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Abstract

In this paper we present a dynamical systems framework for analyzing multi-agent rendezvous problems
and characterize the dynamical behavior of the collective system. Recently, the problem of rendezvous has been
addressed considerably in the graph theoretic framework, which is strongly based on the communication aspects of
the problem. The proposed approach is based on set invariance theory and focusses on how to generate feedback
between the vehicles, a key part of the rendezvous problem. The rendezvous problem is defined on the positions
of the agents and the dynamics is modeled as linear first order systems. The proposed framework however is not

fundamentally limited to linear first order dynamics and can be extended to analyze rendezvous of higher order agents.

In the proposed framework, the problem of rendezvous is cast as a stabilization problem, with a set of constraints
on the trajectories of the agents defined on the phase plane. We paesagkeat rendezvous problem as an ellipsoidal
cone invariance problem in the dimensional phase space. Theoretical results based on set invariance theory and
monotone dynamical systems are developed. The necessary and sufficient conditions for rendezvous of linear systems
are presented in form of linear matrix inequalities. These conditions are also interpreted in the Lyapunov framework

using multiple Lyapunov functions. Numerical examples that demonstrate application are also presented.

Index Terms

Multi-agent rendezvous, cooperative dynamical systems, monotone systems, cone invariance, non-negative

matrices.

I. INTRODUCTION

Recently there has been considerable interest in multi-agent coordination or cooperative control [1]. This has

led to the emergence of several interesting control problems. One such problemrendezvous problemn
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a rendezvous problem, one desires to have several agents arrive at predefined destinati@inpdtatsously
Cooperative strike or cooperative jamming are two examples of the rendezvous problem. In the first scenario,
multiple strikes are executedithin a time interval from different agents firing from different distances and
traveling at different speeds. In the second scenario, one or more agents need to start jglightiggoeforethe

strike vehicle enters the danger zone and sustain jamming until strike vehicle exits. In both the scenarios, it is

imperative that all the agents act simultaneously else the objective is not fulfilled.

The idea of rendezvous extends beyond just convergence to a static set of destination points or the origin.
Rendezvous can also entail formation flying or interception problems where the origin is effectively moving.

Interception of incoming ballistic missiles is a rendezvous problem where the origin becomes a moving target and
one of the agents is non cooperating. Formation flying is a type of rendezvous problem where multiple agents
must coordinate position and velocity. The docking of two spacecraft is a rendezvous problem that involves the
two spacecraft matching both position and velocity with the proper orientation. Air-to-air refueling is another

rendezvous problem. Additional applications arise in submersibles where robotic vehicles must converge upon a

set location, either moving or stationary.

In the current literature, several researchers have addressed problems related to path planning with timing
constraints. In 1963, Meschler [2] investigated a time optimal rendezvous problem for linear time varying systems.
He assumed that both the rendezvous point and rendezvous time are not known a priori and that determining the
minimum time at which rendezvous occurred was of interest. In principle, complicated rendezvous problems can
be formulated using optimal control theory [3] and solved numerically. However, for many vehicles, obstacles
and threats, the resulting optimization problem becomes quite complicated and the computational time increases
very rapidly with problem size. McLaimt al. [4], [5] have proposed decomposition methods that breaks down

the monolithic problem into sub-problems that can be solved efficiently in a decentralized manner. Similar
decomposition methods have also being proposed in [6], [7], [8], [9], [10] that solve path planning problems with
timing constraints in a decentralized manner. Rendezvous problems solved in this framework are not amenable for
formal analysis that is required for the purposes of verification and validation and it is difficult to assert guarantees

on stability and limits of performance.

The problem of rendezvous has also been addressed as a consensus problem in the graph theoretic frameworl
Lin et al. [11] apply consensus seeking to a rendezvous problem for a group of mobile autonomous agents, where

both the synchronous case and the asynchronous case are considered. The algorithm presented is provable corre



however does not address uncertainty in communication or dynamics. @Gareds[12] proposed an iterative
algorithm with guaranteed convergence and is robust with respect to communication failures. Jadbabaie

[13] developed a coordination algorithm based on nearest neighbor rules. &naitH14] solves the rendezvous
problem with fixed communication topology based on Euclidian curve shortening methods and is restricted to
planar rendezvous. Ragt al. [15] provides a survey of multi-agent coordination problems based on graph theoretic
framework. The strength of the graph theoretic framework is its ability to analyze the communication aspect of the
rendezvous problem. It however does not characterize the behavior of the collective system, which is necessary to
generate feedback between the vehicles. This is the prime difference between the state-of-the-art in this area anc

the work presented in this paper.

In the dynamical systems literature the problem of cooperation and competition have been addressed in the contex
of cone invariance. The cone is used to define a partial order on the system trajectories, which results in the
cooperative or competitive behavior of the system. In the seminal work by Hirsch [16], [17], [18], [19], [20], [21]

on systems of differential equations that are competitive or cooperative, he developed what is kmoamoase
dynamical systemtheory [22]. He demonstrated that the generic solution of a cooperative and irreducible system
of differential equations converges to a set of equilibria. Furthermore, the flow on a compact limit set of an
n-dimensional cooperative or competitive system of differential equations is shown to be topologically conjugate

to the flow of ann — 1 dimensional system of differential equations, restricted to a compact invariant set.

Invariant sets play an important role in many situations when the behavior of the closed-loop system is constrained
in some way. Blanchini [23] provides an excellent survey of set invariant control. Invariant sets that are cones
have found application in problems related to areas as diverse as industrial growth [24], ecological systems and
symbiotic species [25], arms race [26] and compartmental system analysis [27], [28]. In general, cone invariance

is an essential component in problems involving competition or cooperation.

