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Abstract— This paper considers how a team of mobile sensors
should cooperatively move so as to optimally categorize a
single moving target from their noisy sensor readings. The
cooperative control procedure is based on the development of
a cost function that quantifies the team’s classification error.
The robots’ motions are then chosen to minimize this function.
We particularly investigate the case where the sensor noise and
class distributions are Gaussian. In this case, we can derive a
duality principle which states that optimal classification will be
realized when the covariance of the target estimate is minimized.
That is, in this case, optimal estimation leads naturally to
optimal classification. We extend previous work to develop a
distributed discrete-gradient search algorithm that guides the
team’s location motions for purposes of optimal estimation and
classification. The concepts developed are validated through
numerical studies.

Index Terms— Multiple robots, cooperating robots, distributed
sensing, mobile sensors, classification

I. I NTRODUCTION

This paper considers the problem of how a team of mobile
robots, endowed with noisy sensors, should cooperatively
move and fuse their sensory data so as to maximize their
collective ability to correctly classify a moving target. Many
applications require a single robot or a team of robots to
correctly categorize the target(s) of their observations, such
that further actions can be made based on the classifica-
tion. Distinguishing between rocks, bushes, and shadows,
for example, can affect the choice in trajectory taken by
unmanned off-road vehicles [1], [2]. As another example,
directed exploration where agents are tasked with seeking and
observing a particular class of entities, such as jellyfish [3],
would greatly benefit from real-time classification of objects.
Similarly, there are many applications where classification of
teammates (friendly) or opponents (foe) would be useful in
determining a course of action [4], [5].

The study of sensor networks, particularly ones in which
sensor nodes can maneuver, has become an active research
area, including work on distributed localization and map-
ping [6], optimal sensor placement [7], [8], and target track-
ing [9], [10]. The notion of active sensing, where sensors
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are configurable or actuated, has also been examined ex-
tensively [11], [12], [13]. In general, however, these works
address the issue of estimating the state of objects, and do
not examine the use of this information for the purposes
of classifying the objects. As sensor networks become more
“intelligent,” there is a natural need to advance from sensor
fusion to sensor interpretation for the purpose of intelligent
decision making and the task of generating new network
objectives. The classification of network data is a necessary
step towards more intelligent sensor networks.

There is an ample literature in the fields of machine
learning [14] and computer vision [15] that deals with clas-
sification of objects [16]. Further, detection theory examines
the presence of types of signals, leading to results seen in,
e.g. [17], including work done on distributed detection [18],
[19], [20], [21]. These investigations and results do not,
however, discuss either the improvement of measurements
that can be obtained by sensor mobility, or the connection
between estimation and classification tasks.

The main focus of this paper is to consider how cooperative
teams of mobile sensors can improve their ability to classify
a (possibly moving) target via the use of mobility and sensor
fusion. We formulate a cost function whose minimization by
cooperative team motions leads to improved classification.

We also investigate the relationship between distributed es-
timation and optimal classification. In particular, for the case
of Gaussian sensor noise and Gaussian class distributions,
we develop aduality principle, which states that optimal
target estimation leads to optimal classification. We then
extend some recent work [22] to develop a distributed discrete
gradient search algorithm whose output drives the local robot
motions so as to optimize their estimation and classification
abilities. A simple simulation illustrates the method.

II. PROBLEM FORMULATION

This section describes the framework used to formulate the
problem of maneuvering mobile sensing agents cooperatively
for the purpose of target classification.

A. Distributed Sensing

We are given a team ofM mobile sensors that move in the
plane (e.g.,M holonomic point robots equipped with sensors).
We assume that a target,T , enters into the domain of the
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robots’ interest. Thej-th sensor takes measurementsyj ∈ R2

of the target statex ∈ R2 according to the observation model:

yj [k] = x[k] + T (θj)vj [k], (1)

wherevj [k] ∈ R2 is zero-mean Gaussian measurement noise
(in range and bearing) with covariance matrixRj [k] ∈ R2×2.
T (θj)∈SO(2) is the rotation matrix that transforms the noise
from the robot’s body fixed coordinates to a global (cartesian)
coordinate system, under the assumption that the sensors have
complete and perfect knowledge of their positions. Note that
T (θj) introduces a dependence of the observations on the
relative bearing between sensorj and the target. The most
common sensor measurement will be range to the target, but
a wide variety of sensing modalities can be incorporated into
this framework.

