. The conventional FSM
diagram formalism requires explicit representation of all
states, and as the model grows linearly, the number of states
grows exponentially. There have been techniques developed
to address the exponential complexity such as binary decision
diagrams [6]. An alternative to state transition diagrams are
behavior trees (BT). First introduced in the computer gaming
industry [7] to meet their needs of compactness, modularity,
and reusability in the artificial intelligence for non player
characters [8], [9], BTs are a recent alternative to Controlled
Hybrid Systems (CHSs) for fault tolerant execution of tasks.
Different studies highlight the advantages of BTs over more
classical CHSs in various applications [10]–[14], in particular
robotic applications [15]–[17]. BTs are often used to describe
fully reactive systems in a convenient and compact way
[17]. A comparative analysis of the use of behavior trees
and transition diagrams as models of the electrical power
system is provided, demonstrating the advantages of the com-
pactness of the BTs to reduce the computational complexity
synthesizing the controls.

Submitted, IEEE Real-Time Systems Symposium (RTSS)
http://www.cds.caltech.edu/~murray/preprints/ccom16-rtss_s.pdf

The remainder of the paper provides: a description of the
electrical power system and problem description, a simple
illustration of the proposed solution, an exposition of the
mathematical setting, followed by the formal problem state-
ment, a demonstration of the synthesis procedure including
two examples used to compare the transition diagram and
behavior tree, and concluding remarks.

II. FRAMEWORK

A. Electrical Power System
An electrical power system is a modular collection of

components and circuits necessary for the generation, trans-
mission and distribution of power. The typical components
of an electrical power system are generators/alternators,
rectifier units, transformers, contactors, batteries, and loads.
Generators provide the source of power that the system
will convert into electrical energy. Rectifier units convert
alternating current (AC) to direct current (DC). Transformers
use electromagnetic induction through a ”step-up” or ”step-
down” process that involves the increase or decrease of volt-
ages to transfer electrical energy. Batteries store electrical en-
ergy. Contactors connect and disconnect circuit components
to maintain system requirements while allowing the electrical
power system to provide energy to the loads. And loads
consume the electrical energy to perform a function. These
components can be arranged to form various topologies in
order regulate and control the conversion and transmission of
electrical energy for consumption. Maintaining power flow
is the key objective of the electrical power system for safety
critical applications. For this paper it is assumed the electrical
power system operates under a Gray code specification and
therefore only one contactor is actuated at each finite time
interval.

B. Problem Description
Given an electrical power system topology, an initial state,

and objective, determine the minimal number of actions
required that do not violate safety specification and yield
the final optimal contactor configuration. For a configuration
to be optimal means that the EPS satisfies system, safety,
and mission specifications.

III. PROPOSED SOLUTION

This section provides a colloquial description of the pro-
posed solution. Section VI of the paper provides a formal
presentation of the solution. The first step of the proposed
approach is to construct a graphical model of the EPS where
each vertex represents a component and each edge represents
a contactor. Next, from the graphical model identify all
contactor configurations, highlighting those that satisfy the
mission and violate safety requirements. Contactor configura-
tion is denoted by a vector where if the ith entry is positive
the ith-contactor is on and if negative the ith-contactor is
off. Actuation of the system corresponds to a transition and
the observed contactor configuration corresponds to a state
of the system. Use the states and the transitions to create a
FSM and FSM diagram. Now, derive the control policy. For

the FSM-based policy, a search is performed on the FSM
diagram to identify a path from the initial configuration to
the a goal configuration. Transitions are assigned cost values
to ensure specifications are satisfied. In the BT-based policy a
recursive search is performed to find the sequence of actions
needed to satisfy the mission and safety requirement and tree
ordering is used to address liveness specifications. Regardless
of the EPS model, a backward search approach from the
goal configuration identifies the actions that yield the desired
results. Before performing an action, the BT ensures that
it does not violate any safety requirement (e.g. it turns off
some other contactors to avoid safety violation). Among all
the possible BTs or paths on the FSM diagram, the one
that represents the least number of actions from the initial
configuration to the terminal configuration is chosen.

