Final Report, 2007 DARPA Urban Challenge
http://www.cds.caltech.edu/~murray/papers/bur+07-dgc.html

Sensing, Navigation and Reasoning Technologies
for the DARPA Urban Challenge

Joel W. Burdick Noel duToit Andrew Howard Christian Looman
Jeremy Ma Richard M. Murray* Tichakorn Wongpiromsarn

California Institute of Technology/Jet Propulsion Laboratory

DARPA Urban Challenge Final Report
31 December 2007, Team Caltech

Approved for public release; distribution is unlimited.

Abstract

This report describes Team Caltech’s technical approach and results for the 2007 DARPA Urban
Challenge. Our primary technical thrusts were in three areas: (1) mission and contingency manage-
ment for autonomous systems; (2) distributed sensor fusion, mapping and situational awareness;
and (3) optimization-based guidance, navigation and control. Our autonomous vehicle, Alice,
demonstrated new capabiliites in each of these areas and drove approximate 300 autonomous miles
in preparation for the race. The vehicle completed 2 of the 3 qualification tests, but did not ulti-
mately qualify for the race due to poor performance in the merging tests at the National Qualifying
Event.

1 Introduction and Overview

Team Caltech was formed in February of 2003 with the goal of designing a vehicle that could
compete in the 2004 DARPA Grand Challenge. Our 2004 vehicle, Bob, completed the qualifica-
tion course and traveled approximately 1.3 miles of the 142-mile 2004 course. In 2004-05, Team
Caltech developed a new vehicle— Alice, shown in Figure 1—to participate in the 2005 DARPA
Grand Challenge. Alice utilized a highly networked control system architecture to provide high
performance, autonomous driving in unknown environments. The system successfully completed
several runs in the National Qualifying Event, but encountered a combination of sensing and con-
trol issues in the Grand Challenge Event that led to a critical failure after traversing approximately
8 miles.

As part of the 2007 Urban Challenge, Team Caltech developed new technology for Alice in
three key areas: (1) mission and contingency management for autonomous systems; (2) distributed
sensor fusion, mapping and situational awareness; and (3) optimization-based guidance, navigation
and control. This section provides a summary of the capabilities of our vehicle and describes the
framework that we used the 2007 Urban Challenge.

*Corresponding author: murray @cds.caltech.edu

Team Caltech

. w’m P
1= -
BN w

Figure 1: Alice, Team Caltech’s entry in the 2007 Urban Challenge.

For the 2007 Urban Challenge, we built on the basic architecture that was deployed by Caltech
in the 2005 race, but provided significant extensions and major additions that allowed operation
in the more complicated (and uncertain) urban driving environment. Our primary approach in the
desert competition was to construct an elevation map of the terrain sounding the vehicle and then
convert this map into a cost function that could be used to plan a high speed path through the
environment. A supervisory controller provided contingency management by identifying selected
situations (such as loss of GPS or lack of forward progress) and implementing tactics to overcome
these situations.

To allow driving in urban environments, several new challenges had to be addressed. Road
location had to be determined based on lane and road features, static and moving obstacles must
be avoided, and intersections must be successfully navigated. We chose a deliberative planning
architecture, in which a representation of the environment was built up through sensor data and
motion planning was done using this representation. A significant issue was the need to reason
about traffic situations in which we interact with other vehicles or have inconsistent data about the
local environment or traffic state.

The following technical accomplishments were achieved as part of this program:

1. A highly distributed, information-rich sensory system was developed that allowed real-time
processing of large amounts of raw data to obtain information required for driving in urban
environments. The distributed nature of our system allowed easy integration of new sensors,
but required sensor fusion in both time and space across a distributed set of processes.

2. A hierarchical planner was developed for driving in urban environments that allowed com-
plex interactions with other vehicles, including following, passing and queuing operations.
A rail-based planner was used to allow rapid evaluation of maneuvers and choice of paths
that optimized competing objectives while insuring safe operation in the presence of other
vehicles and static obstacles.

3. A canonical software structure was developed for use in the planning stack to insure that con-
tingencies could be handled and that the vehicle would continue to make forward progress

Team Caltech

towards its goals for as long as possible. The combination of a directive/response mech-
anism for intermodule communication and fault-handling algorithms provide a rich set of
behaviors in complex driving situations.

The features of our system were demonstrated in approximately 300 miles of testing performed in
the months before the race, including the first known interaction between two autonomous vehicles
(with MIT, in joint testing at the El Toro Marine Corps Air Station).

A number of shortfalls in our approach led to our vehicle being disqualified for the final race:

1. Inconsistencies in the methods by which obstacles were handled that led to incorrect behav-
ior in situations with tight obstacles;

2. Inadequate testing of low-level feature extraction of stop lines and the corresponding fusion
into the existing map;

3. Complex logic for handling intersections and obstacles that was difficult to modify and test
in the qualification event.

Despite these limitations in our design, Alice was able to perform well on 2 out of the 3 test areas
at the NQE, demonstrating the ability to handle a variety of complex traffic situations.

This report is organized as follows: Section 2 provides a high level overview of our approach
and system architecture, including a description of some of the key infrastructure used throughout
the problems. Sections 3—5 describes in the main software subsystems in more detail, including
more detailed descriptions of the algorithms used for specific tasks. A description of the primary
software modules used in the system is included. Section 6 provides a summary of the results from
the site visit, testing leading up to the NQE and the team’s performance in each of the NQE tests.
Finally, Section 7 summarizes the main accomplishments of the project, captures lessons learned
and describes potential transition opportunities. Appendix A provides a listing of additional mod-
ules that are referenced in the report along with a short description of the module.

2 System Overview

2.1 System Architecture

A key element of our system is the use of a networked control systems (NCS) architecture that
we developed in the first two grand challenge competitions. Building on the open source Spread
group communications protocol, we have developed a modular software architecture that provides
inter-computer communications between sets of linked processes [1]. This approach allows the
use of significant amounts of distributed computing for sensor processing and optimization-based
planning, as well as providing a very flexible backbone for building autonomous systems and
fault tolerant computing systems. This architecture also allows us to include new components in
a flexible way, including modules that make use of planning and sensing modules from the Jet
Propulsion Laboratory (JPL).

Team Caltech

F1 | module startup mapv’r| F10 | health monitor . mplanner F3
Mo i !
l | 1 B . R2
| |
: LADAR 3—_> fT Obst 3—_> ME(2) - Update map F7
I I ! I g 8 FSM
: I : I g
| 1 | | Mapper & Plan path
I | I
I| Stereo ; - * Line % -] Compute vel F8
| | g —
‘ 1 . 1 . S B ‘
'| RADAR Road : Classify trafsim | follow ~— ROA |
I I ! I I
—— ! S ———— il A \ ‘
F6 | ! F9
RN
—_.L Moving Vehicle | . 1 !
PTU atten’n ‘] o | asim | ~* adrive astate |,
— .| Vehicles Prediction |, | |
+ L____ - - - - ___--—-—-—-—-—-Z e\ - ---__---——- !
Field Ops ‘| Mounts Cabin Power Vehicle Estop Actuators |
! I
| !

Figure 2: Systems architecture for operation of Alice in the 2007 Challenge. The sensing subsystem is
responsible for building a representation of the local environment and passing this to the navigation subsys-
tems, which computes and commands the motion of the vehicle. Additional functionality is provided for
process and health management, along with data logging and simulation.

A schematic of the high-level system architecture that we developed for the Urban Challenge
is shown in Figure 2. This architecture shares the same underlying approach as the software used
for the 2005 Grand Challenge, but with three new elements:

Canonical Software Architecture for mission and contingency management. The complexity and
dynamic nature of the urban driving problem make centralized goal and contingency management
impractical. For the navigation functions of our system, we have developed a decentralized ap-
proach where each module only communicates with the modules directly above and below it in
the hierarchy. Each module is capable of handling the faults in its own domain, and anything the
module is unable to handle is propagated “up the chain” until the correct level has been reached to
resolve the fault or conflict. This architecture is described in more detail in Section 5 and builds
on previous work at JPL [2, 3,7].

Mapping and Situational Awareness. The sensing subsystem is responsible for maintaining both a
detailed geometric model of the vehicle’s environment, as well as a higher level representation of
the environment around the vehicle, including knowledge of moving obstacles and road features.
It associates sensed data with prior information and broadcasts a structured representation of the
environment to the navigation subsystem. The mapping module maintains a vectorized representa-

Team Caltech

tion of static and dynamic sensed obstacles, as well as detected lane lines, stop lines and waypoints.
The map uses a 2.5 dimensional representation where the world is projected into a flat 2D plane,
but individual elements may have some non-zero height. Each sensed element is tracked over time
and when multiple sensors overlap in field of view, the elements are fused to improve robustness to
false positives as well as overall accuracy. These methods are described in more detail in Section 3.

Route, Traffic and Path Planning. The planning subsystem determines desired motion of the sys-
tem, taking into account the current route network and mission goals, traffic patterns and driving
rules and terrain features (including static obstacles). This subsystem is also responsible for pre-
dicting motion of moving obstacles, based on sensed data and road information, and for imple-
menting defensive driving techniques. The planning problem is divided into three subproblems
(route, traffic, and path planning) and implemented in separate modules. This decomposition was
well-suited to implementation by a large development team since modules could be developed and
tested using earlier revisions of the code base as well as using simulation environments. Additional
details are provided in Section 4.

2.2 Project Modifications

The overall approach described in our original proposal and technical paper were maintained
through the development cycle. After the site visit, the planning subsystem was modified due to
problems in getting our original optimization-based software to run in real-time. Specifically, the
NURBS-based dynamic planner described in the technical paper was replaced by a graph search-
based planner. At a high level, these two planner both generated a path that obeyed the currently
active traffic rules, avoided all static and dynamic obstacles, and optimized a cost function based
on road features and the local environment. However, the rail-based planner separated the spatial
(path) planning problem from the temporal (velocity) planning problem and made use of a partially
pre-computed graph to allow a coarse plan to be developed very quickly. The revised planner is
described in more detail in Section 4.2.

In addition, the internal structure of the planning stack was reorganized to streamline the pro-
cessing of information and minimize the number of internal states of the planner. The probabilistic
finite state machine used to estimate traffic state was replaced with a simpler finite state machine
implementation.

Other differences from the technical paper include:

e The final sensor suite included two RADAR units mounted on separate pan-tilt units and no
IR camera. This approach was used to allow long-range detection of vehicles at intersection
(one RADAR was pointed in each direction down the road).

e Rather than using separate obstacles maps from individual LADARs and fusing them, a
single algorithm that processed all LADAR data was developed. This approach improved
robustness of the system, especially differentiating static and moving vehicles.

e The sensor fusion algorithms for certain objects were moved from the map object directly
into the planner. This allowed better spatio-temporal fusion and persistence of intermittent
objects.

Team Caltech

Alice| /
/oo

il
[~
Static Obstacles Y/ stationary <=
T : Vehicles

T = =
I\

IS

’ I

Stationary _— ‘[
Vehicles \
N

I

\Moving
/ Vehicles
7 i

Figure 3: Screen shots from SensViewer (left) and MapViewer (right).

3 Sensing Subsystem

The sensing subsystem was developed from approaches for sensing, mapping and situational
awareness that built off past work at Caltech/JPL. As can be seen from Figure 2, there are es-
sentially three layers to the sensing subsystem. The flow of sensory data begins with the feeders
in function block F4 and travels (via the SensNet interface) to the perceptors in function block F5.
The perceptors then apply their respective perception algorithms and pass the perceived features
to the map in function block F2, where fusion and classification is performed. In short, we can
classify these layers as follows:

Sensing Hardware & Feeders: This layer consists of the low-level drivers and feeders that make
the raw sensed data available to the perception algorithms. Each sensor is identified by a unique
sensor-ID to keep things organized and allows the ease of incorporating new sensors as they get
introduced.