We assume that the motion of the target is nota priori
known. Thus, for purposes of planning, we use a simple
random walk model to predict the motion of the target in
the plane:

x[k + 1] = x[k] + w[k], (2)

where w[k] ∈ R2 represents the process noise, which is
assumed zero-mean, Gaussian and white with covariance
matrix Q[k] ∈ R2×2.

Following the construction of [22], we assume that the
range-measuring sensors, following standard sonar mod-
els [23], make measurements corrupted by noise in both range
and bearing. The uncertainty of the measurement in the range
direction is allowed to depend on the distance from the sensor
to the target. Such a spatial dependence of the measurement
noise on sensor position can be generalized for models of
other types of sensors. Furthermore, the measurement noise
of different sensors is assumed to be mutually independent.

The covariance matrixRj , in keeping with the usual sonar
models (see, e.g., [23]), has the diagonal form

Rj =


(
σj

range

)2

0

0
(
σj

bearing

)2

 . (3)

(
σj

range

)2

is the range measurement noise variance. The
spatial dependence of the range uncertainty is represented
by a functionf(rj) of the distancerj from sensorj to the
target. As in [22], for the simulations in Section V we use
a quadratic-in-range function forf(rj), such that the best
measurements are attained at a “sweet spot” of the sensor.

The bearing noise variance
(
σj

bearing

)2

is often modelled (e.g.
see [24]) as a fixed multipleα of the range noise variance.
Thus we obtain a covariance model of the form:

Rj [k] =
[

f(rj) 0
0 αf(rj)

]
. (4)

Given these measurements from the sensing nodes, a sensor
fusion algorithm is used to combine the local estimatesx̂ and
estimate error covariance matricesP , which are generated by
Kalman filters processing local measurements at each node.

Addressing the issue of the cross-covariance components
discussed in [22], [25], [26], we apply the inverse covariance
form of the Kalman filter [27], [28], which is already decen-
tralized in nature, for the fusion process. First, defining the
inverse covariance forms of the estimate and covariance [10]

ẑ[k] ≡ P−1[k] x̂[k], Z[k] ≡ P−1[k],

the decentralized form of the Kalman filter for our system is
summarized by the following sets of equations [10]. For the
propagation step of the Kalman filter, we have:

ẑ[k]− =
(
I−Z[k−1]

(
Z[k−1]+Q[k]−1

)−1
)

ẑ[k−1]

Z[k]− =
(
I−Z[k−1]

(
Z[k−1] + Q[k]−1

)−1
)

Z[k−1].

The measurement update step, fusing all new measurements
yj [k], is given by

ẑ[k] = ẑ[k]− +
M∑

j=1

Rj [k]−1yj [k]

Z[k] = Z[k]− +
M∑

j=1

Rj [k]−1 ≡ Σ[k].

The matrixΣ represents the covariance of the error in the
global estimate obtained from the fused data and hence is an
indicator of the quality of the fused estimate. Since the sensor
noise covariance matrix is a function of the distance between
the sensor and the target, the quality of the estimate depends
on the distances between the various sensors and the targets.
Thus by varying the positions of the sensors, we can vary the
error covariance.

The challenge is:Given these measurements of the state
of target, how should the sensors move in order to improve
their overall ability to correctly classify a target?To address
this question, we first develop a cost function which evalu-
ates the quality of the classification. The intuitive choice is
the probability of error in classification, denotedpe, which
describes the likelihood that the categorization made from
measurements is not the true class of the target.

B. Classification Probability

First we formulate the expression forpe generally, but will
then concentrate on the binary hypothesis problem, where
there are two classes (e.g. heads or tails, 0 or 1, friend or
foe). Much literature already exists for this class of problems
(e.g. see [29], [30]), and further, multiple hypothesis problems
are a relatively straight-forward extension of the two-class
scenario [17].

Let C denote the set ofN classes, i.e.C = {c1, . . . , cN}.
For example, in the binary hypothesis scenario, we would
haveN = 2 such thatc1 andc2 represent “friend” and “foe,”
respectively.

Following [17], the different hypotheses are represented as:

ci : p(y|xi) = N (xi,Σ). (5)



Here,y represents the single resulting fused estimate arising
from the sensor fusion process, such as the inverse covariance
Kalman filter described in the previous section. Describing (5)
in words, if the target is a member of classci, the mea-
surements are distributed normally with covarianceΣ and
centered about the true statexi. In addition, xi itself is
also a random variable whose distribution may depend on
the classci. We will consider in particular the case where
the probability distributions of members of a class are also
random variables:

p(xi) ≡ p(x|ci) = N (x̄i,∆i). (6)

where x̄i and ∆i represent the mean and covariance of the
distribution of members in classci.