Example 1: Consider the EPS in figure 1(a). The graph
representation of the EPS is depicted in figure 1(b). The
mission is to power the load without short-circuits. The
initial condition of the system is all contactors opened, x0 =
[�1,�2,�3]. The indexed set of terminal configurations that
satisfy the mission is denoted by, M; thus, for this example,
M = {[1,�2, 3] [[�1, 2, 3]}. The sates that correspond to
a safety violation are denoted by S and therefore, for this
example, S = {[1, 2, 3] [[1, 2,�3]}.

Generator 1

1

Bus

Generator 2

2

3

Load

(a) EPS.

Generator 1

1 2

Generator 2

Bus

Load

3

(b) Graph modeling the EPS.
Fig. 1. EPS and Graph for Example 1. The EPS has four components:
two generators, one bus, and one load, and three contactors: contactor 1, 2,
and 3.

Notice that all the possible states and transitions of the
electrical power system FSM are depicted in the FSM dia-
gram shown in figure 2. In the figure, the dotted lines denote
the transitions that yield a safety violation, the boxed vertices
are viable terminal configurations, and the arrow indicates
the initial state. A weighted value of infinity is assigned to
edges related to transitions to unsafe states. Weighted values
are also assigned to edges indicating preferential states that
relate to the liveness specifications. These values are stored in
a cost matrix and used to when computing value and policy
iteration, which provide the optimal set of actions from every
state to every state. The distant from one state to another
is the sum of the weighted edges that make up the path
connecting the two nodes. Examining example 1, assume
that all non-dotted edges in figure 2 have a value of one;

one can immediately identify the paths through safe states,
and the related actions, that result in a satisfactory terminal
state: close contactor 2 and then close contactor 3 or close
contactor 1 and then close contact 3. Since both paths are
equidistant from the initial position and no preference was
indicated, a probabilistic approach or which ever sequences
was queued first. The size of the FSM diagram is 2 #components-
nodes and #components⇥ 2 #components-edges.

Fig. 2. FSM Diagram of Example 1

For the BT, figure 3 shows the construction of the tree T
M1

step by step. Algorithm 4 creates the initial T
M1 depicted

in figure 3(a). T
M1 returns failure since the condition is

1 CLOSE is not satisfied. Then, Algorithm 4 expands the
tree as seen in figure 3(b). Now, T

M1 returns failure since
the condition is 3 ON is not satisfied. Again, Algorithm 4
expands the tree as shown in figure 3(c). T

M1 finally returns
success. T

M2 is constructed in a similar way and depicted
in figure 3(d). Given the initial state, both T

M1 and T
M2

results in two operations performed hence their order in T
is irrelevant. If there is a preference indicated by a liveness
specification, simply order the tree accordingly. T is depicted
in figure 4.
In order to demonstrate a rigorous form of the aforemen-
tioned solution to the control synthesis problem there are
mathematical preliminaries necessary, which are presented
in the next section.

IV. MATHEMATICAL BACKGROUND

A. EPS ! Graph ! Finite State Machine
This section summarizes the mathematical background

needed for the formulation of the control synthesis problem
and solution. First, using the usual definition, let G = (V,E)
be a undirected graph. V refers to the nodes or vertices of
the graph, denoted by v 2 V , and E refers to the edges of the
graph, which do not have direction, and therefore are denoted
using set notation, {v, w} 2 E or {w, v} 2 E. A path is a
finite sequence of nodes hv0, v1, . . . , vi. The set of paths of
G is Paths(G). The electrical power system is a network of
components and an inherent topological representation of a
network is a graph. Table I shows the circuit symbols and
their corresponding graphical representation.
A single path on the graph denotes connection between cir-
cuit components and the flow of power. Paths(G) represents

!

1 is
ON

3 is
ON

(a) First TM1 of Example 1.

!

?

1 is
ON

!

2 is
OFF

Turn
1 ON

3 is
ON

(b) Updated TM1 of Example 1

!

?

1 is
ON

!

2 is
OFF

Turn
1 ON

?

3 is
ON

Turn
3 ON

(c) Final TM1 of Example 1

!

?

2 is
ON

!

1 is
OFF

Turn
2 ON

?

3 is
ON

Turn
3 ON

(d) Final TM2 of Example 1
Fig. 3. Construction of TM1 and TM2 for Example 1.

?

!

?

1 is
ON

!

