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Fault tolerance and safety verification of control systems are essential for the success of
autonomous robotic systems. A control architecture called Mission Data System (MDS),
developed at the Jet Propulsion Laboratory, takes a goal-based control approach. A soft-
ware algorithm for converting goal network control programs into linear hybrid systems
exists and is a bisimulation; the resulting linear hybrid system can be verified for safety in
the presence of failures using existing symbolic model checkers, and thus the original goal
network is verified. A substantial example control program based on a proposed mission
to Titan, a moon of Saturn, is converted using the procedures discussed.

I. Introduction

Autonomous robotic missions, such as robotic exploration missions to distant planets and moons, have
complex control systems. In general, the necessary fault detection, isolation and recovery software for these
systems is cumbersome and added on as failure cases are encountered in simulation. There is a need for a
systematic way to incorporate fault tolerance in autonomous robotic control systems. One way to accomplish
this could be to create a flexible control system that can reconfigure itself in the presence of faults. However,
if the control system cannot be verified for safety, the added complexity of reconfigurability could reduce the
system’s effective fault tolerance.

A software control architecture developed at the Jet Propulsion Laboratory uses state models and recon-
figurable goal-based control programs for the control of autonomous systems.1 Mission Data System (MDS)
is based on a systems engineering concept called State Analysis.2 Using MDS, systems are controlled by
networks of goals, which directly express intent as constraints on physical states over time. By encoding the
intent of the robot’s actions, MDS has naturally allowed more fault response options to be autonomously
explored by the control system.3 Unlike the more traditional sequences of commands used to control robotic
space missions, goal networks allow for branching in the execution plan at the cost of added complexity. The
complex branching nature of goal networks make control program verification necessary.

One particularly useful way to model fault tolerant control systems, including goal networks, is as hybrid
systems. Much work has been done on the control of hybrid systems.4 When the continuous dynamics of
these systems are sufficiently simple, it is possible to verify that the execution of the hybrid control system
will not fall into an unsafe regime.5 There are several software packages available that can be used for this
analysis, including HyTech,6 UPPAAL,7 and VERITI,8 all of which are symbolic model checkers. PHAVer,
the symbolic model checker used in this paper, is a more capable extension of HyTech.9 PHAVer is able to
exactly verify linear hybrid systems with piecewise constant bounds on continuous state derivatives and is
able to handle arbitrarily large numbers due to the use of the Parma Polyhedra Library. Safety verification
for fault tolerant hybrid control systems ensures that the occurrence of certain faults will not cause the
system to reach an unsafe state.

Often times, the control program used for an application is not in a form that is conducive to verification.
The control program must then be transformed to an acceptable form by some suitable means. One such
tool exists for the conversion of AgentSpeak, a reactive goal-based control language, into two languages:
Promela, which is associated with the Spin model checker,10 and Java, for which JPF2 is a general purpose
model checker.11 Another popular approach is to create correct by design control programs from Buchi
automata on infinite words,12 or from specifications and requirements stated in a restricted subset of LTL.13

∗braman@caltech.edu

1 of 11

American Institute of Aeronautics and Astronautics

Submitted, 2009 AIAA Infotech@Aerospace Conference and Exhibit
http://www.cds.caltech.edu/~murray/papers/2008n_bm09-infotech.html



The goal networks associated with MDS can also be converted automatically via a bisimulation into linear
hybrid systems and then verified using existing symbolic model checking software.14 The contribution of
this paper is the conversion and eventual verification of a substantial example problem based on a proposed
robotic mission to Titan, a moon of Saturn. Section II briefly describes the software architecture, MDS,
linear hybrid automata, and some background information on the Titan mission. Section III summarizes the
conversion and verification procedure more fully described in previous works15.14 Section IV describes the
Titan mission plan example and Section V concludes the paper and lists future work.

II. Background Information

A. State Analysis and Mission Data System

State Analysis is a systems engineering methodology that focuses on a state-based approach to the design
of a system.2 Models of state effects in the system that is under control are used for the estimation of state
variables, control of the system, planning, and goal scheduling. State variables are representations of states
or properties of the system that are controlled or that affect a controlled state. Examples of state variables
could include the position of a robot, the temperature of the environment, the health of a sensor, or the
position of a switch.