Perception Software: This layer consists of the perception algorithms that take in the raw sensed
data from the feeders and apply detection and tracking to extracted features from the data; such
features include lines on the road, static obstacles, traversable hazards and moving vehicles.

Fused Map: This final layer consists of the vectorized representation of the world which we refer
to as the “map”. The map receives all the detected and tracked features that have been extracted at
the perceptor level and fuses them to form a vectorized map database which is used by the planners.

Figure 3 contains screen shots illustrating the features of the sensing systems. The left figures
shows the direct data from the various sensors represented in a 3D view. Images from the short and
medium range cameras are shown at the top of the figure, and the LADAR, RADAR and stereo
obstacle data are shown below. This information is processed by the perceptors, resulting in the
fused data shown in the right figure. In this representation, obstacles are classified as static or
moving. Lane data (not shown) is also stored in the map.

Team Caltech

The following subsections address each layer of the sensing subsystem, with detailed descrip-
tions of associated modules that were respectively used during the qualifying events at the NQE.

3.1 Sensing Hardware & Feeders

SensNet. Data from feeders is transmitted to perceptors using a specialized high-bandwidth, low-
latency communication package called SensNet. SensNet’s connection model is many-to-many,
such that each feeder can supply multiple perceptors and each perceptor can subscribe to multi-
ple feeders. Perceptors can therefore draw on any combination of sensors and/or sensor modal-
ities to accomplish their task (e.g., a road perceptor can use both forward-facing cameras and
forward-facing LADARs). SensNet will also choose an appropriate interprocess communication
method based on the location of the communicating modules. For modules on the same phys-
ical machine, the method is shared memory; for modules on different machines, the method is
Spread/TCP/Ethernet.

LADAR Feeder. The LADAR-feeder module works by interfacing with a variety of laser range
finders using existing drivers which had been written (or rewritten) from previous races. For this
particular race, the laser range finders we had used were the SICK LMS-221, the SICK LMS-
291, and the RIEGL LMS-Q120. Depending on the sensor-ID given (specified as a command line
argument to the module), this module calls the correct driver to interface with the desired scanner
and broadcasts the resulting scan measurements across SensNet. The range scan is referenced in
the sensor frame yet tagged with the vehicle state and appropriate matrix transforms to allow for
flexibility in transforming the range points into any desired frame (i.e. sensor, local, vehicle).

Stereo Feeder. The stereo-feeder module works by reading in the raw images from all four
cameras (two sets of stereo-camera pairs: one long-baseline and one medium-baseline). With the
known baselines between cameras in a given stereo-camera pair, a disparity and range value is
calculated for all corresponding pixels in both images using JPL stereo software. Finally, the raw
image with disparity and range values is then sent across SensNet to all listening modules.

RADAR Feeder. The radar-feeder module works by interfacing with a TRW AC20 Autocruise
RADAR unit and publishing the data to SensNet. The AC20 can report up to ten “targets” (in-
termittent, single-cycle returns) and ten “tracks” —internally tracked objects—at a refresh rate of
26 Hz. The internal tracking is fairly accurate, and when supplied with the vehicle’s yaw rate and
velocity, can compensate for its own motion. It filters out stationary returns, making it ideal for a
car perceptor.

PTU Feeder. The Pan-Tilt-Unit (PTU) feeder is the controlling software that receives panning
and tilting commands for one of two pan-tilt unit devices on the vehicle: the Amtec Robotics Pow-
ercube pan-tilt-unit or the Directed Perception PTU-D46-17. The panning and tilting commands
can be specified in one of two ways:

e specifying pan-tilt angles in the PTU reference frame;

e specifying a point in the local-frame such that the line-of-site vector of the pan-tilt unit
intersects that point (i.e. such that the pan-tilt-unit is looking at that point in space).

7

Team Caltech

There are elements of this module that make it work like a feeder and elements that make it work
like an actuator. The module is a feeder in the sense that it continually broadcasts its pan and tilt
angles across SensNet. It is an actuator in the sense that it listens for messages that command a
movement and executes those commands.

3.2 Perception Software

Line/Road Perceptor. There were essentially two line perceptors that were written for the
DARPA Urban Challenge. The first line perceptor was identified as the “Line Perceptor” mod-
ule and by an abuse of notation, the second line perceptor module was identified as the “Road
Perceptor” module. A description of each module is provided below.

The Line Perceptor takes in raw sensory image data from the stereo camera feeders and applies
a perception algorithm that filters out line features (e.g. stop lines, lane lines, and parking-lane
lines) and sends them to the Map module. The details of the algorithm are outlined in the following
steps:

1. The image is transformed into Inverse Perspective Mapping view (IPM) given the camera
external calibration parameters. IPM works by assuming the road is a flat plane, and using
the camera intrinsic (focal length and optical center) and extrinsic (pitch angle, yaw angle,
and height above ground) parameters to take a top view of the road. This makes the width of
any line uniform and independent of its position in the image, and only dependent on its real
width in reality. It also removes the perspective effect, so that lines parallel to the optical
axis will be parallel and vertical.

2. Spatial filtering is then done on the IPM image, using steerable filters, to detect horizontal
lines (in case of stop lines) or vertical lines (in case of lanes). The filters are Gaussian in
one direction and second derivative of Gaussian in the perpendicular direction, which is best
suited to detect light line on dark background.

3. Thresholding is then performed on the image to extract the highest values from the filtered
image. This is done be selecting the highest kth percentile of values from the image.

4. Line grouping is done on the thresholded image, using either of:

e Hough transform: for detecting straight lines;

e RANSAC lines: for detecting straight lines;

e Histograms: a simplified version of Hough transform for detecting only horizontal and
vertical lines;

e RANSAC splines: for fitting splines to thresholded image.

The Hough transform approach is the default mode of operation which provides flexibility
in detecting lines of any orientation or position in the image. The orientations are searched
between + 10 degrees of horizontal or vertical, which allows for lane features that are not
orthogonally aligned to the vehicle to be detected.

Team Caltech

5. Validation and localization is then performed on detected lines and splines to better fit the
image and to get end-points for the lines before finally sending to the Map module. We
isolate the pixels belonging to the detected stop line using Bresenham’s line drawing algo-
rithm, and then convolve a smoothed version of the pixel values on the line with two kernels
representing a rising and a falling edge, and getting the points of maximum response. The
detected lines and splines are transformed back to the original image plane, and then to the
local frame, which are then sent to the Map module.

The Road Perceptor module has a very similar architecture to the Line Perceptor module de-
scribed above and can be briefly summarized in the following seven steps:

1. The first step loads images from the left camera taken from the stereo-feeder modules, which
can either be from the middle baseline pair or the longer baseline pair. The default setting
was to use the middle baseline pair.

2. The next step applies some pre-processing to enhance the loaded images (e.g. removing the
hood of the vehicle from the bottom of the image and color separation for white vs. yellow
lines).

3. Edge detection is next applied to the enhanced image which is done by applying an operator
that extracts the main road hints in the form of edges or contours from the images.

4. Line extraction is then applied to the detected edges to extract candidate lines using the
probabilistic Hough transform.

5. Line association then classifies the extracted lines as good lines or bad lines according to
their color, geometrical properties, and relation with other lines.

6. Perspective Translation is then applied to the valid lines in much the same way described for
the Line Perceptor module.

7. Line output is then executed on the translated lines, which are parameterized and broken into
points then sent to the Map module.

Additional details on this algorithm are given in [6].

LADAR-Based Obstacle Perceptor. The LADAR-based Obstacle Perceptor has two main threads,
preprocessing and tracking. The preprocessing thread is in charge of retrieving the latest laser range
data (from all available LADARSs) from the SensNet module and transforming it to the local frame.
Once in the local frame, the data is then incorporated into a couple of occupancy grid maps:

e Static Map The static map is a map of free and occupied space represented by cells. All cells
are first initialized to a negative value and when the actual returns are read in, corresponding
cells are given a positive value. This map is used for grouping noisy obstacles like bushes
and berms in an easy manner.

e Road Map The road map contains a map of large smooth surfaces likely to be road (stored
as elevation data).

Team Caltech

o Groundstrike Map The “groundstrike” map has cumulative information about what areas
are likely to be LADAR scans generated by striking the ground. The data in this map is
generated primarily from the elevation data gathered from the sweeping pan-tilt unit.

The second thread, the tracking thread, relies on discrete tracking of segments using a vec-
torized representation instead of a grid-based representation. For each LADAR, every incoming
scan is segmented based on discontinuities (as a function of distance) and evaluated as a potential
“groundstrike” based on the groundstrike probabilities of its constituent points. If a segment is ac-
cepted, it is associated with existing tracked segments or a new track is created. The function of the
tracking is primarily to detect dynamic obstacles, since everything not dynamic is treated equiva-
lently as static. Thus tracks are weighted by how likely they are to be cars (reflectivity, size, etc).
The tracking just uses a standard Kalman filter for the centroid, though extra care is taken when
initializing tracks to avoid misidentifying changing geometry as a high initial velocity. To combine
the individual LADAR scans, each new set of scans is broken up into clusters of points (based on
point-point distance), again to merge noisy obstacles into one large blob. For each cluster, the
velocity is computed as the weighted average of each point’s associated segment track, weighted
by the status (confidence) of that track. Basic nearest obstacle association is done between scans;
this is to maintain a consistent obstacle ID throughout the lifetime of a given obstacle. Dynamic
obstacle classification occurs at this level, and is determined by the distance an obstacle has moved
from its initial position, its velocity, and how long it has been visible. After a certain amount of
time, an obstacle cannot be unclassified as dynamic. A reasonable geometry for each obstacle is
then computed and the data is sent to the Map module.

LADAR-Based Curb Perceptor. The ladar-curb-perceptor (LCP) module is intended to detect
and track the right side of the road. The “curb” in question need not be an engineered street curb,
but rather denotes any sufficiently long, linear cluster of LADAR-visible obstacles that is nearly
aligned with the vehicle’s current direction of travel. This could be a row of bushes or sandbags, a
berm, a building facade, or even a ditch. The LCP uses two sensors: the roof-mounted Riegl laser
range finder (the beam which intersects the ground plane ~15 m in front of Alice), and the middle
front bumper SICK laser range finder (the sweep plane of which is parallel to the ground). The
Riegl enables the LCP to see obstacles of any height, including negative, but only out to its ground-
intersection distance. The SICK sees only obstacles over ~1 m high, but out to a much greater
range. Each scan of the LADARES is laterally filtered for step-edge detection; points that pass are
considered obstacles which may be part of a curb (this procedure is robust to ground strikes due
to pitching). Obstacle locations are converted to vehicle coordinates for aggregation over time,
yielding a 2-D distribution as Alice moves forward. The current set of obstacles is clipped to a
rectangular region of interest (ROI) about 30 m long along the direction of travel and several lanes
wide, with its left edge aligned with Alice’s centerline. From the entire set of obstacles, a subset
of “nearest on the right” is extracted, one for each of thirty 1 m-deep strips orthogonal to the long
axis of the ROI. A RANSAC line-fitting is performed on these nearest obstacles and the number
of inliers is thresholded. If below threshold, the instantaneous decision is that no curb is detected;
if above, the RANSAC-estimated line parameters are the instantaneous measurement of the curb
location. Both the curb/no-curb decision and the curb line parameters are temporally filtered for
smoothness.

10

Team Caltech

RADAR-Based Obstacle Perceptor. The radar-obs-perceptor module is simply a wrapper around
existing software that is embedded within the TRW-AC20 Autocruise RADAR. As described ear-
lier the AC20 can report up to ten “targets” and ten “tracks”; however, only the tracks are used and
sent to the Map module as the targets have been found to be quite noisy. Since both RADARs are
attached to pan-tilt units, some pre-filtering of the tracks is required. This is necessary because if
the base of the RADAR is moving with respect to the vehicle, the resulting tracks can be corrupted.
To mitigate this, the RADAR-based obstacle perceptor subscribes to the associated PTU Feeder
module through SensNet and marks detected tracks from the RADAR as void if the pan-tilt unit
was found to have a non-zero velocity at the timestamp of the detected track. For those tracks that
are not marked as void, they get packaged and stamped with an associated map element ID and
sent to the Map module.

