
Automatic Conversion Software for the Safety Verification of Goal-Based
Control Programs

Julia M. B. Braman Richard M. Murray
braman@caltech.edu murray@caltech.edu

California Institute of Technology
Department of Mechanical Engineering
1200 E. California Blvd., MC 104-44

Pasadena, CA 91125

Abstract

Fault tolerance and safety verification of control systems
are essential for the success of autonomous robotic systems.
A control architecture called Mission Data System (MDS),
developed at the Jet Propulsion Laboratory, takes a goal-
based control approach. In this paper, a software algorithm
for converting goal network control programs into linear
hybrid systems is described. The conversion process is a
bisimulation; the resulting linear hybrid system can be ver-
ified for safety in the presence of failures using existing sym-
bolic model checkers, and thus the original goal network is
verified. A moderately complex goal network control pro-
gram is converted to a linear hybrid system using the auto-
matic conversion software and then verified.

1 Introduction

Autonomous robotic missions by nature have complex
control systems. In general, the necessary fault detection,
isolation and recovery software for these systems is cum-
bersome and added on as failure cases are encountered in
simulation. There is a need for a systematic way to incorpo-
rate fault tolerance in autonomous robotic control systems.
One way to accomplish this could be to create a flexible
control system that can reconfigure itself in the presence of
faults. However, if the control system cannot be verified
for safety, the added complexity of reconfigurability could
reduce the system’s effective fault tolerance.

One particularly useful way to model fault tolerant con-
trol systems is as hybrid systems. Much work has been done
on the control of hybrid systems [13]. When the continu-
ous dynamics of these systems are sufficiently simple, it is
possible to verify that the execution of the hybrid control
system will not fall into an unsafe regime [1]. There are

several software packages available that can be used for this
analysis, including HyTech [9], UPPAAL [14], and VER-
ITI [5], all of which are symbolic model checkers. PHAVer,
the symbolic model checker used in this paper, is a more
capable extension of HyTech [7]. PHAVer is able to ex-
actly verify linear hybrid systems with piecewise constant
bounds on continuous state derivatives and is able to handle
arbitrarily large numbers due to the use of the Parma Poly-
hedra Library. Safety verification for fault tolerant hybrid
control systems ensures that the occurrence of certain faults
will not cause the system to reach an unsafe state.

Often times, the control program used for an application
is not in a form that is conducive to verification. The control
program must then be transformed to an acceptable form by
some suitable means. One such tool exists for the conver-
sion of AgentSpeak, a reactive goal-based control language,
into two languages: Promela, which is associated with the
Spin model checker [10], and Java, for which JPF2 is a gen-
eral purpose model checker [2]. Another popular approach
is to create correct by design control programs from Buchi
automata on infinite words [8], or from specifications and
requirements stated in a restricted subset of LTL [12].

The software control architecture that the control pro-
grams in this paper are based on is Mission Data System
(MDS), developed at the Jet Propulsion Laboratory [6].
MDS is based on a systems engineering concept called State
Analysis [11]. Systems that use MDS are controlled by net-
works of goals, which directly express intent as constraints
on physical states over time. By encoding the intent of the
robot’s actions, MDS has naturally allowed more fault re-
sponse options to be autonomously explored by the control
system [15].

The main contribution of this work is formal description
and analysis of a goal network conversion algorithm that
is based on the procedure described in a previous work [4].
This algorithm converts goal networks into hybrid automata

Submitted, 2009 International Conference on Software Engineering (ICSE)
http://www.cds.caltech.edu/~murray/papers/2008t_hm09-icse.html



in a sound and complete manner; this hybrid system can
then be parsed into a form that is verifiable using an exist-
ing model checking software. In Section 2, some supporting
information about State Analysis, MDS, and linear hybrid
systems is briefly described. In Section 3, a technical de-
scription of goal networks, the conversion and verification
process, including an outline of a proof of the algorithm’s
soundness and completeness, and a brief overview of the
software is given. A moderately complex example of the
software’s execution is described in Section 4, and Section
5 concludes the paper and describes some future work.