Goals and goal elaborations are created based on the models. Goals are specific statements of intent used
to control a system by constraining a state variable in time. Goals are elaborated from a parent goal based
on the intent and type of goal, the state models, and several intuitive rules, as described in Ingham et al.2

A core concept of State Analysis is that the language used to design the control system should be nearly the
same as the language used to implement the control system. Therefore, the software architecture, MDS, is
closely related to State Analysis.

Goal networks in MDS replace command sequences in more traditional control architectures as the control
input to the system. A goal network consists of a set of goals, a set of time points, and temporal constraints.
A goal may cause other constraints to be elaborated on the same state variable and/or on other causally
related state variables. The goals in the goal network and their elaborations are scheduled by the scheduler
software component so that there are no conflicts in time, goal order or intent. Each scheduled goal is then
achieved by the estimator or controller of the state variable that is constrained. A goal that is achieved at
some level by a controller is called a controlled goal; all other goals are passive.

Elaboration allows MDS to handle tasks more flexibly than control architectures based on command
sequences. One example is fault tolerance. Re-elaboration of failed goals is an option if there are physical
redundancies in the system, many ways to accomplish the same task, or degraded modes of operation that are
acceptable for a task. The elaboration class for a goal can include several pre-defined tactics. These tactics
are simply different ways to accomplish the intent of the goal, and passive goals constrain the conditions in
which a tactic may be executed. This capability allows for many common types and combinations of faults
to be accommodated automatically by the control system.3

B. Linear Hybrid Systems

There are several symbolic model checkers available that are capable of verifying linear hybrid automata. A
linear hybrid automaton H consists of the following components:6

1. A finite, ordered list of continuous state variables, X = {x1, x2, ..., xn}, and their time derivatives,
Ẋ = {ẋ1, ẋ2, ..., ẋn}.

2. A control graph, (V,E), where V is the set of control modes or locations of the system, and E is the
set of control edges or transitions between the different modes of the system.

3. The set of invariants for each location, inv(v), the set of initial conditions for each location, init(v),
and the set of flow conditions, which are equations that dictate how state propagates in each location,
dif(v, Ẋ), where v ∈ V .

4. The set of transition labels, Σ, and transition actions or reset equations, A.

This hybrid automaton specification can be illustrated using a simple example. Suppose there is an
autonomous unmanned air vehicle (UAV) whose task is to fly to a point and then maintain that position for
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some amount of time. The speed at which the UAV can fly is determined by its system health (the combined
health value of all its sensors). This system is described by two automata, H1 and H2, shown in Figure 1.
The sets of continuous variables associated with these automata are X1 = {x, t}, where x is the position and
t is a timer, and X2 = {s}, where s is a measure of system health; the associated time derivatives belong
to the appropriate sets. The locations and transition arrows (minus the conditions) make up sets Vn and
En, where n = 1, 2, respectively. The initial conditions are x = 0 for H1 and s = 0 for H2. The transition
conditions from GS1 and GS2 to Maint are x ≥ xd,l ∈ Σ1 (these same transition edges have reset conditions
on the timer, t = 0 ∈ A); the related invariants of those two locations are x < xd, where xd,l < xd. This
means that as soon as x reaches xd,l, which may be a lower bound on the desired transition state value, the
transitions can occur, but the transition will definitely occur when x = xd. Likewise, the other invariant
conditions and transitions in both automata dictate when the transitions will occur. Finally, the differential
equations that control the flow of the variables are listed in each location.

Figure 1. Hybrid automata example

These components fully describe a linear hybrid system that can be successfully verified using HyTech
or PHAVer. The reachability analysis used in the safety verification of these hybrid automata finds the set
of all states that are connected to a given initial state by a valid run. This can cause a huge explosion of
the state space, however, so symbolic model checkers partition the state space into sets that are similar in
the given reachability analysis. For example, given some interesting condition, PHAVer will return the set
of the state space in which it is reachable; these interesting conditions given to the software are generally
“unsafe” conditions for the particular system.