We assume that classification decision rules are known in
advance. The rules defining the boundaries between classes
can be learned, or determined from first principles. In either
case, we denote the region in measurement space whereci is
the correct class byΩy,i and its complement bȳΩy,i.

With the above definitions in mind, following [31] the
probability of error in classification can be expressed as:

pe =
N∑

i=1

p(error|ci)p(ci)

=
N∑

i=1

p(ci)

(
1−

∫
Ωy,i

p(y|ci) dy

)

= 1−
N∑

i=1

∫
Ωy,i

p(y|ci)p(ci) dy,

wherep(ci) represents thea priori probability of the target
being in classci, and

∑N
i=1 p(ci) = 1.

Note that the probability of correct classification,pc, is
related tope by pe = 1−pc. In the case of many classes, it is
easier to investigate the probability of correct classification.
When thea priori class distributions are independent of the
measurements, the utility function to be maximized is:

pc =
N∑

i=1

p(ci)
∫

Ωy,i

p(y|ci) dy. (7)

We seek an expressionp(y|ci), which relates the probability
distribution of the measurements with a particular class. By
definition of marginal probabilities, we find that

p(y|ci) =
∫

p(y, x|ci) dx =
∫

p(y|x, ci)p(x|ci) dx, (8)

where the second equation comes from simple application of
Bayes’ rule.

For a particular classci, we can rewrite (8) to incorporate
the relationship between target statex and thei-th classci:

p(y|ci) =
∫

p(y|xi)p(xi) dxi. (9)

where xi is introduced as the nuisance parameter [17].
Thus (7) and (9), which depend implicity upon the robots’
positions, define a utility function whose maximization over

the set of possible robot motions leads to the best classifica-
tion performance of a team of cooperating mobile sensors.

Gaussian noise and class distributions.In the particular
case where the sensing noise is Gaussian and the class
distributions are Gaussian, from (5) and (6) respectively we
obtain:

p(y|xi) =
1

(2π)
n
2 |Σ| 12

exp
(
−1

2
(y−xi)T Σ−1(y−xi)

)

p(xi)=
1

(2π)
n
2 |∆i|

1
2

exp
(
−1

2
(xi−x̄i)T ∆−1

i (xi−x̄i)
)

.

such that (8) becomes:

p(y|ci) =
∫
N (xi, R)N (x̄i,∆i) dxi

= Ny (x̄i, (Σ + ∆i)) .

We see that the integral of the product of Gaussians is itself
a Gaussian distribution [32].

Thus in this specialized case, the utility function to be
maximized, the probability of correct classification, is given
by:

pc =
N∑

i=1

p(ci)
∫

Ωy,i

Ny (x̄i, (Σ + ∆i)) dy. (10)

III. R ELATIONSHIP BETWEENESTIMATION AND

CLASSIFICATION IN THE GAUSSIAN CASE

In general, the computation of the probability of cor-
rect classification is challenging, even when done numeri-
cally [32]. Optimization over sensor positions in order to
determine the best trajectories of the sensors further com-
plexifies the computation.

However, we may gain an understanding of the behavior
of (10) by investigating its dependence on the sensor po-
sitions. Note that the covariance of the target estimate is
affected by sensor motion, due to the spatially-dependent
measurement noise. Before proceeding, we now state the
following theorem, which will form the basis for aduality
principle that simplifies the task of maximizing the utility
function.

Theorem 1:Let the scalar-valued functionf : Rn×n→R
that operates on a matrixA∈Rn×n be given as:

f(A) =
∑

κ

∫
N (A) dz,

whereκ is a constant,z ∈ Rn, and

N (A) =
1

(2π)
n
2 |A| 12

exp
(
−1

2
zT A−1z

)
.

Then, given thatA andB∈Rn×n are positive definite,

f(A + B) < f(A).



Proof: Examining the functionf applied to the perturbed
matrix A + B, first we find that

N(A+B) =
1

(2π)
n
2 |A+B| 12

exp
(
−1

2
zT (A + B)−1

z

)
<

1

(2π)
n
2 |A| 12

exp
(
−1

2
zT (A + B)−1

z

)
,

noting that|C +D| > |C| for C andD positive definite [33].
Further, use of the identity [34](

C−1 + D−1
)−1

= C − C (C + D)−1
C,

and the fact thatA and B are nonsingular allow further
simplification:

N(A+B) <
1

(2π)
n
2 |A| 12

e
− 1

2 zT
(
A−1−A−1(A−1+B−1)−1

A−1
)
z

< N (A) e
1
2 zT

(
A−1(A−1+B−1)−1

A−1
)

z

< N (A).

