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Abstract: A reactive safety mode is built into a robust model predictive control algorithm for
uncertain nonlinear systems. The algorithm is designed to obey all state and control constraints
and blend two operational modes: (I) standard mode guarantees re-solvability and asymptotic
convergence to the origin in a robust receding-horizon manner; (II) safety mode, if activated,
guarantees containment within an invariant set about a safety reference for all time. The research
is motivated by vehicle control-algorithm design (e.g., spacecraft and hovercraft) in which
operation mode changes must be considered. Incorporating the reactive safety mode provides
robustness to unexpected state-constraint changes; e.g., other vehicles crossing/stopping in the
feasible path, or unexpected ground proximity in landing scenarios. The safety-mode control
is provided by an offline designed control policy that can be activated at any arbitrary time
during standard mode. The standard-mode control consists of separate feedforward and feedback
components; feedforward comes from online solution of a FHC (Finite-Horizon optimal Control
problem), while feedback is designed offline to generate an invariant tube about the feedforward
trajectory. The tube provides robustness (to uncertainties and disturbances in the dynamics)
and guarantees FHC re-solvability. The algorithm design is demonstrated for a class of systems
with uncertain nonlinear terms that have norm-bounded Jacobians.

1. INTRODUCTION

Control of physical systems requires algorithms that in-
corporate state and control constraints and that handle
model uncertainty and disturbances. Further, the algo-
rithms must often blend multiple operation modes. The
research presented herein develops a control algorithm that
handles two operation modes: I. standard mode to asymp-
totically drive the system toward a desired final target
state; II. safety mode, if activated, to maintain the system
within an invariant set about a desired reference for all
time. The algorithm builds upon MPC (Model Predictive
Control), which combines nonlinear optimal control with
state and control constraints [e.g. Michalska and Mayne,
1993, Rawlings and Muske, 1993, Chen and Allgöwer,
1998, Mayne et al., 2000].

This work is motivated by vehicle control applications re-
quiring safety from uncertainty in state-constraint knowl-
edge (e.g., safety from other vehicles unexpectedly block-
ing the feasible path or unexpected ground proximity
during landing). The SR-MPC (Safe and Robust MPC)
Algorithm presented herein develops a safety mode, avail-
able at any time, that is reactive to changes in static
state constraints outside the desired safety zone. From
safety mode, higher-level algorithms (not part of this work)
can search for a new feasible solution, if it exists, to the
original target or to a new one. This work differs from
prior research (e.g., Schouwenaars et al. [2004], Kuwata
et al. [2005]) that guarantees safety only at the end of the
MPC time horizon and assumes perfect state-constraint

knowledge during the current horizon. The reactive safety
mode herein allows for state-constraint uncertainty during
the current horizon; the trade off is a more-conservative
standard mode.

In traditional MPC, control is computed online by solving
a FHC (Finite-Horizon optimal Control problem) subject
to state and control constraints and with the current
state of the system as the initial state. The control is
then applied to the system in a feedforward (i.e. open-
loop) manner over a specified time interval until the next
re-computation provides an updated feedforward input,
which is then applied to the system and the cycle repeats.

Since MPC feedforward computation relies on a nomi-
nal system model, robustness to system uncertainties and
guarantees of re-solvability (i.e. continued FHC feasibility)
are difficult to establish. Significant research has provided
frameworks for robust MPC [e.g. Mayne et al., 2000, Magni
et al., 2001, Kothare et al., 1996, Scokaert and Mayne,
1998, Bemporad et al., 2002a,b, Smith, 2004, W.Langson
et al., 2004, Richards and How, 2006, Jalali and Nadimi,
2006]. The framework herein builds on the R-MPC (Ro-
bust and re-solvable MPC) Algorithm in Açıkmeşe and
Carson [2006] for uncertain nonlinear systems.

For standard mode, separate feedforward and feedback
components are used: feedforward comes from online solu-
tion of the FHC, implemented in a receding-horizon man-
ner; feedback is generated offline and maintains the actual
system states within a tube about the nominal feedforward
trajectory. This tube provides robustness to uncertainty



and disturbances and provides FHC re-solvability guaran-
tees without bounding re-computation time intervals. For
safety mode, the control policy comes from an offline de-
sign that maintains the actual state within an invariant set
that includes the standard-mode state from any arbitrary
safety-activation time.