C. Proposed Titan Mission

Titan is the largest moon of Saturn and is remarkable for its dense atmosphere that has an estimated
composition of 95% nitrogen, 3% methane, and 2% argon. The surface pressure on Titan is about 1.5 bars,
which is about 1.5 times the surface pressure on Earth. The thick atmosphere and the methane haze make
surface observation difficult; however near infrared observations and pictures from the Huygens probe suggest
that interesting terrain is present, made of solid rock and frozen water ice littered with liquid methane and
ethane bodies. Cryovolcanism has been conjectured, as well as a methane and ethane cycle like the water
cycle present on Earth.16

A proposed mission to Titan consists of a satellite of Titan that would release an aerobot probe to the
lower atmosphere of Titan. This lighter-than-air vehicle would use wind currents to explore the moon by
taking advantage of Titan’s unique atmosphere. The probe would have the capability to fly to points while
simultaneously mapping Titan’s surface; it would also be able to stationkeep. Besides wind profiling, surface
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and atmospheric observations, and atmospheric composition testing, the probe would also have the capability
to collect samples from the surface without landing.17

Because the Saturn system is far away from Earth, there is a significant light-time delay between the
two planets of about 2.6 hours round-trip.16 This means long communication latencies between the aerobot
and Earth. Having an autonomous vehicle that can handle a relatively long mission plan without human
interference is important. This autonomous control system must be able to run without human intervention
and be able to identify and handle many types of faults and failures in a safe manner. The verification of
the fault-tolerant control plans against sets of unsafe conditions will be extremely important and useful for
a Titan exploration mission.

III. Verification Procedure

Goal network control programs based on State Analysis techniques and the MDS control architecture
can be verified using a simple conversion procedure. This conversion from goal network control programs
to linear hybrid automata (LHA), which are verifiable using existing symbolic model checking software, was
introduced in Braman et al.15 The conversion procedure is a bisimulation between the goal networks and
the linear hybrid automata, and so verification of the converted LHA implies verification of the original goal
network.14

The conversion and verification procedure of goal network control programs consists of several parts.
First, the goal network itself is translated into a “goals” automaton. Some structure must be imposed on
the goal network before employing this conversion; the time points in the goal network must be well-ordered
(which means that they will fire in the order presented) and currently, no completion goals can be split by a
time point. Completion goals are transition goals that constrain state variables to reach a certain value by
applying a control input that causes the state variable to change at some rate. A simple example of this is a
rover being constrained to reach a certain point; the position of the rover is controlled until the appropriate
position is reached.

The goals in the goal network are then classified and grouped in different ways. All goals that are
active between two consecutive time points are placed into a group. These goals are classified as controlled
goals (goal constraints that require control action to achieve them) or passive goals (goals that constrain
the conditions in which the tactic is valid). Consistent goals are goals whose constraints can be executed
at the same time. Compatible goals are goals that either have different parent goals or are in the same
tactic elaborated from a parent goal. Combinations of goals in a group can belong to the same executable
set; an executable set of goals satisfies certain conditions such as compatibility and consistency. These sets
enumerate all the goals that would be active during a time interval as the goal network executes; therefore
they also follow ancestry rules dictated by goal network execution standards.

Locations of the linear hybrid automaton are constructed from these executable sets in each group. The
three types of transitions between these locations in the goals automaton are constructed from the two types
of transitions in the goal network. The two types of goal network transitions are completion transitions,
where an executable set of goals transitions into another executable set of goals in the next group as a time
point fires; and failure transitions, where an executable set of goals transitions into another executable set
of goals in the same group due to the failure of one of the accompanying passive goals in the executable set.
The three types of transitions of the linear hybrid automaton are entry transitions, which are transitions
from the preceding group connector (or initially) to the location; exit transitions, which are transitions from
locations to the following group connector; and failure transitions, which are transitions between locations
in a group, or from a location to the Safing location. The failure transitions in the goals automaton are
directly created from the goal network’s failure transitions, and the entry and exit transitions are created
from the completion transitions of the goal network.

The goals automaton is a linear hybrid automaton whose execution paths capture all the possible exe-
cution flows of the goal network. Once it is created, several other automata based on the state variables
constrained in the passive goals must be created. Each automaton has locations based on the discrete states
or the discrete sets of states that the state variable can take. The transitions of the automaton are based
on the model of the state variable; the transition conditions could be stochastic or a function of other state
variables.

Once the hybrid automata are created, the system can be verified against some designer-specified unsafe
set of conditions using existing symbolic model checking software. PHAVer is currently the software of choice,
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though the conversion algorithm software is able to create input files for a variety of model checkers. Once
the hybrid automata are verified, any changes that had to be made to the hybrid system can be translated
back into changes in the goal network using a reverse conversion process.