2 is
OFF

Turn
1 ON

?

3 is
ON

Turn
3 ON

!

?

2 is
ON

!

1 is
OFF

Turn
2 ON

?

3 is
ON

Turn
3 ON

Fig. 4. T of Example 1

all configurations/states of the electrical power system. For
the electrical power system discussed in this paper only one
switch/contactor can be actuated at a time time step thus
for each state and input there is only one transition. The
states and transition of the electrical power system can be
represented with a deterministic finite state machine.

Definition 1: A deterministic finite state machine is a
quadruple (X,⌃, f, Y) where:

• a finite set of states, X
• a finite set called the input alphabet, ⌃
• a transition function mapping pairs of a state and an

input symbol to the corresponding next state, f : X ⇥
⌃! X

• a finite set of final states, Y ⇢ X
The FSM too has a graphical representation and moving
forward, vertices shall refer to components on the graphical
abstraction of the EPS and nodes shall refer to the states
on the graphical abstraction on the FSM or as defined on a
behavior tree, detailed in the next subsection.

TABLE I. Symbols used and their graphical representations

Symbol Description Graphical Symbol

ACGen ✓ V AC Generators
C ⇢ E Contactors

DCLoad,ACLoad ✓ V DC, AC Loads

RU ✓ V Rectifier Units

B. Behavior Trees

This subsection presents a digest of BTs, describing the
execution of the nodes used throughout the paper. Refer to
[9] for a more detailed description.
A BT is a directed tree where the internal nodes are classified
as control flow nodes and the leaf nodes as execution nodes,
using the usual definition of parent and children for each
connected nodes. Graphically, the children of a control flow
node are sorted from its bottom left to its bottom right, as
depicted in Figures 5-6. The execution of a BT starts from the
root node (i.e. the control flow nodes with no parents), which
sends ticks to its children. When a node in a BT receives a
tick, its execution starts and it returns to its parent a status
of running if its execution is under completion; success if its
execution is accomplished; or failure if the execution cannot
be accomplished. Here we describe the execution of the two
control flow nodes (selector, sequence) and the execution
nodes (action and condition).

Fallback node (also known as Selector or Priority): When
a fallback node receives a tick, then it ticks its children
in succession from left to right, until a child returns the
status of success or running. Then this status is returned
to the parent of the fallback node. A fallback node returns
failure only when all the children return a status failure. The
purpose of the fallback node is to carry out a task that can
be performed using different approaches (e.g. powering a
bus can be either done by switching the generator on or by
plugging the external battery). A fallback node is graphically
represented as a box with a “?”, as in Fig. 5.

?

Child 1 Child 2 · · · Child N

1

Fig. 5. Graphical representation of a fallback node with N children.

Sequence node: When a sequence node receives a tick,
then it ticks its children in succession from left to right,
until a child returns the status of failure or running. Then
this status is returned to the parent of the sequence node.
A sequence node returns success only when all the children
return a status success. The purpose of the sequence node
is to carry out a task that is defined as a strict sequence of
sub-tasks (e.g. powering a load need to have the load con-
nected and rhe generator on) A fallback node is graphically
represented as a box with a “!”, as in Fig. 6..

!

Child 1 Child 2 · · · Child N

1

Fig. 6. Graphical representation of a sequence node with N children.

Action

1

(a) Action node.

Condition

1

(b) Condition node.
Fig. 7. Graphical representation of action and condition nodes.

Action node: When an action node receives a tick, it
returns the status of success if the action is completed
or failure if the action cannot be completed. Whit it is
performing the action, it returns the status of running. An
action node is graphically represented as in Fig. 7(a)

Condition: When a condition node receives a tick, it
returns the status of success if the condition is satisfied or
failure otherwise. A condition node never returns running. A
condition node is graphically represented as in Fig. 7(b).