The organization of the paper is as follows: Section 2 in-
troduces the system and objectives; Section 3 develops the
general control algorithm; Section 4 provides explicit de-
sign procedures for a class of systems with norm-bounded
Jacobians and convex state and control constraints; and
Section 5 provides an illustrative example.

2. SYSTEM AND CONTROL OBJECTIVE

Consider an uncertain, nonlinear dynamical system, re-
ferred to as the actual system:

ẋ = f(x, u, t), x ∈ Rn, u ∈ Rm. (1)
Let the nominal system model be of (1) be

ż = F (z, uo, t), z ∈ Rn, uo ∈ Rm, (2)
where F (·) is a known, approximate model of f(·) in (1).

The control objective is to obtain a control input u(t) such
that the closed-loop system in

(I) standard mode is asymptotically stable about the
origin (x = 0), with region of attraction Ra ⊆ X,
such that when x(t0) ∈ Ra,

x(t) ∈ X, u(t) ∈ U , ∀ t ≥ t0. (3)
(II) safety mode is contained within an invariant set Xs

about reference point rs such that
x̃(t) ∈ Xs, u(t) ∈ U, x(t) ∈ X,∀t ≥ ts, (4)

where x̃(t) , x(t)− rs, and ts ≥ t0.

Sets X, U, and Xs are given state and control constraints
imposed on the control design, which utilizes the following
relationships between constraint sets 1 :

Uo + Uf ⊆ U, Zn + Xs ⊆ X, Zs + Xf ⊆ Xs. (5)
In preview, the algorithm designs standard-mode control
to maintain nominal states within constraint set Zn. Then,
the algorithm establishes (i) invariant tube Xf about the
nominal (guidance) trajectory to contain the actual states
(providing robustness to dynamics uncertainty and distur-
bances), and (ii) invariant, tube-like set Xs for arbitrary-
time switching into safety mode with rs ∈ Zn based on
the nominal state at safety time (additionally providing
robustness to unexpected state-constraint changes).

3. CONTROL ALGORITHM ARCHITECTURE

The control approach builds upon the R-MPC (Robust
and re-solvable MPC) framework in Açıkmeşe and Carson
[2006] where control u is composed of two components:

• Feedforward, uo ∈ Uo

• Feedback, uf ∈ Uf

such that
u(t) = uo(t) + uf (t). (6)

This approach is utilized with standard mode, whereas
safety mode utilizes an offline-design policy.
1 All sets contain the origin. For sets A and B, C = A+ B implies
that: If a ∈ A and b ∈ B then a+ b ∈ C.

In standard mode, component uo comes from online solu-
tion of a FHC (Finite Horizon optimal Control problem)
that uses nominal system (2) to generate a feedforward
(or guidance) policy. Component uf is designed offline as
a feedback policy to handle uncertainty and disturbances
in actual system (1). The following Condition on the actual
and nominal systems is used in the design of uf :
Condition 1. There exists a feedback control law uf =
Kf (x, z) ∈ Uf in (6) that renders set Xf invariant for
η(t) , x(t) − z(t) ∈ Xf , ∀t ≥ t0, and for all uo(t), with
dynamics (1) for x and (2) for z. �

Set Xf forms a tube about the nominal states z: if η(t0) ∈
Xf for some t0 ≥ 0, then η(t) ∈ Xf , uf (t) ∈ Uf ,∀t ≥ t0
in standard or safety modes.

3.1 Standard-Mode Finite Horizon Optimal Control

Online solution of the FHC generates feedforward uo for
standard mode (control Objective I). This subsection aug-
ments the R-MPC approach from Açıkmeşe and Carson
[2006] with an additional safety constraint.

The FHC uses nominal system (2), an objective function,
and state and control constraints to generate uo , uFHC ∈
Uo and z , zFHC ∈ Zn for a finite time horizon.

FHC
minuo

J(uo; ti, T, z(ti)) where

J =

ti+T∫
ti

h(z(τ), uo(τ))dτ + V (z(ti + T ))

subject to

ż = F (z, uo, t)
z(t) ∈ Zn
uo(t) ∈ Uo

z(t)− T (z(t)) ∈ Zs

∀ t ∈ [ti, ti + T ]

z(ti + T ) ∈ Ωo

x(ti)− z(ti) ∈ Xf

with x(ti) the state of actual system dynamics (1).