2 Background Information

2.1 State Analysis and Mission Data Sys-
tem

State Analysis is a systems engineering methodology
that focuses on a state-based approach to the design of a
system [11]. Models of state effects in the system that is
under control are used for the estimation of state variables,
control of the system, planning, and goal scheduling. State
variables are representations of states or properties of the
system that are controlled or that affect a controlled state.
Examples of state variables could include the position of a
robot, the temperature of the environment, the health of a
sensor, or the position of a switch.

Goals and goal elaborations are created based on the
models. Goals are specific statements of intent used to con-
trol a system by constraining a state variable in time. Goals
are elaborated from a parent goal based on the intent and
type of goal, the state models, and several intuitive rules,
as described in [11]. A core concept of State Analysis is
that the language used to design the control system should
be nearly the same as the language used to implement the
control system. Therefore, the software architecture, MDS,
is closely related to State Analysis.

Goal networks in MDS replace command sequences in
more traditional control architectures as the control input to
the system. A goal network consists of a set of goals, a set
of time points, and temporal constraints. A goal may cause
other constraints to be elaborated on the same state variable
and/or on other causally related state variables. The goals in
the goal network and their elaborations are scheduled by the
scheduler software component so that there are no conflicts
in time, goal order or intent. Each scheduled goal is then
achieved by the estimator or controller of the state variable
that is constrained. A goal that is achieved at some level by
a controller is called a controlled goal; all other goals are
passive.

Elaboration allows MDS to handle tasks more flexibly
than control architectures based on command sequences.
One example is fault tolerance. Re-elaboration of failed

goals is an option if there are physical redundancies in the
system, many ways to accomplish the same task, or de-
graded modes of operation that are acceptable for a task.
The elaboration class for a goal can include several pre-
defined tactics. These tactics are simply different ways to
accomplish the intent of the goal, and passive goals con-
strain the conditions in which a tactic may be executed. This
capability allows for many common types and combinations
of faults to be accommodated automatically by the control
system [15].

2.2 Linear Hybrid Automata

There are several symbolic model checkers available that
are capable of verifying linear hybrid automata. A linear
hybrid automaton H consists of the following components
[9]:

1. A finite, ordered list of continuous state variables,
X = {x1, x2, ..., xn}, and their time derivatives, Ẋ =
{ẋ1, ẋ2, ..., ẋn}.

2. A control graph, (V,E), where V is the set of con-
trol modes or locations of the system, and E is the set
of control edges or transitions between the different
modes of the system.

3. The set of invariants for each location, inv(v), the set
of initial conditions for each location, init(v), and the
set of flow conditions, which are equations that dictate
how state propagates in each location, dif(v, Ẋ), where
v ∈ V .

4. The set of transition labels, Σ, and transition actions or
reset equations, A.

This hybrid automaton specification can be illustrated
using a simple example. Suppose there is an autonomous
unmanned air vehicle (UAV) whose task is to fly to a point
and then maintain that position for some amount of time.
The speed at which the UAV can fly is determined by its
system health (the combined health value of all its sen-
sors). This system is described by two automata, H1 and
H2, shown in Figure 1. The sets of continuous variables
associated with these automata are X1 = {x, t}, where x
is the position and t is a timer, and X2 = {s}, where s
is a measure of system health; the associated time deriva-
tives belong to the appropriate sets. The locations and tran-
sition arrows (minus the conditions) make up sets Vn and
En, where n = 1, 2, respectively. The initial conditions are
x = 0 for H1 and s = 0 for H2. The transition condi-
tions from GS1 and GS2 to Maint are x ≥ xd,l ∈ Σ1 (these
same transition edges have reset conditions on the timer,
t = 0 ∈ A); the related invariants of those two locations
are x < xd, where xd,l < xd. This means that as soon



Figure 1: Hybrid automata example

as x reaches xd,l, which may be a lower bound on the de-
sired transition state value, the transitions can occur, but the
transition will definitely occur when x = xd. Likewise, the
other invariant conditions and transitions in both automata
dictate when the transitions will occur. Finally, the differen-
tial equations that control the flow of the variables are listed
in each location.