C. Dynamic Programming
To find the appropriate set of actions to satisfy the mission

objective a search is performed on both the FSM and BT
model. However, for the FSM the search is performed over
states. Consider the FSM definition previously provided. X
is a non-empty state space. From each state, x

k

2 X , there
is a input �

k

2 ⌃(x) associated with a transition from state
x
k

to x
k+1 = f(x

k

,�
k

). Also, there is a cost g(x
k

,�
k

)
additive cost associate with each state with each action. For
the purpose of this paper the cost to-go is captured by an
adapted adjacency matrix from the graph of the FSM diagram
with values corresponding to the weighted edges of the FSM
diagram. There exist several policies or control laws made
of a sequence of actions µ = {�0, . . . ,�N�1}. Therefore our
problem can be formulated for the FSM model as given an
initial state x0, find the optimal policy ⇡⇤ that actuates the
system from state x0 to x

final

by minimizing the cost

J
mu

⇤(x0) = min
µ2U

J
µ

(x0).

The optimal cost function is computed by backward value
iteration, provided in the next section, which is then use in
policy iteration to find the optimal policy, µ⇤, that minimizes
the cost for a given initial conditional to a final state. For
more detail on value and policy iteration refer to [18].

V. PROBLEM STATEMENT

The objective is to minimize the expected number of
switches to get to safe-on final state while always remaining
in X

safe�on

[X
safe�off

where M ✓ X
safe�on

. In this
case, the transition cost is 1 if the transition is to safe space
of the events space, 0 if the transition is M or1 otherwise.

VI. DESIGN AND IMPLEMENTATION

Using successive iteration, we converge on a value function
and policy that account for the entire event space and is

Algorithm 1: value iteration
Input: cost function, states, & actions
Output: value function

1 initialization Set k = 0 repeat
2 foreach k do
3 foreach state x do
4 compute vector

J
k+1(x) = argmin

�2⌃
[g(x,�)+

nX

j�1

g
x,j

(�)J
k

(j) [18]

J⇤(x) J(x)

5 until J
k+1 ⇡ J

k

;
6 return J⇤

k

Algorithm 2: policy iteration
Input: initial value function vector
Output: policy

1 initialization Set k = 0. Find an admissible policy µ0;
2 repeat
3 foreach k do
4 foreach state x do
5 compute vector

µk+1 = argmin
�2⌃

[g(x,�)+
nX

j�1

c
i,j

(�)J
µ

k(j) [18]

µ⇤(x) µ(x)

6 until µ
k+1 ⇡ µ

k

;
7 return µ⇤

k

therefore the convergent rate is dependent on the event space.
Under some regularity assumptions outlines in [19], there is a
unique value function corresponding stationary policy ⇡ that
can arrive at the optimal value function by value iteration.

A. BT part
We aim to create a BT that returns success if and only

if the current contactor configuration satisfies the mission
requirement without violating the safety specifications.

For each contactor configuration M 2M we create a BT
T
M

that returns success if and only if the such configuration
is met. Initially this T

M

is composed by conditions only
(Algorithm 4 Line 9). We execute T

M

on the graph starting
with the initial configuration M0. If the the contactor con-
figuration M is not met, T

M

returns failure. We identify
which single element m

i

2 M is not met (Algorithm 4
Line 12). For each m

i

we identify a BT that will met such
single contactor configuration without violating any safety
requirements (Algorithm 4 Line 15). We repeat the procedure
until T

M

return success. Finally we order T to achieve
optimality. In the ordered BT, each fallback node has its
children ordered by the the number of action in an ascending
fashion.

Algorithm 3: get safe subtree
input : Single contactor configuration: m

Mission Configuration: M
Violating Configurations: S

output: Subtree to safely satisfy m
1 for S 2S do
2 T

S

 fallback node()
3 if m 2 S then
4 S̃ S\M
5 for s̃ 2S̃ do
6 if s̃ > 0 then
7 c̃ condition node(Contactor

s̃ Is OFF)

8 else
9 c̃ condition node(Contactor

s̃ Is ON)

10 T
S

.add child(c̃)

11 if m > 0 then
12 a action node(Turn Contactor m

ON)
13 c condition node(Contactor m Is

ON)

14 else
15 a action node(Turn Contactor m

OFF)
16 c condition node(Contactor m Is

OFF)

17 T
a

 sequence node()
18 T

a

.add child(T
S

)
19 T

a

.add child(a)
20 T fallback node()
21 T .add child(c)
22 T .add child(T

a

)

23 return T

Algorithm 4:
input : Initial configuration: M0

Mission Configurations: M
Violating Configurations: S

output: BT T
1 T fallback node()
2 for M 2M do
3 T

M

 sequence node()
4 for m 2M do
5 if m > 0 then
6 c condition node(Is Contactor

m ON)