The region of attraction Ra for control objective I is
defined in terms of the FHC:
Ra={ξ ∈ Zn+Xf: FHC is feasible with x(t0) = ξ}. (7)

Set Zn defines the nominal system constraints on state
zFHC, and Ωo defines constraints on the terminal state;
both of these sets are part of the design process.

An innovation in FHC is the use of offline-designed feed-
back uf from Condition 1 to generate invariant tube Xf ,
which provides a relaxation on the FHC initial state:

x(ti)− z(ti) ∈ Xf , (8)
Aside from providing robustness (to the characterization of
model uncertainty and disturbances), the relaxation pro-
vides a re-solvability guarantee, which leads to a robustly
stabilizing controller (See Açıkmeşe and Carson [2006]).

The safety-mode availability at any arbitrary time is
ensured by constraint

z(t)− T (z(t)) ∈ Zs, ∀ t ∈ [ti, ti + T ], (9)



where function T : Zn 7→ Zn defines a mapping that
will be used in the safety subsection to define the safety
reference rs.

The following conditions on the actual and nominal sys-
tems are useful in proving asymptotic stability of standard
mode; the conditions are standard in proofs of MPC sta-
bility (e.g., Chen and Allgöwer [1998], Jadbabaie [2000]).
Condition 2. Function h in the FHC satisfies

h(z, uo) ≥ a||z||p + b||uo||r, ∀z, u, (10)
with p ≥ 1, r ≥ 0, a and b both positive constants, and
h(0, 0) = 0. �
Condition 3. Function V in the FHC is positive definite
[Khalil, 1996] and there exists a feedback control law
u = L(x) and uo = L(z) such that V defines a Control
Lyapunov Function for (1) and (2) satisfying
∇V (x)f(x,L(x), t) + h(x,L(x)) ≤ 0 , ∀x ∈ Ωo, (11)
∇V (z)F (z,L(z), t) + h(z,L(z)) ≤ 0 , ∀ z ∈ Ωo, (12)

where Ωo ⊂ Zn contains the origin, L(x) ∈ Uo,∀x ∈ Ωo,
and L(z) ∈ Uo,∀ z ∈ Ωo. Additionally, feedback law L
renders Ωo ⊂ Rn invariant for dynamics (1) and (2), i.e., if
x(t0) ∈ Ωo(z(t0) ∈ Ωo) for some t0, then x(t) ∈ Ωo , ∀ t ≥
t0 (z(t) ∈ Ωo , ∀ t ≥ t0). �
Condition 4. There exists closed balls 2 BR and Br in Rn
around the origin such that set Ωo in the FHC satisfies

Xf ⊆ Br ⊂ BR ⊆ Ωo. (13)
�

3.2 Reactive Safety-Mode Control Policy

Control u(, us) in safety mode (control Objective II)
comes from an offline design that generates a second,
invariant tube-like set Xs to maintain x ∈ Xs about
reference rs for all time after safety activation time ts.

Reference rs is defined with function T from the FHC
that maps the nominal state zFHC(ts) to a desired safety
reference state,
Definition 1. (Safety Reference).

rs = T (zFHC(ts)) ∈ Zn (14)
where T : Zn 7→ Zn. �

For example, a mechanical system with non-zero position
and non-zero velocity at safety activation ts may desire rs
to be rest (zero velocity) at the current non-zero position.

The following condition for the design of us is useful in
proving satisfaction of safety-mode control objective II:

Condition 5. There exists control law us = Ks(t, x, rs) ∈
U that renders set Xs invariant for x̃(t) , x(t)− rs ∈ Xs,
∀t ≥ ts with dynamics (1) for x and rs ∈ Zn.

3.3 Safe and Robust Model Predictive Control Algorithm

The SR-MPC (Safe and Robust MPC) Algorithm builds
upon R-MPC from Açıkmeşe and Carson [2006]:

2 Bρ , {v : ‖v‖ ≤ ρ, ρ > 0}.

Safe and Robust MPC Algorithm

Begin in standard mode (x(t0) ∈ Ra) with k = 0 and
iterate the following steps over computation times tk
for k ∈ Z+:
standard mode
(1) Measure state x(tk) of actual system (1).
(2) Solve the FHC at time ti = tk with T = Tk to

obtain ukFHC(t) on t ∈ [tk, tk + Tk].
(3) Monitor x and z, with zFHC(t) = z(t) on t ∈

[tk, tk+1], while applying
• u = uo + uf to actual system (1)
• uo to nominal system (2)

with uf = Kf (x, z) and uo = ukFHC(t).
(4) Check the following over t ∈ [tk, tk+1]:

• If safety-event detected at ts ≥ tk, set rs =
T (zFHC(ts)), and switch to safety mode.