Stereo-Based Obstacle Perceptor. The stereo-obs-perceptor module uses disparity information
provided by the stereo-feeder modules to detect generic obstacles. It uses a very simple algorithm,
but works reasonably well. The following outlines the algorithm used for this perceptor:

1. Given the disparity image [, a buffer H is generated to accumulate votes from points with
the same disparity occurring on a given image column (similar to a Hough Transform).

2. The accumulator buffer, H, is then searched for peaks higher than a threshold 7. For each
peak, it searches for the connected region of points above a lower threshold 7}, containing
the peak. One of the interesting features of this accumulator buffer approach is that it finds
most of the vertical features since these will result in a peak, while flat features (like roads
or lane lines) won’t appear as peaks.

3. The next step is to fit a convex hull on the set of points found and transform the coordinates
to local frame.

4. In this last step, each identified obstacle is tracked in time and a confidence value (probabil-
ity of existence) is assigned/updated based on whether the track was associated with some
measure or not. Only obstacles with a high confidence are sent to the mapper. The initial
confidence is fairly low (0.4 in a scale from O to 1), so it takes a couple of frames before a
new obstacle is sent to the map.

When implementing this algorithm, it became quite clear that a major hindrance in performance
was due a bottleneck in the computing of the disparity of the stereo images. To account for this
bottleneck and increase overall speed of this module, measures were taken to crop certain regions
of the image that usually pertain to the sky or the hood of the vehicle. This reduced the search
space of the disparity image and increased the cycle time by a few Hz. Other limitations to this
algorithm were also identified and should be noted as well:

e Tracking and data association is very basic, but works well for static obstacles (i.e. no
Kalman filter or other Bayesian filter).

e No velocity information is provided for the tracked obstacles.

e Sometimes, an obstacle is seen as two or more blobs, and sometimes two or more obstacles
are seen as one. The tracking can deal with the first situation, but doesn’t deal very well with
the second, which is pretty uncommon though.

11

Team Caltech

Attention. The Attention module is not so much a perceptor in that it does not percept any
particular feature from a given data set. Instead, the Attention module interfaces directly with the
Planning module and the PTU Feeder module to govern where the associated pan-tilt unit should
be facing. The Attention module performs in the following manner:

1. We receive a directive from the Planning module about which waypoint the vehicle is plan-
ning to go to next and what the current “planning” mode is. The planning mode can be
either:

e INTERSECT LEFT - the vehicle is planning a left turn at an upcoming intersection
e INTERSECT RIGHT - the vehicle is planning a right turn at an upcoming intersection

e INTERSECT STRAIGHT - the vehicle is planning to go straight at the upcoming in-
tersection

e PASS LEFT - the vehicle is planning to pass left

e PASS RIGHT - the vehicle is planning to pass right

e U-TURN - the vehicle is planning a u-turn maneuver
e NOMINAL - the vehicle is in a nominal driving mode

2. A grid-based “gist” map is next generated based on the received directives from the planning
module. (The “gist” nomenclature comes from work developed in the visual attention com-
munity and is an abstract meaning of the scene referring to the semantic scene category.) The
gist map details which cells in the grid-based map actually represent the “scene”, whether
the scene be an intersection, the adjacent lane or a stopped obstacle. For example, when
making a right turn at an intersection, the gist of the scene would be all lanes associated with
the intersection that can potentially turn into the desired lane.

3. A weighted cost is then applied to the gist map grid cells that is dependent on the planning
mode. The weighting is chosen such that areas with high traffic flow and high potential of
vehicle collision are given large weighting while those that are not, are given lower weight-
ing. Using the above example for the right turn, the weighting of the cells associated with
those lanes in the gist map would be chosen such that if any one lane did not have a stop line,
a large weighting would be assigned; if all lanes had stop lines, a uniform weighting would
then be applied.

4. A cost map is then generated which is initialized to the weighted gist map but keeps a mem-
ory of which cells have been attended (explained in the next step). Once a cell in the cost
map has been visited, the cost of that cell is reduced but allowed to grow at a rate dependent
on a specified growth constant. This allows for the revisiting of heavily weighted cells while
still allowing lesser weighted cells to be visited.

5. Once the cost map is generated, the peak value of the cost map is then determined as a
coordinate point in the local frame and sent to the PTU Feeder module. The PTU Feeder
module will then execute the necessary motions to attend to the desired location. While in
motion, the Attention module is restricted from sending any additional attention commands

12

Team Caltech

to prevent an overflow of pan-tilt commands which could cause a hardware failure of the
unit.

6. Updating the cost map is the final step in the algorithm. The PTU pan and tilt angles are
continually read in from SensNet and the corresponding line-of-site vector for the pan-tilt
unit is calculated. The grid cells in the cost map that are found to intersect with the line-
of-site vector are then reduced to a zero cost so that the peak-cell search will not select this
already attended cell. However, the growth of the cell (as described earlier) will then begin
and will grow up to the maximum cost specified by the weighted gist map.

With regard to the pan-tilt unit on the roof and in the special case of the NOMINAL planning
mode (which is the most common mode where the vehicle is doing basic lane following), a gist
map is not generated. Instead, a series of open-loop commands are sent to the PTU Feeder module
governing the roof PTU to sweep the area in front of the vehicle. This behavior allows the LADAR
scans from the LADAR range finder attached to the PTU to generate a terrain map that is then used
to filter out “groundstrikes” in the LADAR-Based Obstacle Perceptor (described earlier).

3.3 Fused Map

Mapper. The map is structured as a database of map elements and implements a query based inter-
face to this database. Map elements are used to represent the world around Alice. A fundamental
design choice was to move away from a 3-dimensional world representation to a simpler, but less
accurate 2.5-dimensional world representation. Map elements are defined in the MapElement class
and form the basis for this representation. The map elements represent planar geometry but with
a possible uniform nonzero height, and are used to represent lines in the road as well as obstacles
and vehicles.

The Mapper module maintains the representation of the environment which is used by the
planning stack for sensor based navigation. It receives data in the form of map elements from the
various perceptors on a specific channel of communication and fuses that data with any prior data
of the course route in Route Network Definition File (RNDF) format. It then outputs a reduced set
of map elements on a different channel across the network.The use of channels for map element
communication made it easy to isolate which map elements were sent by which perceptors. This
often helped in identifying bugs in the software and isolating it to either the fusion side of the
map or the perception side of the map. This design choice also allowed for multiple modules to
maintain individual copies of the map, which proved extremely useful for visualization tools.

Sensor fusion between different perceptors is also performed in the mapper module. This
allows objects reported by multiple perceptors to be reported as a single object. The sensor fusion
algorithm is based on proximity of objects of the same type. Groundstrike filtering can also be done
at this stage by “fusing” elevation data with obstacle data (so that obstacles in the same location as
the ground plane are removed.) Additional logic is required with a moving vehicle object is in the
same location as a static obstacle; in this case the moving object type takes precedence since some
perceptors do not sense motion.

In the final race configuration, the Mapper module was eventually absorbed into the Planning
module, where it ran as a separate thread. The purpose of this was twofold: (1) It vastly reduced

13

Team Caltech

MDF
— Route Planner
goals
Y L
) flags | Path path | Velocity '] traj _| Trajectory
Logic planner "1 Planner "1 Planner »| Evaluation
A A A]
K —— —— dynamic | U
dynamic objets static objects static objects | gbjects Y Actuator
Commands
Mapper Follower —

Figure 4: Three-layered planning approach: The mission-level planner takes the mission goal and specifies
intermediate goals. These intermediate goals are passed to the tactical planner, which combined with the
map information and the traffic rules, generates a trajectory. This trajectory is passed to the low-level
planner, which converts the trajectory into actuator commands. The data-preprocessing step is also shown.

network traffic that was increased by the sending and receiving of thousands of map-elements
when Mapper existed as it’s own module. (2) It kept the only centralized copy of the map within
the Planning module, where it was needed most.

4 Navigation Subsystem

The problem of planning for the Urban Challenge was complicated by three factors: first, Alice
needed to operate in a dynamic environment with other vehicles. Not only was detection and
tracking of these mobile objects necessary, but also their behavior was unknown and needed to
be estimated and incorporated in the plan. Second, the requirement to obey traffic rules imposed
specific behavior on Alice in specific situations. This meant that the Alice’s situation (context)
needed to be estimated and Alice had to act accordingly. However, since there were other vehicless
on the course, Alice needed to be able to recover from situations where other vehicles did not
behave as expected and thus adjust its own behavior. Lastly, Alice needed to be capable of planning
in a very uncertain environment. Since the environment was not known a priori, Alice had to
determine its own state, as well as the state of the world. Since this state cannot be measured
directly, it needed to be estimated. This estimation process introduced uncertainty into the problem.
Furthermore, the behavior of the dynamic obstacles is not known in advance, thus there was some
uncertainty associated with their predicted future states. Another source of uncertainty is the fact
that no model of a vehicle is perfect, and thus there is some process noise (i.e., given some action
the outcome is not perfectly predictable).

The approach that Team Caltech followed in the planning was a three layer planning process,
illustrated in Figure 4. At the highest level, the mission data is used to plan a route to the next
checkpoint, as specified in the Mission Data File (MDF). This route is divided into intermediate
goals, a subset of which is passed to the tactical level planner. The tactical planner is responsible

14

Team Caltech

for taking this intermediate goal and the map (which is Alice’s representation of the world), and
designing a trajectory that satisfies all the constraints in the problem. These constraints include
traffic rules, vehicle dynamics and constraints imposed by the world (obstacles, road, etc.). The
trajectory is then passed to a low-level trajectory tracker. This feedback controller converts the
trajectory into actuator commands that control the vehicle. There is also a data preprocessing step,
which is responsible for converting the map into a format accessible to the planner, and a prediction
step that estimates the future states of the mobile agents. These different pieces of the planning
problem are described in this section.

A note on the coordinate system used is in order. For the planning problem, there are two
frames of interest. The first coordinate system, called the world frame, is the geo-rectified frame
(i.e., the frame that GPS data is returned in). This coordinate system is translated to waypoint 1.1.1
to make the coordinates more manageable. This is the coordinate system in which the tactical
planning is conducted in since it is the coordinate frame used by DARPA in the Route Network
Definition File (RNDF). The second coordinate frame of interest is the local frame. This frame
is initialized to waypoint 1.1.1 as well, but is allowed to drift to account for state jumps. This
is the frame that the sensors returned values in and is used in the low-level planning. The local
frame ensures that obstacle positions are properly maintain relative to the vehicle, even if the GPS-
reported state position jumps due to GPS-outages or changing satellite coverage.

4.1 Mission Level Planning

The mission-level planning has a number of functions. First, it is the interface between the mission
management and health management systems. Second, it maintains a history of where we have
driven before, which routes are temporarily blocked, etc. Third, it is responsible for converting the
mission files into a set of intermediate goals and feeding these goals to the tactical planner as the
mission progresses. The first function is discussed in Section 5 as part of the system-level mission
and contingency management. The latter two functions are discussed here.

Route Planner. The route planner is the module that is responsible for finding a route given the
RNDF and MDF. The RNDF is parsed into a graph structure, called the travGraph. The planner
uses a Dijkstra algorithm to search this graph. Furthermore, the graph is used to store information
about previous traverses of roads, including information about road blockages, etc. The route-
planner is part of the mission-planner module, which encompassed these functions, as well as the
interface with the mission and health management. The mission planner is implemented in the
Canonical Software Architecture (CSA) and described in more detail in Section 5.1.