7 else
8 c condition node(Is Contactor

m OFF)

9 T
M

.add child(c)

10 status T
M

.execute on graph(M0)
11 while status 6= success do
12 C T

M

.failed conditions()
13 for c 2 C do
14 c̃ get value of(c)
15 T

c

 get safe subtree(c̃,M,S)
16 T

M

.replace child(c,T
c

)

17 status T
M

.execute on graph(M0)

18 T .add child(T
M

)

19 T .reorder()
20 return T

VII. ALGORITHM ANALYSIS

A. Computation of FSM Control Policy

The abstraction used to perform calculations on the FSM
was extended from the EPS graph. The complexity of the
construction of the EPS graph is O(V + E). The nodes of
the transition diagram are 2V and the edges are V ⇥ 2V

therefore the complexity to construct the graph is O(2V ⇥
(1+V)). The computational complexity of the value iteration
procedure is O(|V ⇥ 2V ||2|V) and a space complexity of
O(|2V |). For policy Iteration the computation complexity is
O(|2V |+ |V ⇥ 2V ||(22⇥V |) and the space is O(|2V |).

B. Computation of BT

Given the mission set M and the safety violations set S
Algorithm 4 computes a number |M| of BTs T

M

for each
contactor configuration M 2M. In each T

M

, Algorithm 4
finds a subtree T

m

to safely satisfy each single contactor
configuration m 2 M . Each T

m

is computed in O(|S||E|)
time where |E| is the cardinality of the edges of the graph
(number of contactors). For each T

M

we compute at most
a number |E| of T

m

(worst case where we have to perform
an action on each contactor). Finally Algorithm 4 sorts the
children of T . The sorting is done in O(|M||E|log(|M| +
|E|))) time, as for each T

M

we sort each subtree T
m

.

times. Hence the proposed approach computes a BT in
O(|M||S||E|2 + |M||S||E|log(|M|+ |E|)) time.

VIII. EXAMPLES

A. Experimental Test Fixture

Fig. 8. EPS of Example VIII-A

Consider the EPS in Fig. 8 where the mission requirement
is to power the four loads and the safety specification is
to not parallel the two generator. The mission set is M =
{M1,M2,M3,M4,M5} where:

• M1 = [1, 2, 4, 5, 6, 7]
• M2 = [1, 3, 5, 6, 7, 8]
• M3 = [2, 3, 4, 6, 8]
• M4 = [1, 2, 4, 6, 8]
• M5 = [1, 2, 5, 7, 8]

The safety violation set is S = S1, S2 where:
• S1 = [1, 2, 3]
• S2 = [1, 2, 4, 5, 6, 7, 8]
• S2 = [1, 2, 3, 4, 5, 6, 7, 8]

The initial contactor configuration is M0 =
[1, 2,�3, 4, 5, 6, 7,�8] that is all the contactors except
3 and 8 are turned off. We choose such initial configuration
to show how the framework satisfy the safety conditions

The resulting BT T is shown in Fig. 9.Each child in
T achieves a contactor configuration in the mission set
M. The children are ordered by the number of actions
they execute. Some children have to turn off contactors
to satisfy the safety requirement. In the nominal case the
actions executed are: Turn 1 ON, Turn 5 ON, Turn 7 ON.
None of this action violate a safety constraint. Note that
if, due to several faults, the T executes its third child (i.e.
it performs the third best plan), the contactor 3 has to be
turned off before tuning on the contactor 2 to avoid the

two generators being paralleled. For FSM diagram yield
the same results, however it require additional computing
power provide by Amazon Web Services and the diagram
is too large to display. It contain 256 nodes and 2048
edges. Nodes pertaining to safety violation shown below
as contact configuration were removed in order to reduce
computational complexity.
11110010 11110110 11110111 11110101 11110100
11111100 11111101 11111111 11111110 11111010
11111011 11111001 11111000 11101000 11101001
11101011 11101010 11101110 11101111 11101101
11101100 11100100 11100101 11100111 11100110
11100010 11100011 11100001 11100000 11110000
11110001 11011111

?