• If z(t̃) ∈ Ωo for some t̃ ≥ t0, then uo =
L(z) , for t ≥ t̃.

• If x(t̄) ∈ Ωo for t̄ ≥ t0, then u = L(x) , for
t ≥ t̄.

safety mode
For t ≥ ts, apply u = us = Ks(t, x, rs).

Lemma 1. (Re-solvability of the FHC). Suppose that the
FHC is feasible at t0 with T0 and x(t0) ∈ Zn+Xf , and let
tk for k ∈ Z+ be the times that a solution of the FHC is
computed. Then, the feasibility of the FHC is guaranteed
at tk with Tk ≥ Tk−1 − δk, ∀k ∈ Z+, δk = tk − tk−1,
0 ≤ δk < Tk−1, provided conditions 1 and 3 hold. �

Proof. Açıkmeşe and Carson [2006] 2

The following theorem builds upon Theorem 1 in Açıkmeşe
and Carson [2006]:

Theorem 1. Consider system (1) with a control input de-
scribed by the SR-MPC Algorithm. Suppose that condi-
tions 1-5 are satisfied. Then, the resulting closed-loop sys-
tem satisfies control objective I with a region of attraction
Ra and control objective II. �
Proof. The proof is split into two pieces

(I) standard mode: The proof of asymptotic stability with
region of attraction Ra is given in Açıkmeşe and Car-
son [2006], which also establishes FHC re-solvability
guarantees in a receding-horizon implementation.

(II) safety mode: The control input in standard mode
guarantees that x(ts) − z(ts) ∈ Xf (see Açıkmeşe
and Carson [2006]). Further, the FHC is satisfied in
standard mode, thus constraint (9) guarantees z(ts)−
rs = z(ts) − T (z(ts)) ∈ Zs with rs from (14). Thus,
x(ts)−rs = x(ts)−z(ts)+z(ts)−rs ∈ Xf +Zs ⊆ Xs

as given in (5). Now by using Condition 5, we have
x(t) − rs ∈ Xs for all t ≥ ts when the safety mode
control input is applied. 2

4. APPLICATION TO A CLASS OF SYSTEMS WITH
DERIVATIVES CONTAINED IN CONVEX SETS

This section develops the SR-MPC (Safe and Robust
MPC) Algorithm for a special class of systems with Ja-
cobians contained in convex sets. The class of systems is



defined first, followed by two subsections: one to review
the standard-mode algorithm from Açıkmeşe and Carson
[2006] that provides robust, re-solvable MPC for this class
of these systems along with satisfaction of constraint (9) to
ensure safety-mode availability; the second to describe two
subclasses of systems for which constructive design method
for Condition 5 ensure satisfaction of safety-mode.

The class of systems considered have actual dynamics of
the following form:

ẋ = Ax+Bu+ Eφ(t, q)
q = Cqx+Dqu ,

(15)

where φ : R × Rnq → Rnp with φ(t, 0) = 0,∀t, is a
continuously differentiable function representing the un-
certain nonlinear part of the dynamics. This form implies
f(x, u, t) = Ax + Bu + Eφ(t, q) in (1) with A ∈ Rn×n,
B ∈ Rn×m, E ∈ Rn×np , Cq ∈ Rnq×n, and Dq ∈ Rnq×m.

The nominal system model for this class of systems is
ż = Az +Buo + Eψ(t, qo)
qo = Cqz +Dquo ,

(16)

where ψ : R × Rnq → Rnp with ψ(t, 0) = 0,∀t is an
approximation for φ in the actual system (15). Thus,
F (z, uo, t) = Az +Buo + ψ(t, qo) in (2).