In this paper we formulate rendezvous problems as cone invariance problems. Theoretical results on necessary an
sufficient conditions for rendezvous are developed in the ellipsoidal cone invariance framework. Similar results
have also been developed using polyhedral cones [29], but is not included in this paper. The rendezvous problem
is defined on the positions of the agents and the dynamics is modeled as linear first order systems. The proposec
framework however is not fundamentally limited to linear first order dynamics and can be extended to analyze
rendezvous of higher order agents. For applications with higher order vehicle dynamics, we assume that the

rendezvous trajectories generated from the first order models will be tracked reasonable closely.



The paper is organized as follows. We first interpret rendezvous in phase plane and define the rendezvous problen
along with notions ofperfect and approximaterendezvous. The problem of rendezvous is then analyzed using

ellipsoidal cones. This is followed by theoretical results and numerical examples.

Il. RENDEZVOUS IN THEPHASE PLANE

In this paper we define the rendezvous problem to be the problem of determining a control algorithm that drives
multiple agents to a desired destination point. The trajectories of the agents must be such that they visit the
destination point only once and arrive at the same time.

Consider two scalar systems or agevi{sand ), characterized by first order dynamics, as

Vi a1 = fi(z1) +g1(x)ur;  f1(0) =0
Vo 1 @ = fo(xa) + ga(w2)uz;  f2(0) =0,

(1)

wherex; € R for i € {1,2} and the destination point being the origin. Leat and z» in eqn. (1) be the spatial
coordinates ofY; andV, on the real line. It is of interest to design control laws and u, such thaty; andV,

reach the origin of the real line at the same time. This is depicted in fig.1(a).
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x2(ta) 21 (ta) z3(ta) = =0 z1(ta) =96
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ORIGIN ORIGIN
(a) Rendezvous at the origin. (b) Rendezvous at a regidR about origin.

Fig. 1. Rendezvous on the real line.

Clearly agents that are exponentially stable will reach the origin as time tends to infinity. In such a case the
comparison of arrival times at the origin, of two different agents becomes meaningless. Even with cooperative
control in place, if the origin is exponentially stable, rendezvous at origin will occur at infinite time in theory. From

a practical standpoint, it is desired that the agents achieve rendezvous in finite time. For this reason we relax the
definition of rendezvous to be such that rendezvous is achieved if the agents enter a certain neighborhood arounc

the origin, at the same time. We define this region to ber¢éimelezvous regiofk.

R={zxeR:—-§ <z <4} for somed >0



Therefore a valid rendezvous is one in which agents eRtat the same time. This is illustrated in fig. 1(b). In

Section II-B we will relax this definition for agents enterifityat approximately the same time.

A. Rendezvous Interpretation on Phase Plane

Rendezvous is best visualized on the phase plane. To interpret rendezvous for first order systems in egn.(1) in the

phase plane, we define the following

Uy = {(x1,29): -6 <z <8}

Uy = {(#1,m9): =6 <9 <0}

S = UinU; (2)
F = (hUly) — (Ui Nls)

W = (R2— (U UUy)).

We refer toS as therendezvous squarend F as theforbidden region

Forbidden Regions

Rendezvous Square [T]

Fig. 2. Perfect rendezvous in phase plane.

With reference to fig.2, the strip am-axis isUy, the strip onz;-axis is the regiorl/; and the rendezvous square
is the destination set where the trajectories must converge to. The rendezvous&igigite set of configurations
with both agents in the rendezvous regiBn The rendezvous problem is well-posed if the initial conditions of the
two agents satisfy

(21(0), 22(0)) € W, 3)

i.e. both the agents start far from the rendezvous region. If the condition in eqgn. (3) is violated\gitloer),



or both start from within the rendezvous regi@ In fig.2 trajectoryB starts from an invalid initial point. The
forbidden region is the set of point8 where one agent enters the rendezvous region much before the other. In
fig.2, trajectoryC crosses the forbidden region which implies that the aggnwith statex; comes within the

rendezvous region prior to the final entry. Such trajectories are not acceptable, i.e. the trajectories must satisfy

(xl(t),a:g(t)) ¢ F Vit. (4)

Trajectory A is an example of two agents, with valid initial conditions, achieving rendezvous as desired.

B. Perfect and Approximate Rendezvous

With constraint defined in eqn.(4), the only way trajectories can efitisrthrough the corners of the rendezvous

square, i.e. through one of the points

(0,9), (6,=9), (—9,6) and (-0, —6), (5)

as shown in fig.2.

This implies that the agents are constrained to eftat precisely the same time, which is the time the trajectory
meets one of the four corners &f In most applications it is acceptable if ageisand), reach the rendezvous
region within a certain time intervahT of each other. We now refer to the case wh&#' is zero asideal or

perfectrendezvous and the case whaAfl" is small asreal or approximaterendezvous.

Since the phase plane does not reveal time explicitly, we use a related mgdsucbaracterize rendezvous. We
will first define p, its relation toAT" will be explained thereafter. To defing we first introduce’y, andt,, to be

the arrival times of agent®; and), at the boundary of the rendezvous regigni.e.

ty, = inf [t]|x(t) € Uy ]
ty, = inf [t | xa(t) €Us].
Clearly, AT is given by
AT = [ty, —ty,|. (6)

Therefore the time, at which the trajectory enters the regibh U Us in the phase plane is given by
to = min(tg,, tq,).

For a given trajectorye(t) = [z1(¢) z2(t)]”, p can be defined to be the maximum ratio of the distance from the



origin of the two agents, after one of them has reached the rendezvous feéglbcan be expressed as

max(|z1(ta)], |[22(ta)]) _ max(|z1(ta)l, [22(ta)])

win(|z1 ()], |72ta)]) 5 (7)

p:

The parametep can also be defined using||; or ||.||2 as well,

1-norm : p= |zl(ta)|+\$2(t:i%\+"'+|x,,(ta)|7
L 2R+t tad (L)
2-norm: p= () .