4.2 Trajectory Planning

The trajectory planning level is responsible for generating a trajectory based on the intermediate
goals from the route planner, the map from the sensed data and the traffic rules. Before the planner
can be executed, a number of preprocessing steps are necessary. First, the map data must to be
converted into the appropriate data format used by the planner. Second, the future states of the
detected mobile objects need to be determined. The planning approach followed here is known

15

Team Caltech

as receding horizon control (RHC). In this approach, a plan is obtained that stretches from the
current location to the goal. This plan is executed only for a short time and then revised at the next
planning cycle, using an updated planning horizon.

The first step in the trajectory planning algorithm is to set up the planning problem. Traffic
rules specify behaviors, and it is necessary to enforce these behaviors on Alice. The behavior
currently required is determined via a finite state machine. This behavior included intersection
handling and is implemented in the logic planner module. The behavior is enforced by setting
up a specific planning problem. For example, the problem might not allow changing lanes in a
region of the road where there is a double yellow line lane separator. The idea is to be able to solve
multiple planning problems in parallel and then choose the best solution. This would have been
useful when the estimate of the current situation cannot be obtained with sufficient certainty. This
planning problem is then passed to the appropriate path planner.

Two types of path planning problems needed to be solved: planning in structured regions (such
as roads, intersections, etc.) and unstructured regions (such as obstacle fields and parking lots). In
our approach we used two distinct approaches for these problems, both of which are based on the
receding horizon control approach.

For planning in structured regions, a graph is constructed offline, based on the RNDF. In this
graph, the road geometry is inferred. The motivation behind this planning scheme is that the traffic
rules imposed a lot of structure on the planning problem. This is one attempt to leverage this
structure optimally. A second motivation is that, given that the graph defined the rail and lane
changes and turns, it is possible to verify that we could complete a large portion of the course
beforehand. The limitations of this approach are the assumed geometry of the road and potential
state offsets. Given that we had aerial imagery of the test course, the first limitation is not overly
constraining. Also, the planner had a mode that allowed it to switch to an “off-road” mode, where
the planner is not constrained to the precomputed graph, but would navigated an obstacle field
and try to reach a final pose. The second limitation is more worrisome, and it was decided to add
multiple rails to each lane to allow the planner to choose the best rail, based on the detected road
markings. This planner was implemented as the Rail Planner and is discussed some more below.

For path planning in unstructured regions, three parallel approaches were developed. The first
approach is based on a probabilistic roadmap approach where a graph is constructed online. The
approach followed is described below in the clothoid-planner section. The second approach, called
the circle planner, constructed paths consisting of circular arcs and straight line segments. This
approach was not actually used during the race. Both of these planners where spatial planners. The
third approach is an optimal receding horizon control planner. This is a spatio-temporal planner
(i.e., plans the trajectory directly). This planner, called the dynamic planner, was not used during
the race, but is outlined in the sections below.

In order to plan in a dynamic environment, we separated the planning problem into a spatial
planning problem and a spatio-temporal planning problem. This greatly simplifies the planning
problem. Also, it is important to note that planning for dynamic obstacles vs. static obstacles is
fundamentally different. For example, when following a car, one wants to plan where you want
to drive and then adjust your velocity to obtain a safe trajectory. Thus, the separation of planning
problems is justified. Also, in dealing with dynamic obstacles one did not necessarily want to

16

Team Caltech

adjust your spatial path. There are some cases, however, where adjustment of the spatial path is
required. For example, when passing an obstacle and there is a vehicle approaching from the rear
in the lane we want to change into, it is not sufficient to only consider where that mobile object is
currently, but we have to account for the future states of this mobile object. Similarly, when driving
down a lane and there is a mobile object driving towards us, it is not sufficient to only adjust the
velocity profile. This is accomplished by using the prediction information in two ways: first, to
define regions prohibited to planning, and second to do a dynamic conflict analysis to determine
possible collisions and avoid these early on.
The finer details of the modules used in the planning stack are given next.

Planner. The planner module functioned as the interface with the other mission-level planner and
the map. The planner is implemented in the Canonical Software Architecture. It is responsible
for maintaining a queue of intermediate goals, maintaining histories of some pervasive properties
and sequencing the calls to the modules to solve the planning problem. In the case where multi-
ple planning problems are set up, it would also maintain these different plans and select the best
one (though this was not implemented). The planner module is also responsible for sending the
trajectory that is obtained to the low-level planner for execution.

Since the planner has to interface with the different libraries, it was convenient to generate a
module that maintained these interfaces. These interfaces are discussed next, before focusing on
the functionality of the the individual library modules.

Planner Interfaces. The interfaces between the Planner module and the libraries needed to be
maintained in a central location. These interfaces are maintained in a module called the temp-
planner-interfaces, with the exception of the planners used for planning in unstructured regions.
The reason for this separation was that the unstructured region planners used some objects that are
slow to compile and this separation allowed a more efficient decomposition of the software.

Some of the interfaces defined in the temp-planner-interfaces module include the status data
structure, which is used to report the status of the different libraries used in the planning problem.
Also, the graph structure used for planning in the structured region is defined here, together with
the path. Since the trajectory is an interface between the tactical- and low-level planners, this
interface is defined elsewhere.

Logic Planner. The logic planner is responsible for high-level decision making in Alice. It has
two functions: (1) to determine the current situation and come up with an appropriate planning
problem to solve and (2) to do internal fault handling. These functions are not independent of
each other, but we focus here on the the first function and discuss fault handling in more detail in
Section 5.

The logic planner is implemented as two finite state machines. The first state machine is re-
sponsible for determining the current situation, by considering Alice’s position in the world (e.g.,
proximity to intersections) and the status of the previous attempt at trajectory planning (i.e., if the
planner failed due to blockage by an obstacle). These elements are factored in when setting up
the planning problem to be solved in the current cycle. As an example of how this might work,
consider a situation where Alice is on a two-lane, two-way road with a yellow divider. The initial
problem is to drive down the lane to some goal location. This is given to the path planner to solve,
but an obstacle blocks the lane. The path planner returns a status saying that it cannot solve the

17

Team Caltech

problem and avoid obstacles (one of the constraints). In the next planning cycle, the logic planner
can adjust the plan to now allow passing, at which point the planner will evaluate paths that move
into the other lane.

The second state machine is used for intersection handling. Here we must account for the cur-
rent map, the road geometry and Alice’s position in the world to determine the correct intersection
behavior. This behavior is then encoded in a planning problem, which is passed to the rest of the
planning stack. A detailed desription of the intersection handling logic is available in [5].

A note on dealing with uncertainty is in order at this point. The logic planner is susceptible
to uncertainty in the current situation, as well as potentially uncertainty in the map. To overcome
this hurdle, we had hoped to implement a probabilistic finite state machine. However, for this case
it is conceivable that of the state transitions defined out of some state, none of these transitions
are valid with high enough confidence. In this case, one approach would be to set up planning
problems for the relevant transitions, solve the problems and evaluate the solutions. Unfortunately,
this was never implemented due to lack of time.

Rail Planner. The rail planner’s main function is to search over the precomputed graph to find the
optimal path to the goal. Since this graph is defined in the world frame, the planner has to plan in
the frame. The first step is to preprocess the map data. This data must be converted to either fields
associated with the nodes of the graphs or weights associated with edges. Thus, the precomputed
graph node locations are calculated and fixed offline, but the graph is updated online to reflect
the latest sensing information. Once this step is completed, the optimal path to the goal can be
calculated. To accomplish this, the planner uses an A* algorithm to search the graph. The cost
function used in the optimization penalizes curvature, which is useful to avoid sharp maneuvers at
high speed. Furthermore, the cost function tends to keep the vehicle in the center of the perceived
lane. In addition, the obstacles are included in the cost generate plans that stay further away from
obstacles when possible. In this way the uncertainty associated with the sensed objects is accounted
for.

Figure 5 shows the different graphs created by the Rail Planner. The RNDF is first used to infer
the geometry of the road and a single rail is placed down the (inferred) center of the lane (a). Turns
through intersections are also defined. This is called the road graph. Since the road geometry is
only approximately known, more rails are added to each lane to make the set of solutions to be
searched less restrictive (b). Rail changes and lane changes are then defined on what is now the
planning graph (c).

It was found that in some cases the precomputed graph was too constraining. This was because
the rail change, lane changes and turns where precomputed. However, it was quite possible to have
to deal with an obstacle between these predefined maneuvers. A function was implemented in
this case to locally generate maneuvers (paths), called the vehicle-subgraph, that generated plans
from the current location and connected to the precomputed graph as quickly as possible. This is
shown in Figure 5d. This normally gives the planner enough flexibility to navigate these cases. The
planning algorithm is also able to plan in reverse, when allowed, making the planner very capable.

As mentioned before, one of the concerns with using this planner is the inference of the road
geometry from the RNDF. A mode of the planner was implemented where a local graph is gener-
ated online. This graph is much more elaborate that the vehicle subgraph discussed above and this

18

Team Caltech

(a) (b)

(d)

Figure 5: Operation of the rail planner.

capability allowed the planner to handle cases where the road did not line up with the expected
geometry, including obstacle fields. The difficult problem became to determine when is it appro-
priate to switch into this mode. Unfortunately, this problem was never addressed and the segments
for using this mode was hard coded base on manual inspection of the RNDF.

Clothoid Planner. The clothoid planner is the main planner used for planning in unstructured
regions and is implemented in the s1planner module. This is a graph-search based planner, where
the graph is generated online. The graph is constructed using a family of clothoid curves. Clothoid
curves are curves with constant angular velocity and are commonly used for road layout design.
The graph is constructed by expanding a tree of these families of curves. The tree is expanded until
a relatively uniform covering of the state space is obtained. At this point, the graph is searched to
find the optimal solution. A cost map is queried at each node (pose) to guide the search. At each
pose considered, an obstacle overlap check is performed to ensure that the obstacles are avoided.
Thus, obstacles are handled both as soft constraints, to push solutions away from obstacles, and as
hard constraints. The output of this planner is a path in the same format as the rail planner.

19

Team Caltech

Velocity Planner. The velocity planner accepts a spatial path and time parameterizes this path to
obtain a trajectory. The velocity planner takes into account path features such as stop lines, obsta-
cles on the path and obstacles close to the path. The planner considers the path, which has all the
information necessary for velocity planning encoded in it, and specifies a desired velocity profile.
For example, it will bring Alice to a stop at a desired deceleration and at a desired distance away
from an obstacle. For obstacles on the side of the path, it will slow Alice down when passing close
to these obstacles. Lastly, the velocity planner considers the curvature of the path and adjusts the
velocities along the path accordingly. The velocity planner is compatible with the rail-, clothoid-
and circle-planners. The output of the planner is a trajectory.

Prediction. Planning in an environment where the agents move at high speed requires some form
of prediction of the future states of the mobile objects. Prediction of cars driving in urban environ-
ments is eased by the structure imposed on the environment, but is complicated by noisy sensory
data and partial knowledge of the world state. The world state (map) and the mobile object’s po-
sition in this world are necessary to determine behavior. Two approaches for prediction where
investigated: (1) prediction based on particle filters and (2) prediction utilizing the structure in the
environment and simple assumptions on the velocities of the mobile agents. The former approach
was dropped since the data representation was not easily incorporated into the current planning
approach. The latter approach has the disadvantage of not being of much use in unstructured
regions.

The prediction information is used in two ways: first, the data is used to define restricted regions
around mobile agents. This is especially useful when planning in intersections (such as merging)
or planning lane changes. The second use is for dynamic conflict analysis. Here, the predicted
future states of the mobile objects are compared to the planned trajectory of Alice. If a collision
is predicted, an obstacle is placed in the map that alters Alice’s plan and thus avoids a potential
collision. Noisy measurements of the mobile object’s state can cause prediction to sometimes be
very conservative (when the velocity is off) or simply wrong (when the obstacle position in the
partially known road network is estimated wrong).