Nonlinear functions φ and ψ are assumed to have Jaco-
bians in convex sets, along with a bounded mismatch:
Condition 6. Functions φ and ψ are continuously differen-
tiable and there exists a closed and convex set of matrices
Θ ⊆ Rnp×nq such that

∂φ

∂q
(t, q) ∈ Θ and

∂ψ

∂q
(q) ∈ Θ , ∀ q, t . (17)

�
Condition 7. There exists scalar γ > 0 such that
‖w(t, z, uo)‖ ≤ γ, ∀t, z ∈ Zn + Zs, uo ∈ Uo, (18)

where w(t, z, uo) = φ(t, qo)− ψ(t, qo), with qo from (16). �

The error dynamics between actual and nominal states,
η , x− z, are

η̇ = Aη +Buf + E [φ(t, q)− ψ(t, qo)] (19)
= Aη +Buf + E[π(t, η, uf ) + w(t, z, uo)] , (20)

where uf , u − uo is the feedback policy, w(t, z, uo) is
from Condition 7, and π(t, η, uf ) = φ(t, q) − φ(t, qo). The
feedback uf is designed to handle the uncertainty between
the nominal model (16) and the actual system (15).

We obtain the following relationship for the error dynam-
ics (20) by using Lemma 3 in Açıkmeşe and Carson [2006]
with Condition 6
π(t, η, uf ) = θ(t)(Cqη +Dquf ), where θ(t) ∈ Θ,∀t. (21)

This simplification aids in the generation of feedback
laws that satisfy Condition 1 for this class of uncertain
nonlinear systems.

The SR-MPC algorithm design herein makes use of a
particular form of convex constraints; more general convex
characterizations of the constraint sets (5) and Jacobians
in Condition 6 are possible and can be integrated into
the design framework (see Açıkmeşe and Carson [2006]).
The following design specification prescribes bounds on
the state and control constraint sets that are assumed to
guarantee satisfaction of the set relationships in (5) for the
closed-loop system.

Condition 8. (State and Control Constraints).
Zn ⊇ ZΩ , {z ∈ Rn : aTi z ≤ 1, i = 1, . . . ,mo},
Xf ⊆ Xf , {η ∈ Rn : bTi η ≤ 1, i = 1, . . . ,mf},
Zs ⊆ Zs , {z̃ : z̃TCTs ΠsCsz̃ ≤ 1},
Uo ⊆ {uo ∈ Rm : uTo Πouo ≤ 1},
Uf ⊆ {uf ∈ Rm : uTf Πfuf ≤ 1},

where Πo, Πf , and Πs are symmetric positive-definite
matrices, and Xf and Zs are such that Zs+Xf ⊆ Xs: thus,
Xf ⊆ Xf and Zs ⊆ Zs provide additional conservatism. �

Safety constraint Zs uses Cs to constraint only portions
of the state, which can be useful in practical applications
(e.g., vehicles with relative-position sensors may only re-
quire safety in relative distance to other objects).

4.1 Standard-Mode FHC Algorithm

The following Corollary from Açıkmeşe and Carson [2006],
for the standard mode, describes a design procedure for
systems with norm-bounded Jacobians.
Corollary 1. Consider an uncertain nonlinear system (15)
with a nominal model given by (16) satisfying conditions
6, 7, and 8 with

Θ = {θ ∈ Rnp×nq : ‖θ‖ ≤ 1} . (22)
Suppose there exist matrices P = PT > 0, Q = QT > 0,
L, Y and positive scalars λ, β, µ, c1, and c2 satisfying the
following matrix inequalities,( PAT+AP+BL+LTBT +P/λ

+(β + λγ2)EET

)
PCTq +LTDT

q

CqP+DqL −βI

≤0


(
QAT+AQ+BY +Y TBT

+µEET

)
QCT+Y TDT QCTq +Y TDTq

CQ+DY −I 0
CqQ+DqY 0 −µI

≤0

[
P LT

L Π−1
f

]
≥ 0 ,

[
Q Y T

Y Π−1
o

]
≥ 0 ,

aTi Qai ≤ 1, i = {1, . . . ,mo}, bTj Pbj ≤ 1, j = {1, . . . ,mf},
Q ≥ c1I > c2I ≥ P ,

where C and D satisfy
CTD = 0. (23)