For the rest of the paper, rendezvous will always be specifietdnd a design measure of approximate rendezvous,

pdes N other words we will call a given rendezvous to be successful, if all the trajectories satisfy

P < Pdes (8)

This notion of approximate rendezvous is illustrated in fig.3. Whenever a trajectory starting in the first quadrant

enters the regio®/; U Us it is constrained to lie within the angle generated by joining the points

There exists similar constraints for trajectories originating in the other quadrants. The introductoim ahe
definition of rendezvous allows trajectories to enter the forbidden refias long as they remain within the above
mentioned angle set by the design constraint. By the definitigninfeqn. (7) it is clear that for a given trajectory

p > 1. Therefore a specification of rendezvous is meaningful if and only if

Pdes= 1- (9)

Note that for perfect rendezvous the specification becosggg= 1.

In the worst case, at the time of entry of the first agept,the distances of the two agents from the origin can
differ by d(pges— 1). By ensuring that the trajectories remain within the bold lines in fig.3, upon entry in the
regionU; U Us we can make sure that the two agents enter the rendezvous mgiagithin a small timeAT of

each other. Thus the constraint in egn.(8) helps k&&psmall.

In fig.3 both trajectoriesA and B fail to achieve perfect rendezvous as they do not enter the rendezvous sguare
from its four corners. On the basis of eqn.(8), trajectBrys unacceptable. Trajectory is acceptable since it lies

within the angle defined by the bold lines.
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Fig. 3. Approximate rendezvous in phase plane.

[11. LYAPUNOV FUNCTIONS AND MULTI-AGENT RENDEZVOUS

In this section we motivate the use of control Lyapunov functions (CLFs) to solve the rendezvous problem. Consider
the Lyapunov function candidate

V(xy,22) = i + 23 + (21 — 23)%. (10)

EnsuringV < 0 guarantees that all the three terms in eqn. (10) goes to zero as time tends to infinjtyarid

o denote the spatial coordinates of agevi{sand ), and the origin is the rendezvous point, the first two terms
ensure that they converge to the origin and the third term ensures that the agents reach the origin simultaneously
This is demonstrated by the following example.

Let the dynamics of the agents be given by
T = u
1 1 (11)
.fz = Uus.
It is easy to verify thal/(z) in egn. (10) is a CLF. Sontag in [30] proposed a formula for producing a stabilizing
controller based on the existence of a CIKx). Because of its guarantee of stabilization and of providing a
convenient relationship between closed-loop trajectories and CLF level sets, Sontag’s formula is used here. For

nonlinear systems with affine input such as

&= f(z) + g()u,



Sontag’s formula can be written as

Vo I+ (Ve ) +4(@)Vagg™ VI poor
- T\ T Vz Vx O
s = Vo7V / 97 (12)
0 Vzg =0

whereV, = 823)

For the system in eqgn. (11) and control derived frbtz) in egn. (10) using Sontag’s formula, the phase portrait

is shown in fig.4(a).

<

@)

Fig. 4. Rendezvous using control Lyapunov functions.

The term(x? — 22)? in egn.(10) ensures that the agents become equidistant from the origin by converging them
to the linesxz; =+, prior to their arrival at the origin. In this sense, rendezvous is achieved fopggyands.

fig.4(b) shows the phase portrait for the same system but with Lyapunov function defined as
V(z1, ) = (22 + 23) [a + be_SI?rg/dQ(’”%J’mg)ﬂ . (13)

Rendezvous is achieved by and); in fig. 4(b) only under restricted values pfegfor a givens. In one sense,
however, rendezvous achieved by and )V, in fig. 4(b) is "better” than that in fig. 4(a) because the agents are
equidistant from the origin only locally. Rendezvous in fig. 4(a) forces the agents to be equidistant from the origin

even at large distances, which may not be necessary.

Thus, it is possible to implicitly satisfy the constraints gnas defined in eqgn. (8), if the Lyapunov function has a
certain form. For valid rendezvous, trajectories in phase plane should not cross either &esn#gative definite

for all points in the phase plane and trajectories are constrained to be within the quadrant they start from, outside
S, the level sets are expected to have clover leaf appearance as shown in fig.5(a). Figure 5(a) shows the level

sets of the Lyapunov function defined in egn.(13) and the corresponding Lyapunov surface is shown in fig.5(b).



The level set of these control Lyapunov functions provide insight into why rendezvous is achieved for these cases.

(b)

Fig. 5. Desired Lyapunov surface and its level sets.

With control using Sontag’s formula for the system in eqn.(11), rendezvous is achievable because trajectories are
constrained to be normal to the level set contours. Controllers based on CLF’s, whose level sets are similar to those

in fig. 5(a), should drive agents for system eqgn.(11) to a successful rendezvous.

IV. CONE INVARIANCE AND RENDEZVOUS

The system trajectories shown in fig.4(a) and fig.4(b) render a wedge-like region invariant. For the Lyapunov function
given by eqgn.(10), the invariant wedge degenerates to a line as shown in fig.6(a). For the Lyapunov function given

by eqgn.(13), the invariant region is a wedge as shown in fig.6(b).

Invariant Line

y | | \\ Invariant Wedge

(a) Invariant line. (b) Invariant wedge.

Fig. 6. Invariant regions rendered by system trajectories.