These components fully describe a linear hybrid system
that can be successfully verified using HyTech or PHAVer.
The reachability analysis used in the safety verification of
these hybrid automata finds the set of all states that are
connected to a given initial state by a valid run. This can
cause a huge explosion of the state space, however, so sym-
bolic model checkers partition the state space into sets that
are similar in the given reachability analysis. For example,
given some interesting condition, PHAVer will return the
set of the state space in which it is reachable; these interest-
ing conditions given to the software are generally “unsafe”
conditions for the particular system.

3 Conversion and Verification Procedure

3.1 Formal Description of Goal Networks

Let G be the set of all goals in a goal network, where
G = G∪U . The set G = {gi1,j1

1 , gi2,j2
2 , ..., giN ,jN

N } consists
of all controlled goals in a goal network, where in is the
parent goal index and jn is the tactic number into which the
goal is elaborated, for n = 1, ..., N . The set of passive goals
is U = {ui1,j1

1 , ui2,j2
2 , ..., uiM ,jM

M }, where im is the index of
the goal’s parent goal (which is always a controlled goal)
and jm is the goal’s tactic number for m = 1, ...M . Let
T = {T1, T2, ..., TK+1} be the set of time points in the

goal network, where T1 < T2 < ... < TK+1 for increasing
time. Each goal has several functions associated with it.

1. start(gin,jn
n ) returns the goal’s starting time point.

2. end(gin,jn
n ) returns the goal’s ending time point.

3. svc(gin,jn
n ) returns the state variable constrained by the

goal.

4. c(gim,jm
m , gin,jn

n ) returns true if the two goals have
constraints that are consistent (see Definition 3.1 be-
low) and false otherwise.

5. cons(gin,jn
n ) returns the constraint (or invariant) on the

state variable; cons(gin,jn
n ) ∈ Q × %, where % is the

set of real numbers and Q = {=, &=, <, >,≤,≥}.

6. entry(gin,jn
n ) ∈ Q × % returns the condition on the

goal’s constrained state variable that must be true when
entering the goal.

7. exit(gin,jn
n ) ∈ Q×% returns the condition on the goal’s

constrained state variable that must be true before ex-
iting the goal.

Definition 3.1. Two goals gim,jm
m and gin,jn

n are consis-
tent if svc(gim,jm

m ) &= svc(gin,jn
n ), or if svc(gim,jm

m ) =
svc(gin,jn

n ) and the goals’ constraints are able to be merged
or executed concurrently.

Passive goals have the same functions associated with
them as the controlled goals do, except the entry logic is
just the goal constraint and the exit logic is always true.
Since passive goals constrain the conditions in which a tac-
tic may be executed, if those conditions become false, the
tactic fails. The following two functions give elaboration
logic and failure destination of each tactic, which is a group
of goals with the same parent index numbers (in) and tactic
numbers (jn).

1. startsin(in, jn) returns the condition in which the tactic
is elaborated initially.

2. failto(in, jn) returns the goal index to which execution
goes upon failure. If the goal fails to Safing, the output
of this function is “Safe.”

The following goal classifications and relationships are
important in describing the execution of a goal network.

Definition 3.2. A goal is root goal if it has no parent goal.
It is signified by in = 0 and jn = 0.

Definition 3.3. Two goals gim,jm
m and gin,jn

n are compatible
if im &= in ∨ jm = jn.

Definition 3.4. Two goals gim,jm
m and gin,jn

n are siblings if
im = in ∧ jm = jn.



Root goals are the ancestors of all the other goals in a
goal network. Two goals are compatible as long as they
are not elaborated into different tactics from the same par-
ent goals. Incompatible goals can never be executed at the
same time in a goal network. Sibling goals are goals that
are elaborated from a parent goal into the same tactic; sib-
ling goals are always compatible and always executed at the
same time if active during the same time points.