4.3 Low-level Control and Vehicle Interface

The lower-level functions of the navigation system were accomplished by a set of tightly linked
modules that controlled the motion of the vehicle along the desired path and broadcast the current
state of the vehicle to other modules.

Follower. The follower module receives a trajectory data structure from planner and state infor-
mation from astate. It sends actuation commands to gcdrive. Follower uses decoupled longitudinal
and lateral PID controllers, to keep Alice on the trajectory. The lateral controller uses a nonlinear
controller that accounts for limits on the steering rate and angle, and modifies its gains based on
the speed of the vehicle [4].

Gedrive. Gedrive is the overall driving software for Alice. It works by receiving directives from
follower over the network, checking the directives to determine if they can be executed and, if
so, sending the appropriate commands to the actuators. Gcedrive also performs checking on the

20

Team Caltech

state of the actuators, resets the actuators that fail, implements the estop functionality for Alice
and broadcasts the actuator state. Also included in the role of gcdrive was the implemention of
physical protections for the hardware to prevent the vehicle from hurting itself. This includes
three functions: limiting the steering rate at low speeds, preventing shifting from occurring while
the vehicle is moving, transitioning to the paused state in which the brakes are depressed and
commands to any actuator except steering are rejected. (Steering commands are still accepted so
that obstacle avoidance is still possible while being paused) when any of the critical actuators such
as steering and brake fail.

Astate. The astate module was responsible for broadcasting the vehicle position (position, orien-
tation, rates) data. This module read data from the Applanix hardware and processed the data to
account for state jumps. It then broadcast the world and local frame coordinate for the vehicle.

Reactive Obstacle Avoidance. To ensure safe operation, it was decided to implement a low-level
reactive obstacle avoidance (ROA) mechanism. This mechanism is the reason why the low-level
planner needed to plan in the local frame. The ROA would evaluate LADAR data directly and
when an object is detected within some box around Alice (which is velocity dependent), it would
adjust the reference velocity of the trajectory to bring Alice to a stop in front of this object. One
of the key issues that needed to be faced was making this mechanism sensitive enough to prevent
collisions, but not so sensitive that it reacts to every false positive detection. Furthermore, the rest
of the planner stack needed to be told that ROA is active (otherwise Alice stops for no apparent
reason). Lastly, their needed to be a mechanism to override the ROA, otherwise there are situations
where Alice would just be stuck indefinitely.

5 Mission and Contingency Management

Due to the complexity of the system and a wide range of environments in which the system must be
able to operate, an unpredictable performance degradation of the system can quickly cause critical
system failure. In a distributed system such as Alice, performance degradation of the system may
result from changes in the environment, hardware and software failures, inconsistency in the states
of different software modules, and faulty behaviors of a software module. To ensure vehicle safety
and mission success, there is a need for the system to be able to properly detect and respond to
unexpected events related to vehicle’s operational capabilities.

Mission and contingency management is often achieved using a centralized approach where a
central module communicates with nearly every software module in the system and directs each
module sequentially through its various modes in order to recover from failures. As a result, this
central module has so much functionality and responsibility and easily becomes unmanageable and
error prone as the system gets more complicated. In fact, our failure in the 2005 Grand Challenge
was mainly due to an inability of this central module to reason and respond properly to certain
combination of faults in the system. This results from the difficulty in verifying this module due to
its complexity.

The contingency management subsystem comprises the mission planner, the health monitor
and the process control modules. The Canonical Software Architecture (CSA) was developed to

21

Team Caltech

allow mission and contingency management to be achieved in a distributed manner. This function
works in conjunction with the planning subsystem to dynamically replan in reaction to contin-
gencies. The health monitor module actively monitors the health of the hardware and software to
dynamically assess the vehicle’s operational capabilities throughout the course of mission. It com-
municates directly with the mission planner module which replans the mission goals based on the
current vehicle’s capabilities. The process control module ensures that all the software modules
run properly by listening to the heartbeat messages from all the modules. A heartbeat message
includes the health status of the software. The process control restarts a software module that
quits unexpectedly and a software module that identifies itself as unhealthy. The CSA ensures the
consistency of the states of all the software modules in the planning subsystem. System faults are
identified and replanning strategies are performed distributedly in the planning subsystem through
the CSA. Together these mechanisms make the system capable of exhibiting a fail-ops/fail-safe
and intelligent responses to a number different types of failures in the system.

5.1 Canonical Software Architecture

The modules that make up the planning system are responsible for reasoning at different levels of
abstraction. Hence the planning system is decomposed into a hierarchical framework. To support
this decomposition and separation of functionality while maintaining communication and contin-
gency management, we implemented the planning subsystem in a canonical software architecture
(CSA) as shown in Figure 6. This architecture builds on the state analysis framework developed at
JPL [2] and takes the approach of clearly delineating state estimation and control determination.
To prevent the modules from getting out of sync because of the inconsistency in state knowledge,
we require that there is only one source of state knowledge although it may be captured in different
abstractions for different modules.

A control module receives inputs and delivers outputs. The inputs consist of sensory reports
(about the system state), status reports (about the status of other modules), directives/instructions
(from other modules wishing to control this module), sensory requests (from other modules wish-
ing to know about this modules estimate of the system state) and status requests (from other mod-
ules wishing to know about this module status). The outputs are the same type as the inputs, but in
the reverse direction (reports of the system state from this module, status reports from this module,
directives/instructions to other modules, etc).

For modularity, each module in the planning subsystem may be broken down into multiple
CSA modules. A CSA module consists of three components — Arbitration, Control and Tactics—
and communicates with its neighbors through directive and response messages, as shown in Figure
7. Arbitration is responsible for (1) managing the overall behavior of the module by issuing a
merged directive, computed from all the received directives, to the Control; and (2) reporting
failure, rejection, acceptance and completeness of a received directive to the Control of the issuing
module. Control is responsible for (1) computing the output directives to the controlled module(s)
based on the merged directive, received response and state information; and (2) reporting failure
and completeness of a merged directive to the Arbitration. Tactics provides the core functionality
of the module and is responsible for generating a control tactic or a contiguous series of control
tactics, as requested by the Control.

22

Team Caltech

—— Directive/response
= = = ¥ State knowledge
9 RNDF

MDF
, Response Sensingand - —-—-—-—-—-—-—-—-- |
|| Mapping [—~—-=—-—--—- (Worldmap _ _ —
— Connect/ Subsystem [T~ T 77 |- — = = = = Mission Planner

1
1
1 Vehicle capability
disconnect * 1 : R tlevel |
command 1 Sensor | | : esponse egment-level goals
: health : _ 4 _ _ _ _ _ Localmap_
Vehiclel v :
I .
state, Health | 1 Response| ‘}Trajectory
I .
| Monitor __ Vehicle state _)
4 A | Follower

: ! ! I Y

| Vehicle state | 1 | Res onseﬂ Actuator

. estimation 1 ! | P J ommand

1 health ! : ! _

Applanix 1 1 | 1 Gcdrive
Response - I 1
(GPS and P astate | _ _ _ _ _ 1 __ A
IMU) “ Connect/ T ctuator
.o ee ! command
i :

1 reset
: ‘Pommand)

Actuator health
[e e e i Actuators

Figure 6: The planning subsystem in the Canonical Software Architecture. Boxes with double lined borders
are subsystems that will be broken up into multiple CSA modules.

5.2 Health Monitor and Vehicle Capabilities

The health monitor module is an estimation module that continuously gathers the health of the
software and the hardware of the vehicle (GPS, sensors and actuators) and abstracts the multitudes
of information about these devices into a form usable for the mission planner. This form can
most easily be thought of as vehicle capability. For example, we may start the race with perfect
functionality, but somewhere along the line lose a right front LADAR. The intelligent choice in
this situation would be to try to limit the number of left and straight turns we do at intersections
and slow down the vehicle. Another example arises if the vehicle becomes unable to shift into
reverse. In this case we would not like to purposely plan paths that require a U-turn.

From the health of the sensors and sensing modules, the health monitor estimates the sensing
coverage. The information about sensing coverage and the health of the GPS unit and actuators
allow the health monitor to determine the following vehicle capabilities: (1) turning right at in-
tersection; (2) turning left at intersection; (3) going straight at intersection; (4) nominal driving
forward; (5) stopping the vehicle; (6) making a U-turn that involves reverse; (7) zone region oper-
ation; and (8) navigation in new areas.

23

Team Caltech

Same interface with

Controlling module other controlling modules

Directive, state

\ 4

State information

Tactics

Y
(@)
o
=]
=
=
o

A

Tactic

7 N
Response: Directive: start/end conditions,
accepted/rejected, parameterized constraints,
completed/failed performance criteria, priority
: v A generic ;
: Initialize :
E Arbitration | control module :
: Y '
' Response:w Merged directive: start/end conditions, '
: completed/ parameterized constraints, !
failed performance criteria
' v '

Response Directives | l

Controlled module and/or Estimator or Hardware

Figure 7: A generic control module in the Canonical Software Architecture.

5.3 Mission Planner

The mission planner module receives the vehicle capabilities from the health monitor module, the
position of obstacles with respect to the RNDF from the mapper module and the MDF and sends
the segment-level goals to the planner module. It has three main responsibilities and is broken up
into one estimation and two CSA control modules.

Traversibility Graph Estimator. The traversibility graph estimator module estimates the traversibil-
ity graph which represents the connectivity of the route network. The traversibility graph is deter-
mined based on the vehicle capabilities and the position of the obstacles with respect to the RNDF.
For example, if the capability for making a left or straight turn decreases due to the failure of the
right front LADAR, the cost of the edges in the graph corresponding to making a left or straight
turn will increase, and the route involving the less number of these maneuvers will be preferred.
If the vehicle is not able to shift into reverse, the cost of the edges in the graph corresponding to
making a U-turn will be removed.

Mission Control. The mission control module computes the mission goals that specify how Alice
will satisfy the mission specified in the MDF and conditions under which we can safely continue
the race. It also detects the lack of forward progress and replans the mission goals accordingly.
The mission goals are computed based on the vehicle capabilities, the MDF, and the response
from the route planner module. For example, if the nominal driving forward capability decreases,
the mission control will decrease the allowable maximum speed which is specified in the mission

24

Team Caltech

goals, and if this capability falls below certain value due to the failure in any critical component
such as the GPS unit, the brake actuator or the steering actuator, the mission control will send a
pause directive down the planning stack, causing the vehicle to stop.

Route Planner. The route planner module receives the mission goals from the mission control
module and the traversibility graph from the traversibility graph estimator module. It determines
the segment-level goals which include the initial and final conditions which specify the RNDF
segment/zone Alice has to navigate and the constraints, represented by the type of segment (road,
zone, off-road, intersection, U-turn, pause, backup, end of mission) which basically defines a
set of traffic rules to be imposed during the execution of this segment-level goals, in order to
satisfy the mission goals. The segment-level goals are transmitted to the planner module using the
common CSA interface protocols. Thus, the route planner will be notified by the planner when a
segment-level goal directive is rejected, accepted, completed or failed. For example, since one of
the rules specified in a segment-level goal directive is to avoid obstacles, when a road is blocked,
the directive will fail. Since the default behavior of the planner is to keep the vehicle in pause, the
vehicle will stay in pause while the route planner replans the route. When the failure of a segment-
level goal directive is received, the route planner will request an updated traversibility graph from
the traversibility graph estimator module. Since this graph is built from the same map used by the
planner, the obstacle that blocks the road will also show up in the traversibility graph, resulting in
the removal of all the edges corresponding to going forward, leaving only the U-turn edges from
the current position node. Thus, the new segment-level goal directive computed by the Control of
the route planner will be making a U-turn and following all the U-turn rules. This directive will
go down the planning hierarchy and get refined to the point where the corresponding actuators are
commanded to make a legal U-turn.