An example of the conversion of a simple goal network is shown in Figure 2. The goal network has two
time points and so only one group. The parent goal is a completion goal directing the position of the system
to transition to some point; there are two tactics as evidenced by the dashed line below the goal and the
“OR” surrounded by dashed lines between the tactics. The first tactic constrains the speed to some limit
as long as the system health (SH) is good. The second tactic constrains the speed to some smaller limit as
long as the system health is fair. If the system health ever becomes poor, the system must safe.

Figure 2. Example goal network conversion

The hybrid automaton that this goal network converts to has two locations in addition to the general
Safing location. Each location corresponds with one of the tactics of the goal network, and the transitions
between the three locations are the failure transitions based on the passive goals constraining the system
health state variable. There are no exit transitions because there is only one group, and the entry transitions
are based on the passive goals for each location.

IV. Titan Aerobot Example Mission

A. Problem Statement

A simplified model of the Titan aerobot was used as an example of the conversion and verification procedure.
The aerobot used in this example has a mission to fly to a specific area while maintaining at least 10% power,
position awareness, and appropriate safe altitudes while at the same time being aware of spontaneous science
observation opportunities. The example aerobot has several sensors, including two cameras, a laser range
finder (LRF), a radar, a hygrometer, and a motion sensor. The cameras and laser range finder allow the
aerobot to localize and map the surface of Titan while maintaining a safe altitude above Titan’s surface
features. The radar, hygrometer, and motion sensor are used to detect spontaneous science events such as
cloud formation, precipitation, and cryovolcanism. Figure 3 gives the state effects diagram for this example
problem. The state effects diagram lists all pertinent state variables, commands, and measurements that
are used to control the system. The arrows between the different bodies in the diagram indicate that the
originating body has an effect on the accepting body that can be modeled.

Most of the models between state variables or between state variables and measurements or command
are fairly obvious. The aerobot is able to localize using the existing map, which is generated by the orbiting
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Figure 3. State effects diagram for Aerobot Example

satellite and to which details are added by the aerobot. Sunlight intensity and ground visibility are affected
by the aerobot’s position, and these state variables affect the quality of the measurements taken by the
cameras. Relative altitude is the height that the aerobot is above the ground and is the state that the LRF
is measuring. The aerobot’s position is controlled by the thrust and altitude commands and affected by the
wind vector. Power is also affected by the wind vector because more or less control effort may be needed
to drive the aerobot based on the direction and magnitude of the wind. The aerobot is assumed to have
some regenerative power capability based on solar energy, so sunlight intensity also affects the percentage of
power remaining on the probe. (However, with Titan located so far from the sun, solar energy could at best
be a back-up power system.) It is also assumed that altitude affects sunlight intensity, with more intensity
near the top of the atmosphere.

B. Goal Networks

The goal networks for this example problem are based on the control of the position and altitude of the
aerobot as it flies to a specified point. The position is controlled via three modes: a “fly to” mode where the
aerobot heads towards a specified area; a “stationkeeping” mode where the aerobot maintains its current
position; and a “float” mode where the aerobot drifts without controlling its position. There are also three
control modes for the altitude: maintain an altitude, climb unrestricted, and fly to an altitude.

The first concurrently executed goal network, shown in Figure 4, involves the task of flying to a specified
area. There are two tactics available for doing this that are chosen based on the relative wind vector. When
the wind vector is favorable or small, the aerobot attempts to maintain a minimum velocity in the direction
of the specified area. When the wind vector is large and unfavorable, the aerobot instead profiles the wind;
in a more complex example, this technique would be used to find a new altitude at which to fly.

How well the aerobot can constrain its position on the existing map contributes to the position uncer-
tainty; when the uncertainty is high, the aerobot must ensure that it is at a safe altitude to avoid controlled
flight into terrain. The second goal network, shown in Figure 5, gives tactics that accomplish the task of
simultaneous localization and mapping. SLAM continues as usual when the position and map uncertainty
are low. If the position uncertainty is low and the map uncertainty is high, the aerobot flies at a lower
altitude to achieve more detailed mapping. When both uncertainties are high, the aerobot ascends so as to
clear all possible obstacles and to get a better view through its cameras so it can match its position with the
less detailed map.