Therefore, the only admissible trajectories for approximate rendezvous are those that arrive at the origin while

remaining in the wedge-like regidh as shown in fig.7(a).
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Forbidden RegionsfZ)

Rendezvous Square[]

(a) RegionZ in 2 dimensional state space. (b) Possible trajectories if.

Fig. 7. Cone invariance and rendezvous.

For n agents achieving rendezvous, the regibhecomes a cone in-dimensional phase space. Depending on the
norm used to defing in eqn.(7), the cone is either polyhedral or ellipsoidal. Bomorm, as is in eqn.(7), the
cone is a polyhedral cone witti* — 2 sides, a polyhedral cone with sides for1-norm or an ellipsoidal cone for

2-norm. This is shown in fig.8.

Desired region  Polyhedral Cone Quadratic Cone in n-dimension Polyhedral Cone
of invariance with r+sides with 27-Zsides
Norm 1111 II-12 1] 00
Complexity n constraints 1 constraint 2n-2 constraints

Fig. 8. RegionZ in 3 dimensional state space.

Cone invariance alone does not guarantee that the agents reach the origin. Figure 7(b) shows trajedozied
C. TrajectoryA achieves cone invariance but does not reach the origin. TrajeBtoeaches the origin but escapes
the cones. Trajectorg’ is the only trajectory that reaches the origin and stays within the cone. We are interested

in trajectories such a§'.

V. ELLIPSOIDAL CONE INVARIANCE AND RENDEZVOUS

In this section we analyze the rendezvous problem in the framework of ellipsoidal cone invariance. We first
present mathematical preliminaries on ellipsoidal cones and related invariance theory. Formulation of the rendezvous

problem as a cone invariance problem is then presented. This is followed by necessary and sufficient conditions for



11

rendezvous in one and two dimensions. The controller synthesis problem is presented next. The section concludes

with numerical examples that demonstrate application of the theory.

A. Mathematical Preliminaries

1) Ellipsoidal Cones:An ellipsoidal cone inR™ is the following,
T, ={(cR": K,(£,Q) <0, T, >0}, (14)

where K,,(¢,Q) = ¢7Q¢, Q € R™" is a symmetric nonsingular matrix withsangle negative eigen-valug,, and
uy, IS the eigen-vector associated wiih.

The boundary of the conE, is denoted byoT',, and is defined by

0#£Eecdl, ={¢ecl,: K,(&Q)=0}.

The outward pointing normal is the vect@g for ¢ € JT',,.
Theorem 1 (2.7 in [31]):If I, is an ellipsoidal cone, then there exists a nonsingular transformation nidtrix

R™"™ such that

wyrou = | U0 | Za.

whereP e R*1»=1 p>pandP = P7.

Let the transformed state he= M¢. The ellipsoidal cone i is therefore,
r,=A{z: <0} (15)

wherex = (w 2)T, w e R"1 2 € R,

An ellipsoidal cone in three dimension is shown in Fig.(9). The axis of the cone is the eigen-vector associated with

the z axis.

2) Ellipsoidal Cone InvarianceConsider a linear autonomous system

£ = A¢ (16)

A coneT’, is said to be invariant with respect to the dynamics in eqn.(18)#f) € I',, = &(t) € Ty, Vt > to,
i.e. if the system starts inside the cone, it stays in the cone for all future time. Such a condition is also known as

exponential non-negativity.e. eT’,, € T',.



12
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Fig. 9. Ellipsoidal cone in 3-dimension.

It is well known that certain structure in the matrikimposes constraints o' [32]. The most well known result
is the condition of non-negativity oA which states that if4;; > 0 for ¢ # j, then non-negative initial conditions
yield non-negative solutions. Schneider and Vidyasagar [33] introduced the notmmssfpositivityof A on T,

which was shown to be equivalent to exponential non-negativity. Meyeal. [34] extended cross-positivity to

nonlinear fields.

Let us characterize(T',,) to be the set of matriced € R™" which are exponentially non-negative @h. It is

defined by the following theorem.

Theorem 2 (3.1 in [31]):Let '), be an ellipsoidal cone as in eqn.(15). Then,

pIn) ={A€R™ : <AL, QE><0, V¢ € I} (17)

Theorem 2 states that is such that the flow of the associated vector field is directed towards the interigy, of
i.e. the dot product of the outward normal Bf, and the field is negative at the boundary of the cone. This leads

to the result on the necessary and sufficient condition for exponential non-negativity of ellipsoidal cones.

Theorem 3 (3.5 in [31]):A necessary and sufficient condition fdre p(I',,) is that there existy € R such that,
QnA+ ATQ, —Qn <0.

whereQ,, is defined in Theorem 1 and = M AM .

Proof Please refer to pg.162 of [31].

3) Monotone Dynamical Systemé: dynamical system

&= f(t,z)
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is monotone[22] if zop < x1 = x(t,to,x0) < x(t,to, z1), Wherex(t,tg, o) is the solution of the differential
equation and the inequality is component-wise. For linear systems positivity (or negativity) invariance implies

monotonicity [35]. Therefore, theorem 3 is also necessary and sufficient conditions for monotonicity.

We define a partial order with respect to the cdheas <r, , defined by
71 <r, 12 & Ky(21,Q) < Kp(72,Q)

where K, is defined in eqn.(14). Other relations such<as , >r, and>p, can be similarly defined.

For linear systems, invariance of the $gt is equivalent to monotonicity with respect 1y, i.e.

Aepl,) & z9<p,r1 = :erA(t_t“) <r, :UleA(t_t“),t > 1.

B. Rendezvous in One Dimension

Given a conedl’,,, as in eqn.(15) and dynamics as in egn.(16), we present conditions for stability and invariance.
We transform dynamics as

r=M¢t=i=MAM 'z = Az.