? -> ->

is #2ON? ->

? Turn#2ON

is #3OFF? Turn#3OFF

? ? ?

is #2ON? ->

? ? Turn#2ON

is #3OFF? Turn#3OFF is #8OFF? Turn#8OFF

is #4ON? ->

? Turn#4ON

is #6ON? ->

? Turn#6ON

? ? ?

is #2ON? ->

? ? Turn#2ON

is #3OFF? Turn#3OFF ? ?

is #7OFF? Turn#7OFF is #5OFF? Turn#5OFF

is #4ON? ->

? Turn#4ON

is #6ON? ->

? Turn#6ON

Fig. 10. BT of Example VIII-B. Second Mission

B. Large-Scale Electrical Power System
In this example we consider an electrical power system

for commercial applications. The electrical power system is
depicted in figure 11. For this example the objective was to
power the component LVDC Bus 3. The safety specification
is to not parallel any two generators. The initial contactor
configuration is such that only the contactors 1, 6 and 26
are on. We chose to not enumerate the sets M and S due
to magnitude of the cardinality of the event space to search,
|X| = 1013.

Fig. 11. Electrical Power System Schematic for Example VIII-B

The resulting T has children equal to |M| children. We

chose to depict only the most left one (nominal path) in
Fig. 12. Intuitively to power LVDC Bus 3, the contactors 1,
27, and 31 must be turned on. Since at the initial condition
the contactors 11, and 31 are on, turning 6 on will yield to a
unsafe contactor configuration (Generator L2 and Generator
R2 in parallel). To avoid such configuration, either the
contactor 6 or 26 have to be turned off before turning on
the contactor 6. The FSM formulation was found intractable
for this example.

->

? ? ?

is #1ON? ->

? Turn#1ON

? ?

is #26OFF? Turn#26OFF is #6OFF? Turn#6OFF

is #27ON? Turn#27ON is #31ON? Turn#31ON

Fig. 12. First child of BT of Example VIII-B.

?

-> -> -> -> ->

? ? ?

is #1ON? ->

? Turn#1ON

is #5ON? ->

? Turn#5ON

is #7ON? ->

? Turn#7ON

? ? ?

is #2ON? ->

? Turn#2ON

is #4ON? ->

? Turn#4ON

is #6ON? ->

? Turn#6ON

? ? ? ?

is #1ON? ->

? Turn#1ON

is #2ON? ->

? Turn#2ON

is #3OFF? Turn#3OFF

is #4ON? ->

? Turn#4ON

is #6ON? ->

? Turn#6ON

? ? ? ?

is #1ON? ->

? Turn#1ON

is #2ON? ->

? Turn#2ON

is #3OFF? Turn#3OFF

is #5ON? ->

? Turn#5ON

is #7ON? ->

? Turn#7ON

? ? ? ? ? ?

is #1ON? ->

? Turn#1ON

is #2ON? ->

? ? Turn#2ON

is #3OFF? Turn#3OFF is #8OFF? Turn#8OFF

is #4ON? ->

? Turn#4ON

is #5ON? ->

? Turn#5ON

is #6ON? ->

? Turn#6ON

is #7ON? ->

? Turn#7ON

Fig. 9. T of Example VIII-A. The precondition that are satisfied on the initial state are not shown for space limitation (fallback nodes without children).

IX. CONCLUSION AND FUTURE DIRECTION

In this paper we presented a methodology to synthesize
fault tolerant control protocols apropos aircraft EPS modeled
as discrete event systems. The electrical power systems were
modeled as FSMs and BTs. The algorithm used dynamic
programming techniques on graphical abstractions of the
systems to synthesize a switching protocol. The results
demonstrated, for small scale systems, that the algorithm
was effective with a FSM diagram model. However, un-
less additional modeling techniques were implemented to
compress the representation of the system’s event space,
the problem became intractable. BTs provide a tractable
formulation for the large-scale electrical power systems. The
proposed approach computed a minimal switching protocol
for an electrical power system whose switching is defined
by Gray code convention. Future work will seek to improve
the algorithm and formulation presented in this paper and
use the results to address other problems related to heuristic
decision-making for electrical powers systems such as sensor
placement, fault detect and isolation, and synthesis of built-
in-test.