A valid execution of the goal network consists of a se-
quence of alternating flow and transition conditions,

φIf (tf )...φI2(t2)ρI2I1φI1(t1)X0, (1)

where X0 is the set of initial conditions of the controlled
state variables, φIn(tn) is the set of flow conditions associ-
ated with the executable set of goals θIn and propagated for-
ward in time tn steps, and ρIn+1In is the transition between
the executable sets of goals θIn and θIn+1 . Due to the struc-
ture imposed on the time points (described in the next sec-
tion), goals can be grouped into K groups, Gk, k = 1, ...,K
where

Gk = {gin,jn
n ∈ G|

start(gin,jn
n ) ≤ Tk ∧ end(gin,jn

n ) ≥ Tk+1}. (2)

Certain subsets of the goals in each set Gk can be exe-
cuted at the same time; these subsets are called executable
sets, θI . The set of all executable sets that are built from the
goals in Gk is Θk. Each executable set of goals θI ∈ Θk

satisfies the following properties:

1. All goals in the executable set are active between the
appropriate time points; for all gin,jn

n ∈ θI , gin,jn
n ∈

Gk.

2. All root goals in the group are in each executable set;
for all g0,0

n ∈ Gk, g0,0
n ∈ θI .

3. If a parent goal in the executable set has children in
the group, at least one of those children will also be in
the executable set; for all gin,jn

n ∈ θI , if there exists
gim,jm

m ∈ Gk,m &= n, s.t. im = n, then there exists
gil,jl

l ∈ θI s.t. il = n.

4. The parent goals of all goals in an executable set are
also in the set; for all gin,jn

n ∈ θI , if there exists
gim,jm

m ∈ Gk,m &= n, s.t. in = m, then gim,jm
m ∈ θI .

5. The siblings of all goals in the executable set are also
in the set; for all gin,jn

n ∈ θI , if there exists gim,jm
m ∈

Gk,m &= n, s.t. im = in∧jm = jn, then gim,jm
m ∈ θI .

6. Let Dn be the set of goals descended from g0,0
n /∈ Gk.

Then, if Dn ∩Gk &= ∅ then there exists gil,jl

l ∈ Dn ∩
Gk s.t. gil,jl

l ∈ θI .

Figure 2: Path for the simple rover example

7. For all gin,jn
n , gim,jm

m ∈ θI , gin,jn
n and gim,jm

m are com-
patible.

8. For all gin,jn
n , gim,jm

m ∈ θI , gin,jn
n and gim,jm

m are con-
sistent.

9. Let νI ⊂ θI be the set of all passive goals associ-
ated with the control goals gin,jn

n ∈ θI . Then, for all
uin,jn

n , uim,jm
m ∈ νI , uin,jn

n and uim,jm
m are consistent.

There are two different types of transitions between the
goals in the goal network, transitions based on goal comple-
tion, ρc

IJ,k ∈ Scomp, and transitions based on goal failure,
ρf

IJ,k ∈ Sfail, where Scomp and Sfail are the sets of all
completion and failure transitions, respectively. The transi-
tion ρc

IJ,k is from θI ∈ Θk to θJ ∈ Θk+1, and

ρc
IJ,k =

∧

θI

exit(gin,jn
n )∧

∧

θJ

entry(gim,jm
m ) ∧

∧

θJ

startsin(gim,jm
m ). (3)

The transition ρf
IJ,k is from θI ∈ Θk to θJ ∈ Θk. Let

F be the set of failing accompanying goals in executable
set θI and let H = {∀uin,jn

n ∈ F |failto(in, jn)}. Then, if
Safe ∈ H ,

ρf
ISafe,k =

∧

F

¬cons(uin,jn
n ) ∧

∧

νI\F

cons(uim,jm
m ). (4)

Else,

ρf
IJ,k =

∧

F

¬cons(uin,jn
n )∧

∧

νI\F

cons(uim,jm
m ) ∧

∧

νJ

cons(uil,jl

l ). (5)

For both ρc
IJ,k and ρf

IJ,k, only transition conditions that
evaluate to true are taken. Valid transitions are all those
that are not invariantly false.

A simple example to illustrate these concepts involves a
robot with three sensors traversing a path, shown in Figure
2, to get to one point of interest, whose selection depends on



Figure 3: Goal network for the simple rover example. The circles
represent time points and the rectangles represent goals. Child
goals elaborated from a parent goal are under the dashed line that
is below the parent goal and the tactics are separated by the ”OR.”