5.4 Fault Handling in the Planning Subsystem

In our distributed mission and contingency management framework, fault handling is embed-
ded into all the modules and their communication interfaces in the planning subsystem hierarchy
through the CSA. Each module has a set of different control strategies which allow it to identify
and resolve faults in its domain and certain types of failures propagated from below. If all the
possible strategies fail, the failure will be propagated up the hierarchy along with the associated
reason. The next module in the hierarchy will then attempt to resolve the failure. This approach
allows each module to be isolated so it can be tested and verified much more fully for robustness.

Planner. The logic planner is the component that is responsible for fault handling inside the
planner. Based on the error from the path planner, the velocity planner and the follower, the logic
planner either tells the path planner to replan or reset, or specifies a different planning problem
(or strategy) such as allowing passing or reversing, using the off-road path planner, or reducing
the allowable minimum distance from obstacles. The logic for dealing with these failures can be
described by a two-level finite state machine. First, the high-level state (road region, zone region,
off-road, intersection, U-turn, failed and paused) is determined based on the directive from the
mission planner and the current position with respect to the RNDF. The high-level state indicates
the path planner (rail planner, clothoid planner, or off-road rail planner) to be used. Each of the

25

Team Caltech

F—— - - - - - — - - - — = =

passing finished or obstacle disappeared

~ ROAD REGION |

passing finished or obstacle disappeared

no collision-free path exists o

Alice has been stopped for long

A4

—‘—| no collision-free path exists

| sToNP,S enough and there is an obstacle

in the vicinity of Alice

“collision-free path is found

collision-fre:

_no collision-free path exists
<

backup finished
or failed and the
number of times Alice
has switched to BACKUP
is less than some threshold

no collision-fre:
path exists

backup finished or failed and'tk
umber of times Alice has switched

STOPRS |

DRP.S |4
—— collision-free path is found

no collision-free path exists and the
number of times Alice has switched
to the DR,P,R state near the current

position is less than some threshold A

—

| sTors
| I—

no collision-f

and the num

has switched

state near th
b is less than s}
]

lee path exists
er of times Alice
to the DR,P,R
current position
pme threshold

»| DRPRS [

collision-free path is found

no collision-free
path exists and
there is more
han one lane

no collision-free path exists and the number
of times Alice has switched to the DR,P,R
state near the current position exceeds somq

no collision-free path exists
>

DRA | STOA

“to BACKUP exceeds some threshold BACKUP threshold and there is more than one lane

collision-free path is found

collision-free path
withf DR,A is found

“ho collision-free path exists and the number of times Alice has switched to the DR,P,R
state near the current position exceeds some threshold and there is only one lane

o collision-free path exists

no collision-free path exists

DRB [

collision-free path is found

no collision-free path exisis

OFF-ROAD

and_there is more than one lane

FAILED
mode

> PAUSED

collision-free path with DR,P,R is found

Figure 8: The logic planner finite state machine for the road region. Each state defines the drive state (DR =
drive, BACKUP, and STO = stop when Alice is at the right distance from the closest obstacle as specified
by the associated minimum allowable distance from obstacles), the allowable maneuvers (NP = no passing
or reversing allowed, P = passing allowed but reversing not allowed, PR = both passing and reversing
allowed), and the minimum allowable distance from obstacles (S = safety, A = aggressive, and B = bare).

high-level states can be further extended to the second-level state which completely specifies the
planning problem described by the drive state, the allowable maneuvers, and the allowable distance

from obstacles.

® Road region The logic planner transitions to the road region state when the type of segment
specified by the mission planner is road. In this state, the rail planner is is the default path
planner although the clothoid planner may be used if all the strategies involving using the
rail planner fail. There are thirteen states and twenty seven transitions within the road region
state as shown in Figure 8. The DR NP state is considered to be the nominal state. The logic
planner only transitions to other states due to obstacles blocking the desired lane or errors

from the other planners.

26

Team Caltech

[ZONE REGION | [OFF-ROAD |
no collision-free path exists o collision-free path exists=
I SAFETY | AGGRESSIVE I I DR,S < STO,S I
N timeout yy y collision-free path is found
I I I collision-free path no colln§|on—free I
no collision-free with DR, S is foun Vpath exists
I path exists | | no collision-free path exists I
DR,A < STO,A
| < | y collision-free path is found |
BARE |_ collision-free path no collision-free
timeout ith DR,A is found ath exists
L — ”_ f_ - - - = ‘V no collision-free path exists, | v I
n ision-fr >
oo i: .ete I DR.B | STO,B I
pain existsy collision-free path is found
FAILED »| PAUSED ho collision-free
path exists
Y
PAUSED | FAILED

(@) (b)

Figure 9: The logic planner finite state machine for the zone region (a) and off-road (b). Each state defines
the drive state (DR = drive, and STO = stop when Alice is at the right distance from the closest obstacle
as specified by the associated minimum allowable distance from obstacles) and the minimum allowable
distance from obstacles (S = safety, A = aggressive, and B = bare).

e Zone region The logic planner transitions to the zone region state when the type of segment

specified by the mission planner is zone. Reversing is allowed and since the clothoid planner
is the default path planner for this state, the trajectory is planned such that Alice will stop at
the right distance from the obstacle by default, so only three states and four transitions are
necessary within the zone region state as shown in Figure 9(a).

e Off-road The logic planner transitions to the off-road state when the type of segment speci-

fied by the mission planner is off-road. Since passing and reversing are allowed by default,
six states and ten transitions are necessary within the off-road state as shown in Figure 9(b).

e [ntersection The logic planner transitions to the intersection state when Alice approaches an

intersection. In this state, passing and reversing maneuvers are not allowed and the trajectory
is planned such that Alice stops at the stop line. The rail planner is the default path planner.
Once Alice is within a certain distance from the stop line and is stopped, the intersection
handler, a finite state machine comprising five states (reset, waiting for precedence, waiting
for merging, waiting for the intersection to clear, jammed intersection, and go), will be reset
and start checking for precedence. The logic planner will transition out of the intersection
state if Alice is too far from the stop line, when Alice has been stopped in this state for
too long, or when the intersection handler transitions to the go or jammed intersection state.
If the intersection is jammed, the logic planner will transition to the state where passing is
allowed.

e U-turn The logic planner transitions to the U-turn state when the type of segment specified

by the mission planner is U-turn. In this state, the default path planner is the clothoid planner.
Once the U-turn is completed, the logic planner will transition to the paused state and wait

27

Team Caltech

for the next command from the mission planner. If Alice fails to execute the U-turn due to
an obstacle or a hardware failure, the logic planner will transition to the failed state and wait
for the mission planner to replan.

e Failed The logic planner transitions to the failed state when all the strategies in the current
high-level state have been tried. In this state, failure is reported to the mission planner along
with the associated reason. The logic planner then resets itself and transitions to the paused
state. The mission planner will then replan and send a new directive such as making a U-
turn, switching to the off-road mode, or backing up in order to allow the route planner to
change the route. As a result, the logic planner will transition to a different high-level state.
These mechanisms ensure that Alice will keep moving as long as it is safe to do so.

e Paused The logic planner transitions to the paused state when it does not have any segment-
level goals from the mission planner or when the type of segment specified by the mission
planner is pause or end of mission. In this state, the logic planner is reset and the trajectory
is planned such that Alice comes to a complete stop as soon as possible.

Follower. Although a reference trajectory computed by the planner is guaranteed to be collision-
free, since Alice cannot track the trajectory perfectly, it may get too close or even collide with an
obstacle if the tracking error is too large. To address this issue, we allow follower to request a replan
from the planner through the CSA directive/response mechanism when the deviation from the
reference trajectory is too large. In addition, we have implemented the reactive obstacle avoidance
(ROA) component to deal with unexpected or pop-up obstacles. The ROA component takes the
information directly from the perceptors (which can be noisy but faster) and can override the
acceleration command if the projected position of Alice collides with an obstacle. The projection
distance depends on the velocity of Alice. The follower will report failure to the planner if the
ROA is triggered, in which case the logic planner can replan the trajectory or temporarily disable
the ROA. We have also formally verified that through the use of the CSA, follower either has the
right knowledge about the gear Alice is currently in even though it does not talk to the actuator
directly and the sensor may fail; otherwise, it will send a full brake command to the gcdrive.

6 Results

Extensive testing on Alice was used to validate its capabilities and tune its performance. This
section summarizes the major results of this testing.

6.1 Site Visit

The site visit consisted of four separate runs around a simple course consisting of a single inter-
section and a circular loop, as shown in Figure 10. After initial safety inspection and e-stop test,
the first run consisted of driving around the loop once and was performed successfully.

The second run was a path planning run, in which a set of sparse waypoints were given and
a route had to be planned that included performing U-turn operations in the stubs. On our first

28

Team Caltech

3RghtAngleTums ———
2y

Checkpoints.
Segment 2:

/ S Loop +5tub

211-

= Lane start
k !
114~

Lane end

aming [111[[1[100% L Eyealt 516m: . —— & = : L“-x.

Figure 10: Site visit course.

attempt at this run, the vehicle failed to perform the U-turn successfully, with an apparent loss of
steering. A combination of high temperatures and a road surface that created large frictional forces
with the tires caused a torque limit to be reached in the motor controller, resulting in a reset in
the steering controller. This problem was remedied in a second attempt (after the fourth run) by
reseting an internal parameters that lowered the commanded steering at slow speeds. After this
change the test was performed successfully.

The third run involved driving multiple times around the loop with obstacles (stationary cars)
placed at various points on the route. Alice detected and avoided all obstacles, and completed the
run. For tests in which a vehicle was in the lane of travel, Alice signaled properly to move out of
the lane and transitioned out of the lane at the required distances. Alice did not transition back
into the lanes within the required distances, an artifact of the way in which the planning algorithm
was implemented (there was an insufficiently high cost associated with gradually returning to the
proper lane).

The fourth run focused on intersection operations. The run consisted of driving multiple times
around the loop, with cars positioned at the intersection in different situations for each loop. Alice
properly detected vehicles and respected the precedence order except for two occasion.

e In one instance, there were two cars queued up at the intersection opposite Alice. When
Alice approached the intersection, it stopped, waiting a few seconds, and then continued
through the intersection. According to the safety driver (who was in Alice), we had a small
return coming up to the intersection and then the LADARs tilted down when we stopped.
This caused the obstacles to disappear completely (the map subsystem had no memory at this
point) and then reappear, so Alice decided that we were the first vehicle at the intersection.

e In the second instance, two vehicles were queued to the left of Alice. We stopped at the
intersection and waited for the first vehicle. After that vehicle passed, we continued to wait
at the intersection. After waiting for a while, DARPA motioned the second vehicle to go
through and at that point Alice properly continued through the intersection. According to the

29

Team Caltech

Figure 11: St. Luke Medical Center (Pasadena, CA)

internal logs, the second vehicle was partially in the opposing lane and that Alice interpreted
this as a vehicle in the intersection, so it remained stopped.

While the site visit was executed more or less successfully, we identified several of limitations
in the design. A major difficulty in preparing for the site visit was the brittleness of the finite state
machine logic that accounted for traffic rules. Even with the limited complexity of the site visit
tasks, the planner had dozens of states to account for different environmental conditions and driving
modes. This made the planner very hard to debug. Some of the lower level control functions
(including path following) were also found to be lower performance that we desired for the race.
And finally, the accuracy and persistence of the sensed data need to be improvied.

The primary changes that were made after the site visit were (1) to simplify the traffic logic
to use a very small number of modes; (2) to redesign the planning subsystem so that it made
use of a graph-based planner instead of the originally proposed NURBS-based planner and (3)
to streamline the planner software structure so that it acted as a single CSA module rather than
separate modules for each internal function. These changes coincided with a decision to separate
the path planning problem into a spatial planner (rail-planner) and a temporal planner (velocity-
planner), rather than the originally planned spatio-temporal planner (dplanner). In addition, we
rewrote the low-level control algorithms (follower) and implemented more robust functionality for
detecting and tracking objects.