The last inequality is seen by observing that a quadratic form
is always positive, and hence, the exponential factor must be
greater than or equal to identity.

Noting thatf is the integral over positively-valuedN , we
immediately arrive at the desired result.�

Theorem 1 leads to the conclusion that the probability of
correct classification,pc, is inversely related to the sum ofΣ
and∆i, which are both positive definite. Hence, we arrive at
the following corollary.

Corollary 1: In the case of Gaussian sensor noise and
Gaussian class distributions, maximization of the probability
of correct classification,pc, is achieved by minimization of
the determinant of the estimate error covariance matrix|Σ|.

Proof: Note that the class distribution covariance∆i is
independent of sensor positions, and so we can focus on
changes inΣ due to the motion of the sensors. DefineA
greater thanB for A,B ∈ Rn×n and positive definite if and
only if the matrixA−B is also positive definite. Hence, for
A,B positive definite matrices,

|A| > |B| ⇔ A > B,

or in other words, decreasing a positive definite matrix, such
asΣ, decreases its determinant. Thus, we immediately see the
inverse relationship betweenpc and |Σ| from application of
Theorem 1. �

Note that the objective for distributed optimal estimation
tasks is to choose the collective team motions to minimize the
estimation cost function, commonly given by the determinant
of the estimate error covariance matrix. For this reason, we
term the statement of Corollary 1 theestimation-classification
duality principle.

Thus, we see that for the special case of Gaussian noise and
class distributions, there exists a direct connection between
the classification problem and the task of estimating the
target state. This result simplifies the distributed classification
objective to one of distributed sensing, for which many
possible approaches have been suggested in literature, such
as [22], [35], [9]. These methods yield the optimal sensor
motion paths and configurations for estimating or tracking
targets, which are, for the given formulation, the same paths
and configurations for optimal classification of targets.

IV. D ISCRETEGRADIENT SEARCH ALGORITHM

For completeness, we now discuss recent work [22] on
a gradient-descent-based algorithm used to optimize sensor
motions for estimation/tracking of target(s).

Assume the presence of a single target in the sensing field,
and assume every sensor observes the target. Recall from
Section II-A that at each time step, each sensor makes an ob-
servation, processes the measurement locally using a Kalman
filter to update its estimate, and fuses this estimate with
information from other sensors to obtain a global estimate
ẑ and its global error covariance matrixZ ≡ Σ.

The objective in optimal estimation and tracking is to
determine the sensor motions which minimize the uncertainty
present in the fused estimate. Furthermore, we require a
distributed solution such that each sensor identifies its optimal
location for the next time step. However, the complexity of
the problem makes attaining such a solution for all sensors,
whether analytic or numerical, rather intractable. Given that
the gradient provides the locally optimal direction of move-
ment, we use a gradient descent algorithm which defines the
optimal control action as that which will position the sensors
to minimize|Σ| in the following time step. This approach for
optimization is appropriate due to the fact that the calculation
of the gradient is intrinsically decentralized [36].

To further ameliorate the challenge of computation, we
reduce the gradient descent algorithm to a discrete gradient
search algorithm by restricting the possible control actions for
each sensor to a finite, discrete set of motions. This algorithm
is summarized by Table I.

In this manner, the responsibility for optimization of sensor
motion is given to each sensor, in place of a central com-
putation node. The only required interaction between sensor
nodes is the communication of local information for data
fusion. Note that each sensor obtains position information of
the other sensor nodes implicitly from the transmitted local
information. Further, the decentralized nature of the algorithm
enables a sensor to simply disregard any non-communicating
nodes in the sensor fusion step.

V. SIMULATION RESULTS

To illustrate the ideas presented in the previous sections, we
investigate a simplified but demonstrative example of a clas-
sification scenario. The goal of this example is to generate the
optimal motion trajectories for multiple mobile sensing agents



TABLE I

DECENTRALIZED GRADIENT-SEARCH-BASED ALGORITHM

For k=1:simtime

% —– Local Observation—–
Take local measurement;
Update local estimatêz and error covariance matrixP ;

% —– Sensor Fusion—–
Transmit local information to other sensors;
Receive information from other sensors;
Fuse all local information to get global estimateΣ;

% — Optimization of sensor position—
Assume other sensors do not move;
PropagateP of other sensors by one time step;

For all own allowable motion actions
Propagate own error covariance matrixP ;
Fuse with propagatedP of other sensors;
Obtain cost function estimate;

end
Identify cost-minimizing action;

% —– Update position—–
Update position for next time step;

end

that lead to the best classification of a target as “teammate”
or an “opponent.” Such friend-or-foe classification schemes
arise often in team-based competitive game situations like
RoboFlag [4].