Table 1: Select Goal Function Outputs for Simple Rover Example
Goal svc cons entry exit
g0,0
1 Pos (rate) (=, 0) (=, 0) True

g1,1
2 Pos (=, C1) True (=, C1)

g2,1
4 Ori (=, θ0) True (=, θ0)

g3,1
5 Pos (=, P1) True (=, P1)

g3,2
7 Pos (=, P2) True (=, P2)

u2,1
1 SH (&=, P) (&=, P) True

u5,1
2 SH (=, G) (=, G) True

the health of the sensors. The state variables in this problem
are as follows: robot position, robot orientation, and system
health, which depends only on the values of the three sen-
sor healths. Figure 3 depicts the goal network used to con-
trol the rover and Table 1 has the function outputs for some
goals; goals that are similar to one listed are not shown. The
rover can traverse the first segment of the path as long as the
composite system health is fair or good. The rover then de-
cides to go to P1 or P2 based on the system health; it picks
P1 if the health is good and P2 if the health is fair. If the
health at any time is poor, the robot safes due to the failto
functions of all tactics. The startsin logic for all tactics is
related to the accompanying passive goals.

3.2 Procedure Description

Hybrid system analysis tools can be used to verify the
safe behavior of a hybrid system; therefore, a procedure to
convert goal networks into hybrid systems is an important
tool for goal network verification. A manual process for
converting certain types of goal networks is described in [4]
and [3]. These goal networks can have several state vari-
ables and several layers of goal elaborations, however time
points must be well-ordered, which means the time points

fire in the order that they are listed in the elaboration. This
restriction only states that the goal network has already been
scheduled and that goals cannot switch order; it gives no re-
striction on the amount of time between time points. For
the software, one more restriction is currently necessary; no
goals with non-trivial exit conditions can be split by a time
point due to the way that the exit condition must be handled.

Each state variable constrained in the goal network is la-
beled as either controllable, uncontrollable, or dependent. A
controllable state variable (CSV) is directly associated with
a command class; an example of a CSV is a heater switch
that can be commanded on and off. An uncontrollable state
variable (USV) is not associated with a command class in
any way; an example of a USV is wind velocity. A de-
pendent state variable (DSV) has model dependencies on at
least one controllable state variable; an example of a depen-
dent state variable could be the temperature of an instru-
ment, if there are ways to affect that temperature (heater,
powering off the instrument).

The first automaton created in the conversion is called
the “goals” automaton. This automaton has execution paths
of the form

ψIf (tf )τIf If−1 ...ψI2(t2)τI2I1ψI1(t1)X0 (6)

where X0 is the set of initial conditions on the controlled
state variables, ψIn(tn) = dif(vIn , X)(tn) is the flow asso-
ciated with location vIn for tn time steps, and τInIn−1 is the
transition from location vIn to vIn−1 . First, some definitions
are listed.

Definition 3.5. A branch goal is a goal gin,jn
n ∈ Gk such

that for all gim,jm
m ∈ Gk, im &= n; in other words, it is a

goal that has no child goals in the same group as itself.

Definition 3.6. Two locations, vIn and vIm , are compatible
if for all gin,jn

n ∈ vIn and for all gim,jm
m ∈ vIm , gin,jn

n and
gim,jm

m are compatible.

There are four sets of procedures used to create the goals
automaton. First, locations of the goals automaton are cre-
ated. For each group of goals Gk, k = 1, ...,K, a group of
locations Vk is created using these procedures:

1. Let Vk = {vI1 , vI2 , ..., vIB} where B is the number
of branch goals in Gk, vIn = {gibn ,jbn

bn
|gibn ,jbn

bn
is a

branch goal}, and In = {bn}.

2. For all gin,jn
n , gim,jm

m ∈ Gk s.t. gin,jn
n ∈ vIn and

gim,jm
m ∈ vIm , if the goals are compatible, im =

in ∧ jm = jn ∧ n &= m, then let vIl = vIm ∪ vIn =
{gim,jm

m , gin,jn
n }, where Il = {m,n} and remove vIn

and vIm from Vk.

3. For all vIn ∈ Vk and for all gim,jm
m ∈ vIn :



(a) If there exists gia,ja
a ∈ Gk s.t. a = im then

gia,ja
a ∈ vIn .