APPENDIX

Proposition 1: Algorithm 3 finds a BT in finite time.
Proof: The sets S and S̃ are finite. Hence the loops

inside Algorithm 3 executes a finite number of operations
Proposition 2: Algorithm 4 finds an optimal BT in finite

time. Proof: The set M is finite set. Hence the number
of T

M

computed is finite. The T
M

is updated until it return
success. To prove that it will return success in finite time
we need to prove that an action required to satisfy the
safety specification do not conflict with an action required
to perform the mission. Algorithm 4 computes the actions
required to satisfy the safety specification using Algorithm 3.
Algorithm 3 consider only those contactors that are not listed
in the mission specification (Line 4) Hence no confliction
action are performed. The optimality is ensured by the
sorting algorithm.

ACKNOWLEDGMENTS

The authors would like to thank Scott Livingston, Ivan Pa-
pusha, and the anonymous reviewers for helpful comments.
This work was supported in part by IBM and UTC via the
iCyPhy consortium

REFERENCES

[1] N. Ozay, U. Topcu, R. M. Murray, and T. Wongpiromsarn, “Distributed
synthesis of control protocols for smart camera networks,” in Pro-
ceedings of the 2011 IEEE/ACM Second International Conference on
Cyber-Physical Systems. IEEE Computer Society, 2011, pp. 45–54.

[2] H. Xu, U. Topcu, and R. M. Murray, “A case study on reactive
protocols for aircraft electric power distribution,” in Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012,
pp. 1124–1129.

[3] R. Rogersten, H. Xu, N. Ozay, U. Topcu, and R. M. Murray, “An
aircraft electric power testbed for validating automatically synthesized
reactive control protocols,” in Proceedings of the 16th international
conference on Hybrid systems: computation and control. ACM, 2013,
pp. 89–94.

[4] R. G. Michalko, “Electrical starting, generation, conversion and distri-
bution system architecture for a more electric vehicle,” Oct. 21 2008,
uS Patent 7,439,634.

[5] J. Hopcroft, Introduction to automata theory, languages, and compu-
tation. Boston: Pearson/Addison Wesley, 2007.

[6] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3,
pp. 293–318, 1992.

[7] D. Isla, “Handling Complexity in the Halo 2 AI,” in Game Developers
Conference, 2005.

[8] I. Millington and J. Funge, Artificial Intelligence for
Games. Taylor & Francis, 2009. [Online]. Available:
https://books.google.com/books?id=1OJ8EhvuPXAC

[9] S. Rabin, Game AI Pro: Collected Wisdom of Game AI Professionals.
Natick, MA, USA: A. K. Peters, Ltd., 2013.

[10] R. d. P. Pereira and P. M. Engel, “A framework for constrained and
adaptive behavior-based agents,” arXiv preprint arXiv:1506.02312,
2015.

[11] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework
for end-user instruction of a robot assistant for manufacturing,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on, May 2015, pp. 6167–6174.

[12] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of behav-
ior trees for autonomous agents,” arXiv preprint arXiv:1504.05811,
2015.

[13] A. Klöckner, “Behavior trees for uav mission management,” in IN-
FORMATIK 2013: Informatik angepasst an Mensch, Organisation und
Umwelt. Köllen Druck + Verlag GmbH, Bonn, 2013, pp. 57–68.

[14] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with ravenii surgical robot using behav-
ior tree,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, May 2015, pp. 3868–3875.

[15] A. Klökner, “Interfacing Behavior Trees with the World Using De-
scription Logic,” in AIAA conference on Guidance, Navigation and
Control, Boston, 2013.

[16] M. Colledanchise and P. Ogren, “How Behavior Trees Modularize
Robustness and Safety in Hybrid Systems,” in Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
Sept 2014, pp. 1482–1488.

[17] P. Ögren, “Increasing Modularity of UAV Control Systems using
Computer Game Behavior Trees,” in AIAA Guidance, Navigation and
Control Conference, Minneapolis, MN, 2012.

[18] D. P. Bertsekas, Dynamic programming and optimal control. Athena
Scientific Belmont, MA, 1995, vol. 1, no. 2.

[19] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an
overview,” in Decision and Control, 1995., Proceedings of the 34th
IEEE Conference on, vol. 1. IEEE, 1995, pp. 560–564.