6.2 Summer Testing

During the summer of 2007, extensive testing and development was performed at two primary test
sites: the former St. Luke Medical Center in Pasadena, CA and El Toro Marine Corps Air Station
in Irvine, CA. Over the course of three months, approximately 300 miles of fully autonomous
driving was performed in these locations.

Testing at the St. Luke Medical Center was performed in the (empty) parking lot of the facility,
shown in Figure 11. While this area was quite small for testing, its proximity to Caltech allowed

30

Team Caltech

Figure 12: El Toro Marine Core Air Station test area (Irvine, CA).

us to use the facility frequently and easily. A standard course was set up which could be used to
verify the basic driving functionality and track performance. Some of the features of this course
included tight turns, sparse waypoint areas, parking zones, overhanging buildings and trees, and
tight maneuvering between structures.

El Toro Marine Corps Air Station was used for more extensive testing. This base is no longer
in active use and was available for lease through a property management corporation. The primary
RNDF used for testing is shown in Figure 12 This facility had all of the features specified in the
DARPA Technical Criteria, including multiple types of intersections, multi-lane roads, parking
zones, off-road sections, sparse waypoints, overhanging trees and tightly spaced buildings.

A total of 15 days of testing at El Toro were used to help tune the performance of the vehicle.
The first long run with no manual interventions was a run of 11 miles on 19 September 2007,
approximately 6 weeks before the race. The most number of miles driven in a single day was
40.5 miles on 16 October 2007. The highest average speed on a run of over 5 miles was 9.7
miles/hour on 16 October 2007. Additional testing included intersection testing with up to five
vehicles, merging across traffic with cars coming from both directions, and defensive driving with
traffic coming into the lane from a driveway and oncoming traffic driving in the incorrect lane.

6.3 National Qualifying Event

In this section we describe Team Caltech’s performance in each of the three NQE test areas. We
present each run in chronological order.

Run 1: Area B, Attempt 1. Area B consisted of tasks in basic navigation, including route
planning, staying in lanes, parking and obstacle avoidance. An overview of Area B is shown in
Figure 13. Basic navigation, stay in lane, parking. The MDF started in the starting chute area, then
directed Alice to proceed down a road onto the main course. From there, the MDF direted Alice to
drive down several different roads on the interiod of the course and eventually return to the starting
area.

31

Team Caltech

Figure 13: Test Area B

Alice encountered several difficulties on this run. First, the K-rails (concrete traffic barriers)
in the startup chute were less than 1m away from Alice and the vehicle did not want to leave
the chutes immediately. The same problem occurred at the exit of the startup area where K-rails
formed a narrow gate. In order to proceed through the area, Alice had to progress through a series
of internal planning failures before finally driving with reduced buffers on each side of the vehicle.
After successfully leaving the area after about 5 minutes, Alice was performing well on the roads
and entered the parking zone in the south part of the course. The spacing of the vehicles to each
side of Alice was less than the required 1 meter buffer and Alice spent substantial time attempting
to reorient itself to park in the spot. Once in the spot, Alice was unable to pull fully into the
parking spot because the car in front of it was closer than the required 2 meter buffer. Alice was
then manually repositioned and continued its run for a short period before the 30 minute time limit
was reached.

As a result of this run, the code was changed to allow passing obstacles that are closer than
Im away from the vehicle. In addition, the tolerance of reaching waypoints in parking zones was
relaxed.

Run 2: Area A: Attempt 1. This test consisted of merging into traffic with 10—12 manned
vehicles circling around a “block”, as shown in Figure 14. Vehicles are started in the center lane
of the course and are supposed to make constant left turns, proceeding around the left loop of
the course in the counterclockwise direction. Four vehicles with approximately equal spacing are
circling around the larger loop in the counterclockwise direction. Six or more vehicles clustered
together in groups of 1, 2 or 3 vehicles are circling the opposite direction. At the south intersection,
Alice needs to merge into traffic after crossing one lane. At the north intersection Alice is supposed
to make a left turn into oncoming traffic. The manned vehicles had a separation distance of 2 to 20
seconds. Therefore Alice had to sense a 10 second or longer gap and merge quickly into the gap.
In the first attempt of NQE run A, several bugs were uncovered. The first occured when Alice
entered the intersection after determining that the path was clear. The proximity of a set of concrete
barriers to the road meant that Alice could not complete the turn without coming close the the

32

Team Caltech

Figure 14: Test Area A

barriers. The low-level reactive obstacle avoidance logic was using a different threshold for safe
operation on the side of the vehicle (2 meters instead of 1 meter) and hence it would stop the vehicle
partway through the intersection. This caused the intesection to become jammed (and generated
lots of honks).

A second, related bug occurred in the logic planner that affected our wait at the intersection
properly. While the intersection handler was active, another part of the higher-level logic planner
could switch into the STOPOBS state if it detected a nearby vehicle (e.g, one of the human-driven
cars was predicted to collide with Alice or its buffer region). This change in state de-activated the
intersection handler and could cause the vehicle to enter the intersection when the path became
clear (without invoking the proper merge logic). Table 1 gives a detailed analysis of the operation
at each intersection. While in some cases the intersection handler was just interrupted but called
again, it was canceled completely in other cases. If it was canceled, prediction was also not active.
In these cases it almost caused two accidents with manned vehicles. At the north intersection, the
software bug did not occur as logic planner did not switch into STOPOBS. This can be explained
by the fact that by the nature of this intersection, no vehicle was crossing in front of Alice. As a
result, merging was clean in all 7 scenarios at the north intersection.

Fixing the issues that were uncovered during this test required extensive changes at the NQE.
First, the logic for reactive obstacle avoidance had to be changed to use a different safety buffer
length in the front of the vehicle versus the sides (consistent with the logic used by the planner).
Secondly, a rather major restructuring of the logic planner was required to insure that it did not
skip the intersection handling logic until it had actually cleared an intersection. The changes were
difficult to test at the NQE, even with extensive use of the testing areas (where no live traffic was
allowed) and simulation.

Run 3: Area C, Attempt 1. Area C was designed to test intersection precedence, route planning
and U-turn capabilities. The RNDF consisted of two intersections connected by a set of three roads,
as shown in Figure 15. The major task in NQE run C was the correct handling of intersections with
vehicles having precedence and to perform a U-turn at a road block. At the start of the run, the

33

Team Caltech

Table 1: Analysis of performance in Area A, Attempt 1.

Location | Vehicles | Missed Time | Comments
passed gaps passed
#1 S 8 N/A 32.0s | Interrupted by STOPOBS; prediction active
#2 N 1 0 7.7s | Clean merge
#3 S 6 N/A 17.0s | Interrupted by STOPOBS; prediction active
#4 N 2 0 14.6s | Clean merge
#5 S 11 ~60.0s Canceled. by STOPOBS; prediction not active.
Almost hit vehicle
#6 N 0 0 21.0s | Stopped too far left; other vehicles stopped
#7 S 3 N/A 23.0s | Canceled by STOPOBS; prediction not active
#8 N 3 0 16.3s | Clean merge
#9 S 6 0 38.2s | Clean merge
#10 N 1 0 7.9s | Clean merge
#11 S 4 N/A 12 0s Canceled by STOPQBS; prediction not acti-
vated. Almost hit vehicle
#12 N 0 0 9.4s | Stopped too far left; other vehicles stopped
#13 S 6 N/A 34.0s | Interrupted by STOPOBS; clean merge
#14 N 0 0 4.2s | Clean merge

Figure 15: Test Area C

inner road between the intersection is blocked and the other roads are opened. The vehicle is
commanded to go in a loop between the two intersections. At each successive intersection, a more
complicated scenario is established. On the final run, one of the outer paths is blocked, requiring
the vehicle to replan and choose a different route.

Table 2 gives an analysis of Alice’s performance. The columns of the table indicate the inter-
section that was encountered, the number of vehicles at the intersection that had precedence at the
time Alice arrived, the number of vehicles detected by Alice, and the number of times visibility
was occluded by another vehicle.

Alice gave precedence correctly at all 7 intersections. At intersection #2 it was by accident that

34

Team Caltech

Table 2: Analysis of performance in Area C, Attempt 1.
Loc | #Veh | # Veh Lost Dur. | Comments
w/ prec | seen | visibility

#1 | N 0 0 0 2.4s | Empty intersection. Correct execution

#2 | S 1 1 N/A N/A | Interrupted by steering fault. Correct execution

#3 | N 2 2 0 25.8s | Correct execution

s s) N 1 75 8s .CoTrec.t execu'tlon. Ope vehicle was block.mg Al-
ice’s view while passing through intersection

45 N 3 3 | 34 8s Correct execution. One vehicle was blocking Al-

ice’s view while passing through intersection
46| s | | 2 25 8 Following at intersection, then giving precedence.

Correct execution] _
Correct execution. One vehicle was blocking Al-

ice’s view while passing through intersection

#7 | N 3 3 2 37.8s

the power steering problems occurred when the other vehicle had already passed the intersection.
While Alice was stationary, a troque fault in the steering caused a lower-level module to pause
Alice for safety reasons. This event also triggers planner to switch into the state PAUSE which
stops the intersection handling algorithm. After the system started up again and the intersection
handler was called, the intersection was clear and Alice passed the intersection. Otherwise Alice
might have made wrong assumptions about the time of arrival of other vehicles. The results from
this run also demonstrate that ID tracking, checking for lost IDs and checking for visibility are
crucial to the correct execution of the precedence. Without those backup algorithms, Alice would
have misinterpreted the precedence order at intersections or would have lost vehicles in its internal
precedence list.

After the intersection tests, Alice had to demonstrate correct execution of U-turns in front
of road blocks. A bug was introduced in implementing the changes from Area A that caused the
mission planner to crash during certain U-turn operations. The process controller properly restarted
the mission planner after the crash, but Alice lost information regarding which part of the road was
blocked. It thus alternated between the two road blocks and the run could not be finished within
the time out limit but was considered a successful clean run.

The bug that caused the mission planner to crash was fixed in response to the results from this
run.

Run 4: Area B, Attempt 2. Despite fixing the problems near the starting chute based on the
previous attempt in Area B, Alice still had difficulty initializing to the properly state when it was
placed in the startup chute. Due to delays in the launch of the vehicle by DARPA, we were able to
correct the logic in the chute and launch the vehicle correctly.

With the changes in the buffer region, Alice was able to traverse through the start area and
onto the course with little difficulty. At one point toward the beginning of the run, the control
vehicle paused Alice because it appeared to be headed toward a barrier. This appears to be due to
a checkpoint that was close to a barrier and hence Alice was coming close to the barrier in order to
cross over the checkpoint. Alice was put back into run mode and continued properly.

The remainder of the run was completed with only minor errors. Alice properly parked in

35

Team Caltech

Table 3: Analysis of performance in Area A, Attempt 2.

Time | Action Failure Comments
#1 | 14:14:42 | Merging, S inters’n Clean merging after 14.9 s
#2 | 14:15:05 | Exit of inters’n Alice stopped Stopped because of close obsta-

cles and prediction

Problems following tight

#3 | 14:15:56 | Left turn left turn. hit curb

Path/follower problems

#4 | 14:16:21 | Merging, N inters’n Clean merging after 38.6s
Didn’t stop at stop Iine and drove

#5 | 14:17:21 | Stopping, S inters’n | Stop line problems into intersection. Paused by
DARPA

#6 | 14:19:21 | Merging, N inters’n Clean merging after 20.1s
Didn’t stop at stop Iine and drove

#7 | 14:20:01 | Stopping, S inters’n | Stop line problems into intersection. Paused by
DARPA

Prediction stopped Alice, but
manned car performed evasive
maneuver. Paused by DARPA

Pulling into on coming
lane

#8 | 14:21:04 | Exit out of inters’n

#9 | 14:22:28 | End of run

the parking lot (the cars on the sides had been removed) and proceeded through the “gaunltet”, a
stretch of road in which a variety of obstacles had been placed. It then continued driving down
several streets and through the northern zone, which had an opening in the fence. At several points
in the run Alice ran over the curb after turning at intersections. Alice completed the mission in
about 23 minutes.