Assume all sensing agents are equipped with identical
sensors, which measure the position of the target according
to (1). For simplicity’s sake, consider the case where the
target’s class can be determined based on measurements of
its position. Note that this case can be easily generalized to
use other state information, such as target velocity, to classify
the target.

Let the class distributions (6) be described by:

x̄1 =
(
−15
−12

)
, ∆1 =

(
100 0
0 100

)
x̄2 =

(
15
12

)
, ∆2 =

(
100 0
0 100

)
,

as illustrated in Fig. 1. The classification boundary is thex-
axis, where the negative half of the simulation field is the
“teammate” zone and the positive half-plane represents the
“opponent” region.

Further, the target moves in a random walk (2) with process
noise covariance

Q[k] =
[

0.01 0
0 0.01

]
.

In addition, the scale parameter in the measurement noise
covariance matrix described by (4) was set toα = 5, and the
quadratic range-dependent function

f(rj) = a2r
2
j + a1rj + a0,

with a0 = 0.3481, a1 = −0.0250, anda2 = 0.0008.
We utilize a modified version decentralized discrete

gradient-search method proposed in [22], incorporating the

Fig. 1. Probability Distributions for Two Classes

inverse covariance Kalman filter for the fusion process, to
generate the best motion trajectories of the sensors to achieve
the best estimates of the target state. The resulting trajectories
of the three sensors (numbered circles) observing the target
(square) are depicted in Fig. 2. Note that the steady-state
configuration corresponds to the results predicted from the
analysis (see [22]) and also the intuitively optimal arrange-
ment of sensors.

Plotted in Fig. 3 and Fig. 4 are the resulting fused costs
in estimation and classification, respectively. As the estimate
error uncertaintyΣ decreases as time evolves, we see that the
correct classification probabilitypc increases, verifying the
inverse relationship between the two quantities discussed in
the previous section.

The task of classifying the target can be carried out once
a certain threshold for the probability of correct classification
has been crossed [32]. Alternatively, once the steady-state of
the system has been reached, the sensors may collectively
categorize the target, since the sensors have achieved the
configuration which yields the best classification.

VI. CONCLUSION

Increasingly, sensor networks will be applied to higher-
level tasks such as classification and decision-making, rather
than simple data gathering. This paper introduced new meth-
ods to improve the ability of a mobile sensor team to classify
a target. The method was based on the use of a utility function
that quantifies collective classification behavior, and a de-
centralized optimization algorithm to distribute the algorithm
across vehicles.

For the particular case of Gaussian noise and class distri-
butions, we proved that as the uncertainty in the collective
estimate of the target state is reduced, the probability that
the target will be correctly classified increases. Our discovery
of this connection between estimation and classification for
this class of categorization problems is this paper’s main
contribution. For the cases to which this result applies, it
significantly reduces the computational cost of determining



Fig. 2. Classification example: (a) Initial positions of three sensing agents
(numbered circles) and randomly-walking target (square); (b) Optimal sensor
motion for improved estimates and classification under the proposed discrete
gradient-search algorithm; (c) Optimal configuration of sensors; (d) Evolution
of sensor trajectories.

Fig. 3. Evolution of the Estimation Error Cost

Fig. 4. Evolution of the Probability of Correct Classification

the best mobile sensor motions. Additionally, we showed
that a distributed gradient search algorithm can provide the
necessary infrastructure for motion planning.

Many interesting avenues for continued research exist in
using mobile sensors to cooperatively classify objects. Gen-
eralization of the probability distributions to non-Gaussian,
potentially multi-modal, distributions would allow for the
results of this paper to address a larger class of classification
problems, including the incorporation of multiple hypotheses
testing. Similarly, scenarios where the parameters of the class
distributions are not known beforehand can be determined
real-time by means of methods such as sequential learning or
particle filters [31], [37].

Additionally, further study of the effects such as sensor lo-
calization uncertainty and network communication constraints
on the performance of the classification would be of interest.
In particular, for purposes of practical implementation, an
understanding of the effect of limiting the number of nodes
each sensor communicates with is desirable.

In the longer-term, logical extension of this work include
the the incorporation of multiple features (e.g. size, color,
shape) in the classification process, as well as the geometry
of the target. E.g., when the targets are not simple point
objects, certain features may vary with the robot’s relative
position, thereby altering the optimal position and motion of



the sensors. Relevant applications for the use of geometric
targets might include, for example, human recognition and
classification.
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