Then, ellipsoids
Ωo = εQ , {x : xTQ−1x ≤ 1} ⇒ Ωo ⊆ ZΩ

Xf = εP , {η : ηTP−1η ≤ 1}
and the SR-MPC algorithm with

h(z, uo) = ‖Cz‖2 + ‖Duo‖2 , V (z) = zTQ−1z ,

L(z) = Kz , K = Y Q−1 (24)
Kf (x, z) = Kf (x− z) , Kf = LP−1 (25)

result in an asymptotically stable closed-loop system for
(15) with region of attraction Ra given in (7) and satis-
faction of the constraints in Condition 8. �

Proof. Açıkmeşe and Carson [2007] 2

The satisfaction of Corollary 1 also ensures satisfaction
of Conditions 1-4, which are sufficient to establish re-
solvability of the FHC and asymptotic stability and ro-
bustness of the standard-mode in Theorem 1. Further, the



Corollary is valid for any Zn (including non-convex) with
an initial feasible FHC solution. Note, a convex Zn leads to
a convex FHC, which can be solved online with finite-time
convergence guarantees to a prescribed accuracy level.
[Boyd and Vandenberghe, 2004, Nesterov and Nemirovsky,
1994].

4.2 Safety Mode for a Subclass of Systems

The special cases presented herein are motivated by prac-
tical application of the SR-MPC Algorithm. The following
form for nominal system (16) in terms of safety state z̃
is used in the design of a nominal control policy uos for
safety mode:

˙̃z = Az̃ +Ars +Buos + Eψ(t, qo)
qo = Cq z̃ +Dquos + Cqrs

(26)

Two special subclasses of system (26) will be discussed for
which satisfaction of Condition 5 is assured.

Subclass I (contains velocity-dependent nonlinearity)
The following Corollary provides the safety-mode com-
ponent applicable to mechanical systems that can come
to rest at arbitrary positions and have velocity-dependent
nonlinearities (e.g., hovercraft/road vehicles with velocity-
dependent drag).
Condition 9. Safety reference rs satisfies

rs ∈ N (A) ∩N (Cq), (27)
where N (X) is the null-space of a matrix X. �

Corollary 2. Consider a class of systems modeled by (16)
with rs satisfying Condition 9. Suppose there exist matri-
ces S = ST > 0 and R and positive scalar β satisfying the
following linear matrix inequalities:[

SAT+AS+BR+RTBT +βEET SCTq +RTDT
q

CqS +DqR −βI

]
≤0

(28)[
S SCTs
CsS Π−1

s

]
≥ 0, and

[
S RT

R Π−1
o

]
≥ 0 . (29)

If safety-mode control us = Ks(t, x, rs) ∈ U is given by
Ks(t, x, rs) = Ks(z−rs)+Kf (x−z), Ks = RS−1, (30)

where rs = T (z(ts)), and Kf and Xf obtained as de-
scribed in Corollary 1, then Zs = {z̃ : z̃TS−1z̃ ≤ 1}
satisfies Condition 8, {rs} + Zs + Xf is invariant for the
actual dynamics, and Zs + Xf ⊆ Xs. Further, us =
Ks(t, x, rs) ∈ U for all x ∈ Zn + Zs + Xf and rs ∈ Zn. �

Proof. Omitted for brevity. Refer to Carson [2008]. �

Subclass II (contains position-dependent nonlinearity)
The following Corollary provides the safety-mode compo-
nent applicable to mechanical systems that have non-zero,
position-dependent nonlinearities when the system comes
to rest at arbitrary positions (e.g., spacecraft hovering in
a gravity field).
Condition 10. Safety reference rs satisfies

rs ∈ N (A), (31)
where N (X) is the null-space of a matrix X. �
Condition 11. There exists scalar δ > 0 such that
‖ψ(t, z, uo)‖ ≤ δ, ∀t, z ∈ Zn + Zs, uo ∈ Uo. (32)

�

Note, Condition 11, along with Condition 7, imply a bound
on actual system nonlinearity φ.
Corollary 3. Consider a class of systems modeled by (16)
with Condition 11 bounding the nonlinearity and rs sat-
isfying Condition 10. Suppose there exist matrices S =
ST > 0 and R and positive scalar α satisfying the following
matrix inequalities:[

SAT+AS+BR+RTBT + αS E
ET − α

δ2 I

]
≤0 (33)[

S SCTs
CsS Π−1

s

]
≥ 0, and

[
S RT

R Π−1
o

]
≥ 0 . (34)