With respect to the partition = (w 2)7, the dynamics can be written as

w Avw | Aws w

= ; (18)

z AL | azs z

wherea,, is written in small case to emphasize that it is a scalar.

For cone invariance, theorem 3 impligs € R such that

AL P+ PAyy —~yP PA,, — AL,
< 0.
z AT P —A,, v —2a,, z

For stability, consider the Lyapunov functidn(w, z) = w’ Pw + 22. It is a valid Lyapunov function sinc®& > 0.
Therefore, for stabilityl’ (w, z) < 0, which implies

AT P+ PAy,w PA,,+ AT,
< 0.

z AT P+ A, 2a,, z
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Therefore, for stability and cone invariance we have the following matrix inequalities,

AL P+ PAyw PA,, + AL,
<0 (19)
AEZP + AL 2a.,

AL P+ PAyw —yP PA,, — AL,
<0 (20)
AEZP - Azw v 20‘22’
A simplified sufficient condition is expressed in the following theorem, which also addresses the feasibility of the

LMlIs in egn.(19,20).

Theorem 4:A sufficient condition for cone invariance and stability is given by the following relations,
AT P+ PAyy —2a,.P <0

and

azz < —maz(|lg” I, llg™ID),

whereg~ = PA,, — AL andgt = PA,. + AL,.
Proof
Sufficiency for Stability

Define matrices

M - AT P+ PAyw 0 - 0 gt

0 24, gHT 0
For stability we need to show/; + My < 0. Theorem 4 implies\,..(M1) = 2a.,, 2a.. < —||g"||, and

Amaz(M2) = ||g™||. Therefore,
)\ma;r(Ml) + )\mam(MQ) < 0

= Amaz (M1 + My) < 0
= M+ My, < O
Hence proved.
Sufficiency for Cone Invariance
Define matrices
My — AT P+ PAyyw — P 0 M, — 0 g~
0 ¥ — 20z, (g7)" 0

For cone invariance we need to shau; + My < 0. Theorem 4 implies\,,,(M3) = 2a,,, 2a., < —||g~||, and

Amaz(M4) = ||g~||. Following the steps in the proof for stability, we can arrive at the conclusiom\tat M/, < 0.
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Hence proved.

Theorem 4 leads to the following corollary.

Corollary 1: Trajectories originating outside the cone will enter the cone in finite time.
Proof

The coneK, (&, Q) can be written ad(,(z, @,). Condition for cone invariance implies

Kn(l‘a Qn) < ’7Kn($, Qn)

For = outside the coneK,(z,Q,) > 0. Stability and cone invariance implies < 2a,, < 0, which implies

K,(x,Q,) < 0 outside the cone. Hence proved.

0 e R —
Initial conditions : 2o
g .| outside the cone N D A UPUUUUUUPR PP

'Trajecto-ries entering
the cone

. . . .
1077 5 () B 8

Fig. 10. Cone as an attractor. If the eigenvalues are real the trajectories will converge radially to the origin. For complex eigenvalues, the
trajectories will converge spirally.

Example 1:Figure(10) illustrates trajectories for the system

) —0.9713  0.0185  0.5813 )
s | = | 05813 —0.9713 0.0185 z9 |- (21)
i3 0.0185  0.5813 —0.9713 T3

We observe that trajectories originating outside the cone, enter the cone. The eigenvalues of the system in
eqn.(21) are0.3715, -1.2712 + 0.4874i, -1.2712 - 0.4874i . These correspond to the dynamics
of trajectoriesz(t), w;(t) andws(t). The conditions for stability and cone invariance imply that the decay rate of

w(t) = [w1(t) we(t)] is faster than that of(¢), which is observed here.



16

As observed, trajectories with initial conditions outside the cone, enter the cone. Such trajectories will be valid
rendezvous trajectories if they enter the cone before intersectinigribieldenregion 7, as defined in eqn.(2), for
n-dimensions.

To characterize the set of valid initial conditions for which rendezvous is achieved, let us define hyperplanes
Hi={zx:2z;,=6,i=1,---,n}

and half space intersections

Si:{xzzcj25,j§éi,j:1,---,n}.

Let & be the ellipse segments defined by
E=H;NS;Nnor,.

Let 7 be the closed curve obtained by the union of the ellipse segments, i.e.

(.

=1

Figure 11(a) shows the curvE for three agents, withh = 1.
Let 02 be the surface defined by

00 = {x(to) : x(to)e* %) e T, for somet > t}.

Figure 11(b) shows the surfac¥) for three agents, withh = 1.

Therefore, the set of all initial conditions) = z(ty), for which trajectories entdr,, before enteringF is given by
Q= {J}(to) : .’L‘(to) Spn BQ}

Clearly, for initial conditions outside2, the definition of approximate rendezvous is violated and can be
demonstrated as follows. Monotonicity implies, for allty) >r, ©, the solution satisfies (ty)e**~%) >p Q.
Let t, = inf; z(tg)et %) € F. Thereforez(tg)et=~%) >p Q, i.e. z(ty)e***) never enters the corig, before

enteringF.

The set2 will include initial conditions originating froni. Therefore, the set ofalid initial conditions for which
rendezvous is achieved is given by

Qr=0NW,
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whereW is defined in egn.(2).

(a) The contour7 . (b) The surface 2.

Fig. 11. Set of initial conditions for which trajectories enter the cone before entering the forbidden region. Figure 11(a) shows the closed
curve 7, which is the intersection of the hyperplangs, the half space intersectiods and the surface of the codg,. The surface&? is
shown in fig.11(b), which defines the set of all initial conditions for which trajectories enter the cone through the closef. curve

Next we characterize matrice$ € p(oT',,) where
p(00,) == {A e R¥" : eA4(a0,) € O, Vt > 0}.