Run 5: Area A, Attempt 2. In the second attempt at Area A, Alice’s logic had been updated
to ensure that intersection handler would not be overwritten by changing into another state within
the logic planner’s state machine. Unfortunately, an unrelated set of bugs caused problems on
the second attempt. Table 3 summarizes the major events on this run. The primary errors in this
run consisted of properly detecting the stop lines, which appeared in the logs to jump around in a
manner that had not been previously seen (either in testing or other NQE runs).

To understand what happened at the stop lines, a bit more detail is required. The following
steps and conditions that are necessary to stop at stop lines:

e Path planner - Creates path to stay in lane and to follow turns

e Planner - Search for stop lines close to path and store stop line information within the path
structure

e Logic planner - Computes distance between Alice and next stop line found within path struc-
ture

e Logic planner - Depending on distance to stop line, switch in state STOP INTERSECTION
e Velocity planner - Detects state STOP INTERSECTION and modity velocity plan

These steps are necessary as the (spatial) path planner does not take into account stop lines, but

36

Team Caltech

instead relies on the velocity planner to bring the vehicle to a stop. Therefore the function to find
the closest stop line is the critical part of the algorithm.

All modules communicate with the skynet framework. During the race all skynet messages
were written into a log file. Therefore the complete run can be replayed. Watching this replay
and checking the log files, it became obvious that the main problem happened in computing the
distance between Alice and the next stop line. To find the closest stop line, Alice performs the
following actions:

e Search for all RNDF stop lines within this rectangle
e Project found RNDF stop lines onto path and choose closest
e Query map to obtain sensed stop line position for this stop line

e Choose closest node within path, required for velocity planner

In previous runs, sensed stop lines were only stored for 5 cycles after they were not picked up
anymore by the sensors. This threshold was increased during the NQE as stop lines could not be
seen by sensors when Alice’s body was hiding the stop lines. Having a longer time-to-live value,
false-positives were stored longer in the map. At this time, wrong data association in the map lead
to jumping stop lines. When the vehicle approached the stop line in lap #2 and lap #3 the data
association was right while approaching the intersection. As it came closer to the real stop line,
the mapper bug assigned a false-positive stop line that was 3.2 meters behind Alice. In this case,
Alice is assumed to have passed the stop line and did not stop as the threshold for passing a stop
line was set to 3.0 meters. In lap #3 the stop line was moved ahead so that Alice was aiming for
a stop line that was in the middle of the intersection. There was no algorithm in place detecting
sudden changes in stop line positions.

7 Accomplishments and Lessons

Although Alice di not qualify for the race in 2007, the development of an autonomous vehicle
capable of driving in urban traffic was very educational and rewarding. In this section we document
some of the lessons learned and contributions of the project.

7.1 Lessons Learned

Team Caltech’s approach to the Urban Challenge built on our experience from 2005, in which a
combination of low-level failures were not properly handled by the software and Alice drove over
a concrete barrier. To help mitigate the chances of a similar failure in 2007, a substantial effort was
placed on systems engineering and systems architecture. Unfortunately, bugs that were similar in
nature to what we experienced in 2005 again caused critical failures (this time in the qualifying
event). As in 2005, the failure occurred in a situation that was not well-reflected in our testing and
preparations.

The root cause for the fragilities in our system was lack of time and experience required to
develop the software required for the Urban Challenge. Our original schedule planned on having

37

Team Caltech

a fully functional system two months prior to the race, allowing ample time for testing and tuning.
In reality, this point of technical progress was only reached approximately 2 weeks before the race,
which meant that we were not able to test the software in a wide enough variety of situations to
uncover some of the bugs and performance issues.

At a high level, the software architecture that was developed appears to be capable of perform-
ing autonomous operations at the level required for urban driving. With the exception of errors in
robustly detecting stop lines, the sensing subsystem performed well and was extremely capable.
The planning subsystem was more brittle and the finite state machine used to control the overall
functioning of the planner proved to be difficult to verify and modify.

7.2 Technical Contributions and Transitions

Technical Contributions. Through this contact, the following technical contributions have been
accomplished:

New technologies for mission and contingency management - A directive/response based architec-
ture was developed to provide the ability to reason about complex, uncertain, spatio-temporal en-
vironments and to make decisions that enable autonomous missions to be accomplished safely and
efficiently, with ample contingency planning. Building on expertise in high confidence decision-
making and autonomous mission management at JPL, algorithms were developed to control the
vehicle’s sensing, estimation, mapping, planning and control systems in complex and uncertain
conditions, while also ensuring safe operations.

Distributed sensor fusion, mapping, and situational awareness - Building on Caltech and JPL expe-
rience in sensory-based navigation—including feature classification and tracking, moving obstacle
detection and tracking, visual odometry, and sensory-based mapping and localization—we devel-
oped a multi-layer decomposition of our sensed environment so that different levels of navigation
and contingency management algorithms could operate in parallel while providing highly robust
and safe operation. These modules operated in a highly distributed computational architecture.

Real-time, optimization-based navigation - we developed an optimization-based approach to guid-
ance, navigation and control (GNC) that allows our vehicle to plan and execute locally optimal
paths using a sensor-driven description of its environment. This approach was able to handle such
issues as moving vehicles, traffic laws and defensive driving.

Transitions. Through this activity, we have established a strong working relationship with the
Space Technologies sector of Northrop Grumman, including testing of advanced algorithms for
motion planning on Alice (outside of the DGC program). We are also in discussions with the Sys-
tems Integration sector of Northrop Grumman regarding their interest in developing autonomous
vehicle technologies for airport operations.

In addition, Caltech is currently supported under a Multidisciplinary University Research Ini-
tiative (MURI) grant in “Specification, Design and Verification of Distributed Embedded Systems”
which will make use of our 2007 Urban Challenge experience (and our experimental platform) to
pursue research in formal verification methods for complex, autonomous systems such as Alice.

38

Team Caltech

Acknowledgments. The research in this paper was supported bin part by the Defense Advanced
Research Projects Agency (DARPA) under contract HR0011-06-C-0146, the California Institute
of Technology, Big Dog Ventures, Northrop Grumman Corporation, Mohr Davidow Ventures and
Applanix Inc.

The authors would also like to thank the following members of Team Caltech who contributed
to the work described here: Daniel Alvarez, Mohamed Aly, Brandt Belson, Philipp Boettcher, Julia
Braman, William David Carrillo, Vanessa Carson, Arthur Chang, Edward Chen, Steve Chien, Jay
Conrod, Iain Cranston, Lars Cremean, Stefano Di Cairano, Josh Doubleday, Tom Duong, Luke
Durant, Josh Feingold, Matthew Feldman, Tony & Sandie Fender, Nicholas Fette, Ken Fisher,
Melvin Flores, Brent Goldman, Jessica Gonzalez, Scott Goodfriend, Sven Gowal, Steven Gray,
Rob Grogan, Jerry He, Phillip Ho, Mitch Ingham, Nikhil Jain, Michael Kaye, Aditya Khosla, Mag-
nus Linderoth, Laura Lindzey, Ghyrn Loveness, Justin McAllister, Joe McDonnell, Mark Milam,
Russell Newman, Noele Norris, Josh Oreman, Kenny Oslund, Robbie Paolini, Jimmy Paulos,
Humberto Pereira, Rich Petras, Sam Pfister, Christopher Rasmussen, Bob Rasumussen, Dominic
Rizzo, Miles Robinson, Henrik Sandberg, Chris Schantz, Jeremy Schwartz, Kristian Soltesz, Chess
Stetson, Sashko Stubailo, Tamas Szalay, Daniel Talancon, Daniele Tamino, Pete Trautman, David
Trotz, Glenn Wagner, Yi Wang, Albert Wu, Francisco Zabala and Johnny Zhang.

References

[1] L. B. Cremean, T. B. Foote, J. H. Gillula, G. H. Hines, D. Kogan, K. L. Kriechbaum, J. C.
Lamb,J. Leibs, L. Lindzey, C. E. Rasmussen, A. D. Stewart, J. W. Burdick, and R. M. Murray.

Alice: An information-rich autonomous vehicle for high-speed desert navigation. Journal of
Field Robotics, 23(9):777-810, 2006.

[2] D. Dvorak, R. D. Rasmussen, G. Reeves, and A. Sacks. Software architecture themes in jpl’s
mission data system. In Proceedings of 2000 IEEE Aerospace Conference, 2000.

[3] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada. Engineering complex embedded
systems with state analysis and the mission data system. J. Aerospace Computing, Information
and Communication, 2,2005.

[4] M. Linderoth, K. Soltesz, and R. M. Murray. Nonlinear lateral control strategy for nonholo-
nomic vehicles. In Proc. American Control Conference,2008. Submitted.

[5] C.Looman. Handling of dynamic obstacles in autonomous vehicles. Master’s thesis, Univer-
sitdt Stuttgart, 2007.

[6] H. Pereira. Road marking for an autonomous vehicle in dynamic environments. Technical
report, Faculdade de Engenharia da Universidade do Porto, 2007.

[7] R.D.Rasmussen. Goal based fault tolerance for space systems using the mission data system.
In Proceedings of the 2001 IEEE Aerospace Conference,2001.

39

Team Caltech

A Additional Software Modules

In addition to the software modules described in the main text, a number of other modules were
used as part of our system. Those modules are briefly described here.

ASim. Asim is a dynamic simulator for Alice that replaces the astate module. It accepts comments
from gcdrive, simuilates the dynamics of the vehicle (including wheel slippage), and broadcasts
the current vehicle state in a format compatible with astate.

Cotk. CoTK (Console Tool Kit) is a very basic display toolkit for text consoles. Implemented as
a very thin layer over ncurses.

Circle Planner. The circle planner was one of two backup planners for the unstructured regions.
This planner also constructed a graph from a family of curves. The curves considered in this case
was circular arcs and straight line segments. This was a feasibility planner, and did not incorporate
cost from the cost map. It considered obstacles as hard constraints. The graph search was done
with an A* algorithm. This planner was very fast, and produced dynamically feasible solutions,
but the solutions looked rather crude due to the family of curves used, which could easily have
been remedied. This planner was tested but not used in the race.

DPlanner. An optimization-based planner was developed based on the use of NURBS basis
functions combined with differential flatness, as described in the original proposal. This planner
relied on a set of proprietary optimization algorithms that were developed by Northrop Grumman.
The planner solves the complete spatio-temporal problem and is thus capable of accounting for
the dynamic obstacles in the environment explicitly. The planner operated on a cost map, but also
enforced hard constraints for obstacles. The solution obtained (a trajectory) satisfies the dynamics
of the vehicle, as well as constraints on the inputs and state of Alice, while minimizing some cost
function. The NURBS-based planner was not able to execute quickly enough to run in real-time,
and so a rail-based planner was developed to replace it. The dplanner module was not used in the
race.

MapViewer. A lightweight 2-D map and map object viewer built using FLTK. Mapviewer can be
used to visualize map elements sent in and out of the mapper module.

RNDF-editor. A JAVA GUI program for editing RNDF files.

Skynet. The skynet library is used for group communications in Alice. It is a fairly thin wrapper
around Spread. It supports broadcasting of messages to a given group name and subscribing to
groups to receive relevant messages.

Sparrow. Sparrow is a collection of programs and a library of C functions intended to aid in the
implementation of real-time controllers on Linux-based data acquisition and control systems. It
contains functions for executing control algorithms at a fixed rate, communicating with hardware
interface cards, and displaying data in real-time. For the DGC, the real-time data display was the
primary usage.

40