If safety-mode control us = Ks(t, x, rs) ∈ U is given by

Ks(t, x, rs) = Ks(z−rs)+Kf (x−z), Ks = RS−1, (35)
where rs = T (z(ts)), and Kf and Xf obtained as de-
scribed in Corollary 1, then Zs = {z̃ : z̃TS−1z̃ ≤ 1}
satisfies Condition 8, {rs} + Zs + Xf is invariant for the
actual dynamics, and Zs + Xf ⊆ Xs. Further, us =
Ks(t, x, rs) ∈ U for all x ∈ Zn + Zs + Xf and rs ∈ Zn. �

Proof. Let positive-definite function Vs(z̃) = z̃TS−1z̃ be
a Lyapunov function candidate. Pre- and post-multiply
(33) by diag(S−1, I), use Ks = RS̄ from (35), and then
pre- and post-multiply by ζT and ζ, respectively, where
ζ = (z̃T , ψT )T :

z̃T (ATS−1 + S−1A)z̃ + 2z̃TS−1(Buos + Eψ)
+ α(z̃TS−1z̃ − 1

δ2ψ
Tψ)≤0,

with uos = Ksz̃. Condition 11 ensures
1
δ2ψ

Tψ ≤ z̃TS−1z̃ when z̃TS−1z̃ ≥ 1,

which implies that when z̃TS−1z̃ ≥ 1,
z̃T (ATS−1 + S−1A)z̃ + 2z̃TS−1(Buos + Eψ)≤0,

and hence V̇s(z̃) ≤ 0 when z̃TS−1z̃ ≥ 1. Thus, Zs is an
invariant set for z̃ [Açıkmeşe and Corless, 2003].

Pre- and post-multiply the first LMI in (34) by matrix
diag(S−1, I), use a Schur complement, and pre- and post-
multiply by z̃T and z̃, respectively:

z̃TCTs ΠsCsz̃ ≤ z̃TS−1z̃,

which implies Zs ⊆ Zs from Condition 8.

Pre- and post-multiply the second LMI in (34) by
diag(S−1, I), use a Schur complement, and pre- and post-
multiply by z̃T and z̃, respectively:

uTosΠouos ≤ z̃TS−1z̃

where uos = Ksz̃ and Ks = RS−1. Thus, for z̃ ∈ Zs,
uTosΠous ≤ 1, so uos ∈ Uo, with Uo defined in Condition
8. Further, since us = uos+uf , where uf = Kf (x−z), and
uf ∈ Uf for all x − z ∈ Xf (as guaranteed by Corollary
1), the safety-mode control us ∈ U, with U defined in (5).

From here, follow the proof of Theorem 1, part II. 2

5. AN ILLUSTRATIVE EXAMPLE

The following example from Açıkmeşe and Carson [2006]
illustrates the SR-MPC algorithm for a system satisfying
Corollary 3. Simulations presented include (i) Original R-
MPC without safety mode, (ii) SR-MPC where safety is
not required, (iii) SR-MPC with safety mode initiated.



The actual and nominal system dynamics in (15) and (16),
respectively, have the following properties:

x =
(
x1

x2

)
, z =

(
z1

z2

)
, A =

[
0 1
0 0

]
, B =

[
0
1

]
, E =

[
0
−0.1

]
φ(t, q) = ω(t) sin2 (Cqx) ,
ψ(t, qo) = ω0 sin2 (Cqz) ,

Cq = [ 1 0 ] ,
Dq = 0,

where ω(t) ∈ [0, 0.5] and ω0 = 0.2; x is a vector with posi-
tion and velocity components. Function ψ is the nominal
model for actual system nonlinearity φ. The nonlinearities
satisfy Condition 6 with Θ as in (22): ‖∂φ∂q ‖ ≤ 1 and
‖∂ψ∂q ‖ ≤ 1. Further, Conditions 7 and 11 are satisfied with
γ = 0.3 and δ = 0.2, respectively. The FHC cost function
h(z, uo) in Corollary 1 has matrices

C =

[ 1 0
0 0.1
0 0

]
, D =

[ 0
0
1

]
,

the FHC horizon is fixed at T = 30 seconds, and the initial
condition is x(0) = (4, 0.4)T