The necessary and sufficient conditions foe p(9T';,,) can be derived by setting vector field tangent to the locally
smooth surface of the conél’,,/{0}. As an LMI constraint this is equivalent to

AT P+ PAyy, —yP PA,. — AT,
= 0. (22)

AgzP — A, v — 20,

This leads to the following result.

Theorem 5:Sufficient condition for rendezvous, defined by invariancé&Dj, is given by the following:

AL P+ PAy, = 2a,.P (23)
ALP = A, (24)
0., < —[|Azul| (25)

- P 0

0 1

Proof:

Sufficiency for Invariance 0T, : It is straight forward to see eqn.(23, 24) imply eqn.(22).
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Sufficiency for Stability Given eqn.(25) is true,

P 0
= A2z Amax =+ HAZU)H < 0
0 1
a,, P 0 0o AT
= Amaz = + Mnax - < 0
0 Qzzy AZw 0
= aP A < 0
Azw Uzz
AT P+ PAyw PA,,+ AT,
= < 0

AZ;ZP + AL 2a,
which is the condition for stability. Hence proved.
Theorem 5 results in the following corollary.
Corollary 2: The surface of the con@l’,, is an attractor.

Proof

Condition for invariance obTl’,, implies

Kn(xa Qn) = 'YKn(xv Qn)

For z outside the coneK,(z,Q,) > 0. Stability and cone invariance implieg = 2a,, < 0 which implies
K,(z,Q,) < 0 outside the cone. Similarly, for inside the conekK,(z,Q,) < 0. v < 0 implies K, (z, Q,,) > 0.

Hence proved.

C. Rendezvous in Two Dimensions

Here we consider rendezvousofagents in two dimensions. Let the state of each agerighes,,),i =1, -, n.

Collectively their dynamics can be written as

: A, A .
S o e e ), (26)

éy Ae,. Ag, &y
whereé, = (&, -+ &) and&y = (&, -+ &))" and A¢,, Ae,,, Ag,., Ae,, € R
In this work we solve the rendezvous problem in two dimension as two separate rendezvous problems in one
dimension. We assume that con{eﬁggmgx < 0 and gyTnggy < 0, each satisfying eqn.(14), are given. We are

interested in determining necessary and sufficient conditions for cone invariance and stability.
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For ellipsoidal coneasg’ngfz <0 andgyTnygy < 0, there exists transformatioR, and i, respectively such that

P, 0
Q¢ = (R;HTQe, Ry = :

- O _1_

T
Q= (RN'Qe R, = -

where P, P, > 0 € R(~1x("=1) and the superscript" on Q. and @, denotes cones.

Let the transformed states be
r = Rxfa:a

y = Ry&,.

The system dynamics with respect to the transformed states can be written as

& 'm0 | [ A A | [ R 0 .
Y B | 0 Ry | [ Ae,. Ae, 0 Rz;l Yy
[ e Ay | [ 2
| Aye Ay | Y

Using theorem (3), the necessary and sufficient conditions for cone invariance with respect to traje@toges,)

andy(t,tg,yo) are

Qs +Q Y Qf Q% Azy <0 27)
T c
Amme 0 |
O ATx c i
=y < 0, (28)
Q5 Aye Ay, Qf + QAyy — 1,Qy |

for some~y, € R and~, € R.

For stability, define

P, 0 P, 0
Q= Q= ;
0 1 0 1

where the superscripts” on @, and @, denotes stability.

ThereforeV (z,y) = 27 QSz + yTQZy is a valid Lyapunov function. Stability with respect ¥z, y) implies

Q5 Aye + A7, Q5 AJLQ5 + QyAyy

<0 (29)



20

Therefore, equations (27, 28, 29) are the necessary and sufficient conditions for rendezvous in two dimensions. If

the dynamics of, and¢, are decoupled, then the conditions simplify to the following,

A:{ng + QS A —1.Q5 < 0,
Agy vt Q;Ayy —nwQ; < 0,
ALQs + Q54 < 0,

T
Ay @y + QAy, < 0.

(30)

Following the treatment presented in this section, these results can be easily extended to define necessary
and sufficient conditions for rendezvous in higher dimensions. Note that the approach presented, solves higher
dimensional rendezvous problems as separate rendezvous problems in each dimension, which is restrictive.

Example 2:Consider the following first order dynamics (m,y) plane of three agents,

—1.4596 0.2140  0.6043 | 0.0000  0.0000  0.0000
0.6043 —1.4596 0.2140 | 0.0000  0.0000  0.0000
T 0.2140  0.6043 —1.4596 | 0.0000  0.0000  0.0000 T

Y 0.0000  0.0000  0.0000 | —2.3186 0.0439  1.2807 Y
0.0000  0.0000  0.0000 | 1.2807 —2.3186 0.0439
0.0000  0.0000  0.0000 | 0.0439  1.2807 —2.3186

70-
Vehicle 3
0 T=/(/)/_.00 12
L y 11
%0 _"T=0.10
<«— Vehicle 2
40+ \/ehicle 1 0.8
y(t) [r=0.00, ETA (sec)
~..T=0.10
3ot \\ 0.6l
200 \ 0.4}
|~ S
I T=1_()9’,Tﬁ1.00 ma\
10 4 T=1.00 0.2+
= T=0.00
T=20.00-"_5 oo Vehicle 2 Vehicle 3
% 5 10 15 20 25 30 35 40 45 50 O % 4 6 8 10 12 14 16 18 20
x(t) Time (sec)
(a) Initial conditions(5, 35), (50, 10), (50, 60). (b) Expected arrival times.