The third task for the aerobot is power management, which is controlled in the goal network shown in
Figure 6. Overall, the aerobot must maintain at least 10% power; if it does not, the aerobot safes to floating
until the power increases. While the power value is above 10%, there are several tactics used to ensure that
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Figure 4. Goal network for flying to a specified area

Figure 5. Goal network for simultaneous localization and mapping

the power level does not drop below the safing level. When the power drops below 50%, the aerobot climbs
to increase the sunlight intensity that it is receiving. If the power dips below 30%, the aerobot discontinues
its trek to the specified point and instead stationkeeps to preserve power.

Spontaneous science observation is an important part of the Titan aerobot’s mission, so the goal network
shown in Figure 7 deals with this task. When no motion, precipitation, or cloud formation is detected, the
aerobot continues on with its current task. However, if motion on the surface (such as cryovolcanism) or
precipitation is detected, the aerobot descends and stationkeeps to observe it. Likewise, if cloud formation
is detected, the aerobot ascends to observe it.

Several other factors also affect the altitude at which the aerobot flies, such as the health of the position
sensors (the cameras and the LRF), the ground visibility, and sunlight intensity. These conditions make up
the six tactics of the final goal network controlling the altitude of the aerobot; this goal network is shown in
Figure 8.

C. Conversion and Verification

All the goal networks introduced in the previous section are executed concurrently while the aerobot flies
to the specified area. Some examples of safety conditions that the aerobot should always avoid are the
following:

1. power < 5%,

2. power < 10% and altitude less than the minimum terrain avoidance altitude for the area, and

3. ground visibility low, position uncertainty high, and altitude less than the minimum overall terrain
avoidance altitude.

The total possible number of executable sets (and thus locations) is the product of the number of equivalent
tactics for each concurrently executed goal network. The fly-to goal network has two tactics, the SLAM goal
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Figure 6. Goal network for power management

Figure 7. Goal network for observing spontaneous science
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Figure 8. Goal network for controlling the altitude of the aerobot
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network has three, the power management goal network and the spontaneous science goal networks each
have four, and the altitude control goal network has six. The product of all these tactics is 576; however,
due to some combinations having inconsistent passive goal constraints, the actual number of executable sets
is 544.

Because the symbolic model checking software is not able to handle very large state spaces, the number
of state variables that this problem needs was reduced by combining some state variables. For example, the
motion state variable and the motion sensor health state variable were combined into a new motion state
variable. This state variable has both of the functions of the previous two state variables; it is true when
there is motion sensed and the health of the motion sensor is good and false otherwise. Since this is the only
state that the control program cares about, this reduction is a good one. Due to these sorts of state space
reductions, there are only eleven state variable constrained by passive goals in the control program. These
state variables along with the number of discrete states (or discrete sets of states) constrained in the control
program are given in Table 1.

Table 1. Passively Constrained State Variables

State Variable Number of States
Camera Healths 3

LRF Health 2
Sun Intensity 2

Ground Visibility 2
Wind Vector 2

Position Uncertainty 2
Map Uncertainty 2

Precipitation 2
Motion 2

Cloud Formation 2
Power 6

The number of passive goals in each location and the number of ways that each of those passive goals
can fail dictate the number of failure transitions out of each location. There is only one exit transition
out of each location since there is only one group; the only exit transition goes to the Success location.
The resulting hybrid system specified in PHAVer code has twelve automata and nearly 14,000 lines. The
automatic conversion software was able to create the PHAVer input file from the goal network specification
in less than eight hours.

However, the PHAVer verification is not as simple. Since the state space is so large for this problem, model
reduction techniques must be employed. This work is currently in progress, and the results encountered so
far are promising. Once the hybrid automata is verified, any changes will be translated back to the original
goal network, and the control program will then be verified with respect to the unsafe set.

V. Conclusions and Future Work

The Titan aerobot mission example is a sufficiently large example to test the conversion software used
for goal network control programs. Many algorithmic inefficiencies were found and corrected in the con-
version software and many more remain; however, the performance of the conversion software far exceeds
the performance of the symbolic model checking software for problems of this size. The verification of such
large problems is a known research area, and work in model reduction and abstraction techniques is ongoing.
The verification efforts of this problem are promising and will be completed to finish the verification of this
goal-based control program.

Extensions on this conversion and verification procedure include finding correct model reduction tech-
niques for abstracting the control program without losing information. The verification of goal networks is a
tool for the design and use of better control programs; a step beyond verification would be to have rules or
algorithms for creating correct-by-design control programs. Examples such as this Titan aerobot mission are
useful to understand the dynamics of goal network control programs and can help improve the conversion
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and verification processes.
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