The actual state and control constraints for the example
are x1 ∈ [−0.35, 5], x2 ∈ [−1, 1], and ‖u‖ ≤ 1.4. The
safety requirement is x̃1 ∈ [−0.2, 0.2] with safety reference
rs being nominal rest (z2 = 0) at the safety-activation
nominal position z1(ts). These constraints are partitioned
into the definitions of Conditions 8 as follows:

R-MPC: ai =
{(

1
4.95
0

)
,

(
− 1

0.3
0

)
,

(
0
1

0.9

)
,

(
0
− 1

0.9

)}
SR-MPC: ai =

{(
1

4.8
0

)
,

(
− 1

0.15
0

)
,

(
0
1

0.9

)
,

(
0
− 1

0.9

)}
bi =

{(
20
0

)
,

(
−20

0

)
,

(
0
10

)
,

(
0
−10

)}
Πo =

1
1.22

, Πf =
1

0.22
, Πs =

1
0.152

, Cs = [ 1 0 ]

where the ai’s define the full Zn for the examples, and
i = {1, 2, 3, 4}. Note, for the R-MPC simulations the ai’s
define a larger Zn (labeled Xo in the figures) than those
for the SR-MPC simulations. The difference is due to R-
MPC not needing to consider safety mode. Parameters Πo

and Πf bound components ‖uo‖ ≤ 1.2 and ‖uf‖ ≤ 0.2,
respectively, in control u. The safety reference from (14) is

rs = TzFHC(ts) =
(
zFHC

1 (ts)
0

)
, T =

[
1 0
0 0

]
where T (·) = T and zFHC

1 (ts) is the first component
of zFHC at safety activation time ts. Note, rs satisfies
Condition 10.

Figure 1 shows asymptotic convergence of the R-MPC Al-
gorithm from Açıkmeşe and Carson [2006] and that invari-
ant tube Xf contains the error state (η(t) = x(t)− z(t)).
Set Xf guarantees FHC re-solvability due to relaxation
(8), even when the actual trajectory leaves the nominal
constraint set as seen in Figure 1.

The simulation in Figure 2 implements SR-MPC, which
uses the smaller set Zn. Although safety mode is not
activated here, SR-MPC reduces the maximum velocity
(zFHC

2 (t)) to ensure that control object II for safety mode
could be satisfied if needed. This result is intuitive: to
ensure a desired vehicle stopping distance, the maximum
allowable velocity must be bounded.
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Fig. 1. Robust MPC without Safety
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Fig. 2. Safe and Robust MPC without Safety Event

Figure 3 depicts a simulation where safety mode is entered,
after approximately 7 seconds, due to a change in the
original, actual constraints X (black line crossing the
state constraints); the constraint change is excessive but
demonstrates the algorithm ability to switch arbitrarily
into safety mode. The nominal trajectory in safety mode
remains inside Zs (gray ellipse), and the actual trajectory
remains inside Xs, which is only slightly larger than
Zs due to the small size of Xf and appears as a cyan
outline around the gray Zs. Again, perfect state knowledge
(visibility) is assumed inside Xs.
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Fig. 3. Safe and Robust MPC with Safety Event

Figure 4 provides the control component time series to
show that the control constraints are met along the entire
simulation time span. The control components maintain a
slight offset from 0 due to the nonlinearity not being zero
at the safety reference location.
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6. CONCLUSIONS

The SR-MPC Algorithm combines two operation modes
while providing adherence to state and control constraints
and robustness to uncertainty. In standard mode, the con-
trol algorithm provides asymptotic stability to the origin,
along with re-solvability guarantees once an initial feasible
solution is obtained. The reactive safety mode, if initiated,
contains the closed-loop states within an invariant set
about a desired safety reference for all time. The algorithm
allows safety-mode activation at any arbitrary time, which
is the major contribution of this research.

This algorithm is applicable to systems with state con-
straints that might change after initial feasibility is es-
tablished in standard mode; e.g., another vehicle cross-
ing/stopping in the feasible path, or unexpected proxim-
ity/altitude relative to the ground. If state constraints
change, the guaranteed immediate availability of safety
mode allows entry into an invariant safety state for all
time. From this state, a higher-level, control-decision-
making process (which is outside the scope of this paper)
can search for a new feasible solution, if one exists, to
continue toward the target or to define a new one.
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