Fig. 12. Rendezvous of three agents(iny) plane. Agents modeled as first order systems @ndy.

Observe that the dynamics inis decoupled frony. Figure 12(a) shows the trajectories of the three agen(ts,in)

plane achieving rendezvous with different sets of initial conditions. The trajectories are time stamped to indicate
their location with respect to time. In fig.12(a), we observe that the agents start far away from each other. Vehicles
1,2 and 3 start from points(5, 35), (50, 10), (50, 60) respectively. At timeI" = 1.00 the trajectories are close to

each other. A’ = 2.00 the trajectories overlap. Of particular interest is the trajectory of vehiclghich moves
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away from the origin to meet the other agents so that rendezvous is possible. Figure 12(b) shows expected time
of arrival (ETA) as a function of time. ETA is computed by dividing the instantaneous distance from origin by the
instantaneous average velocity. Observe that the initial ETA of the vehicles further away (Vehicle 2 and 3) is lower
than vehicles closer to the origin (Mehicle 1). This is due to the model of the position dynamics assumed, where
the velocity of the vehicle is linearly proportional to the distance from the origin. In this example we observe that
the ETA trajectories for all the vehicles begin to overlap as they approach the origin, indicating same arrival times

at the origin.

D. Rendezvous in Lyapunov Framework

In this section we derive necessary and sufficient conditions for rendezvous in the Lyapunov framework. We first
consider rendezvous in one dimension, followed by rendezvous in two dimensions.
1) Rendezvous in One DimensioBonsider two Lyapunov functiong,, (w) = w? Pw, P > 0 and V,(z) = 27 2.

The conel’,, can then be represented as
w
r, =1 :V(w) < Vi(2)}
z

Conditions for rendezvous in the Lyapunov framework is then given by the following theorem.

Theorem 6:Necessary and sufficient conditions for rendezvous in terms of Lyapunov funédfipasd V., are
Cone Invariance : V,, — V. <~y(Vy — Vi), v €R (31)
and
Stability : V,, + V. < 0. (32)

Equality in eqn.(31) implies invariance ofi",,

Proof: These conditions are obtained by rewriting equations (20) and (19) in terms of the Lyapunov functions and
their derivatives.

2) Rendezvous in Two Dimensiorig analyze rendezvous in two dimensions in the Lyapunov framework, we first

partition the states as = (w, z,) andy = (w, z,). Define Lyapunov functions

Vw, = wngwx
V., = 2
Vw, = wg Pyw,
V, = 22

Y Y
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Theorem 7:Necessary and sufficient conditions for rendezvous in two dimensions can be written in terms of these

four Lyapunov functions as follows,

Vwr - ‘/zz S /Ya:(vwl - ‘/zz)a Ve € R7

Vw _Vz S Vw,_‘/z ’ ER,

. y . y ’Yy( y y) Yy (33)
Vw, +V2, < 0,

wa + "/;5?/ < 0.
Proof: These conditions are obtained by rewriting the equations (27, 28, 29) in terms of the Lyapunov functions

and their derivatives.

E. Controller Design Problem

Let us assume that there ameagents for which rendezvous is desired. Let us also assume that the agents are

modeled adirst order LTI systems. Collectively, they can be written as
¢ = A¢ + Bu. (34)

where A and B are matrices of appropriate dimensions dad B) is controllable. We also assume that we are
given an ellipsoidal cong,, as defined by egn.(15), whe¢g depends on the specified measure of rendezpgus

Therefore, given a con€,, andn agents modeled as first order LTI systems, we are interested in determining

control u(¢) such that the following are true,

g(tO) € Fn = E(t) € Fna Vi > to, and

(35)
&(t) — 0ast — oo
If we consider aull state feedbaclkontrol framework, then
w=F¢=FM 'z
and the closed-loop system is therefore
&= M(A+ BF)M 'z (36)

which can be represented in the form as in eqn.(18).
Assuming that the paifA4, B) in eqn.(34) is controllable, the controller synthesis problem is to deterisach
that the LMI constraints in egn.(19,20) are feasible. If the states are not available for feedback, the current approach

can be extended to incorporate any linear observer based controller design methodology.

For higher order dynamics, the controller synthesis problem is not straight forward. Consider agents whose dynamics
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is represented by the linear second order differential equation
midi(t) + di&i(t) + ki&i(t) = ui(t),

wherem;, d; and k; are mass, damping and stiffness respectively. In matrix-vector notation the dynamics can be

ZC){(; 1m](§>+{i}

For n agents the collective dynamics can be represented by the equation
' 0
U U

BT]
and we assume that the system is controllable.
For dynamical systems given by eqn.(37), the cénedefined on position statesis not closed-loopholdable

represented by

0 In

An& Ann

(pg.65 [36]). A conel’,, is said to be closed-loop holdable if there exists conit@) such that the condition of

exponential non-negativity can be enforced, i.e.
Ju(t) : Ku(£,Q) <0, V& € oT.

For the system in eqn.(37) and the cone in eqn.(14),

Kn(€,Q) = £'Q¢+¢"Q¢
= "¢+ Qn,
which isindependentf . Therefore, the condition of exponential non-negativity cannot be enforced by any choice
of w.
However, it is possible to design tracking controllers, where referéh@e is first determined using first order
models and then(¢) is determined to track the referen€g(t). An example using this two degree of freedom

controller design is presented in the next section.

VI. EXAMPLE

In this section we consider rendezvous of three agents ir{ithg) plane. The open loop dynamics of theand

y positions of each agent are modeled as second order systems, i.e.

T 0 1 T; 0
'Uz, -1 -1 (o 1
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Ui 0 1 Yi 0
= + Uy, -
iy, 1 =1 | \ v, 1

(39)

Since thex andy dynamics of the agents are second order systems, we first solve the rendezvous problem using
the first order dynamics and eqn.(20),(19) to generate reference trajeatpiies); (¢), for each agent. Full state

feedback is assumed in determining the reference trajectories, i.e. every agent has position information of all the
agents. The feedback structure of the outer-loop (reference generation) structure is shown in Fig.13. Observe that

the reference trajectory is generated in a decentralized manner.

Rendezvous 25 (1), Y5 (1) z1(t),y1(t)
— > Reference Trajectory ————— Agent 1 —]

for Agent 1

Rendezvous 25(1), y5 () z2(t), y2(t)

Reference Trajectory ———» Agent 2

for Agent 2

Rendezvous a4 (), v5(1) 23(),y3(t)
— > Reference Trajectory ——— Agent 3 ]

for Agent 3

Fig. 13. Feedback structure of the outer-loop.

The reference trajectories are then tracked using a separately designed tracking controller. The inner-loop (tracking)
structure is shown in fig.(14) for tracking of referencét). The tracking controller is identical for bott (¢) and

y"(t) and also for every agent.

\4
+

z"(t)

e\_[o 1])(=) [0].. > z(t)
EEEA G

Fig. 14. Feedback structure of the inner-loop.

Example 3: Simulation with Tracking Controller

Figure 15(a) shows the trajectories of the three agents. The initial conditions for position of the three agents are
(5,35), (50,10) and (50, 60) respectively. The initial velocities of the three agents along are (10, 1), (—10, 20)

and(1, —30) respectively. We observe that the agents achieve rendezvous with a reasonably good position tracking
controller. The expected arrival times of the agents are shown in fig. 15(b). We observe that the ETA of all the

vehicles increase initially. This is due to the mismatch in the velocity of the system and the required velocity for
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rendezvous. The ETAs become identical as the vehicles approach the origin. This is also visible from the plots in

fig.12(a). We observe that the trajectories are close to each otfféerEat0s and become identical & = 20s.

Vehicle 3

T=0.00 10
551
J 9r
50 /
/ 8t
451 /
// 7 L
401 Vehicle 1 //
T S / ol |
y(t) 30t \ // ETA (sec) s Vehicle 1
251 \ ///» \
20+ | //'/
= s
15| 6'// T
101 Tw»/lﬁ 0T=10.oo 2+
Z T=0.00 Vehicle 3
51 T=2000 Vehicle 2 10
T=100.04 f ! . . I . . ! . ) o ) ) ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 5 60 70 80 90 100
* (t) Time (sec)
(a) Initial conditions(z,y): (5,35), (50, 10), (50, 60). Ini- (b) Estimated arrival times.

tial conditions for(v,, v,): (10, 1), (—10, 20) and(1, —30).

Fig. 15. Rendezvous of three agents with second order dynamigs ) plane. Reference position trajectories are generated using first
order dynamics. Position tracking controller is then used to track the reference.

Example 4: Simulation with Tracking Controller & Uncertainty in Vehicle Behavior

Figure 16(a) shows the same simulation as the previous example, but with &hielking an unexpected loop in

the time interval ofl" = [5,15] seconds. We observe that the other vehicles modify their trajectories accordingly

to achieve rendezvous. This is particularly visible in the ETA plots as shown in fig.16(b). Due to the diversion
of vehicle 3, its ETA increases considerably. ETA of the other vehicles also increase appropriately so that they
achieve rendezvous. Note that the first peak in the ETA of vehickesd2 are due to the mismatch in the velocity

as in the previous example. The second peak is due to the deviation of veHide the reference trajectory.

Once again the ETAs become identical as the vehicles approach the origin. Figure 16(a) shows that the vehicle

trajectories come close to each other’By= 20s and become identical & = 30s.

The above examples demonstrate that the proposed method is also applicable to second order systems with suitabl

designed position tracking controller. The method is also robust to changes in the vehicle behavior.

VII. COMMUNICATION ISSUES

In the proposed method we have assumed full state feedback for controller synthesis. In reality, the communication
topology may not allow such a luxury. In such cases, state estimations are required. Recent developments on
multi-agent consensus can be applied to estimate the positions of the agents. Future work along this direction is to

incorporate some of the results available in multi-agent consensus into this framework.
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Vehicle 3

60 T:O.D()l 14r

50 /

40 veicle 1 /
T=0,00 // L
y(t) 30+ T=10.00 / ETA (sec)
/’ e L
)

20

T=0.00
Vehicle 2

0 10 20 30 40 50 60
.’E(t) Time (sec)

(5,35), (50, 10), (50, 60). Ini- (b) Estimated arrival times.
1), (—10,20) and (1, —30).

90 100

(a) Initial conditions(z,y):
tial conditions(v,, vy): (10,

Fig. 16. Rendezvous of three agents with second order dynami¢s, i) plane and robustness with respect to uncertainty in vehicle
behavior.

VIIl. SUMMARY

This paper presented our initial results on rendezvous of multiple agents. We addressed the problem in a non-grapf
theoretic framework. The problem was formulated as a cone invariance problem and necessary and sufficient
conditions were developed using ellipsoidal cones, for systems with first order dynamics. The necessary and
sufficient conditions were also presented in the Lyapunov framework using multiple Lyapunov functions. A

control synthesis algorithm using full state feedback approach for first order system was also presented. Numerical
examples demonstrating application of this method to higher order systems and also robustness with respect to

uncertainty in vehicle behavior was also presented.

Future work along this theme is focussed on multiple directions including formal analysis of multi-agent rendezvous
with higher order dynamics, addressing state estimation and consensus and extension of this framework to nonlineau

systems using multiple Lyapunov functions.
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