(b) If there exists gia,ja
a ∈ Gk s.t. ia = im ∧ ja =

jm ∧ a &= m then gia,ja
a ∈ vIn .

(c) If there exists g0,0
a ∈ Gk then g0,0

a ∈ vIn . This
step is not needed, since all root goals will be
added to the location with the previous two steps.

4. Combine compatible locations using the following
procedure:

(a) Let V i
k , i = 1, be the set of original locations.

(b) For all vIn , vIm ∈ V i
k ,m &= n, if vIn and vIm are

compatible, let vIj = vIn ∪ vIm , vIj ∈ V i+1
k .

(c) For all vIn ∈ V i
k , if for all vIj ∈ V i+1

k , ¬(vIn ⊂
vIj ), add vIn to V i+1

k . For all vIn , vIm ∈
V i+1

k ,m &= n, if vIn = vIm , remove vIn .

(d) Increment i. Repeat Steps (b)-(d) until for all
vIn , vIm ∈ V i

k ,m &= n, vIn and vIm are incom-
patible.

(e) Set Vk = V i
k .

5. For all vIn ∈ Vk and for all gim,jm
m , gil,jl

l ∈ vIn , if
¬c(gim,jm

m , gil,jl

l ), remove vIn .

6. For all vIn ∈ Vk and for all uim,jm
m , uil,jl

l ∈ vIn , if
¬c(uim,jm

m , uil,jl

l ), remove vIn .

The first two steps of the procedure basically set up the
initial locations to contain each of the lowest level goals; if
the group of goals was drawn in a tree structure with the
children descended from the parent goals, these goals are
the furthest branches. The next step adds all the ancestor
goals and siblings of ancestor goals up the goal tree from
the branch goal to each of the branch goal locations. Par-
ent goals may be represented in many locations, but each
branch goal is represented in only one location and the com-
bination of the goals in each location is the set of all goals
in the group. These first three steps guarantee that each goal
in a group is represented in at least one location. From the
properties of executable sets, properties 1, 2, 4, and 5 are
satisfied by these three steps; all goals are in the same group,
and so are active between the same consecutive time points,
and all root goals, parent goals, and sibling goals of each
goal in the location are also in each location.

The fourth step is the location combining procedure. The
locations that are compatible are combined in such a way so
that all possible combinations of compatible locations are
created and so that the final outcome is a set of incompatible
locations. It can be shown that this combination procedure
produces all possible executable sets for each group. This
step satisfies the properties 3, 6, and 7 of executable sets;

each parent in a location can be shown to have at least one
child goal in the location as a result of this procedure, de-
scendants of root goals that are not in the group are present
in each location because they are compatible with the root
goals (and descendants) that are in the group, and due to
construction, all goals in the location are compatible. Fi-
nally, the last two steps remove locations that have incon-
sistent goals. This satisfies properties 8 and 9 of executable
sets.

Transitions for the goals automaton are created using
three different procedures, one for each type of transition
condition. The first two are based on the completion transi-
tions in the goal network. First, the procedure for creating
transitions from the preceding group connector (or initially
for the first group, V1) to each location is as follows, for all
Vk, k = 1, ...,K:

1. For all vIn ∈ Vk, transition edges are created from the
preceding group connector (or initially for k = 1) to
the location.

2. Transition conditions for each edge are created,

τ s
n,k =

∧

vIn

entry(gim,jm
m ) ∧

∧

vIn

startsin(gim,jm
m ). (7)

3. For all gim,jm
m ∈ vIn , if svc(gim,jm

m ) returns a discrete
controllable state variable, cons(gim,jm

m ) is added to
τ s
n,k as a reset action.

4. If τ s
n,k is invariantly false, the corresponding transition

edge is deleted.

The procedure for creating exit transitions from the lo-
cations to the following group connector (or to the Success
location for k = K) is as follows, for all Vk, k = 1, ...,K:

1. For all vIn ∈ Vk, the transition edges are created from
the location to the following group connector (or to the
Success location if k = K).

2. Transition conditions for each edge are created,

τe
n,k =

∧

vIn

exit(gim,jm
m ). (8)

3. If τe
n,k is invariantly false, the corresponding transition

edge is deleted.

Finally, the procedures for creating failure transitions be-
tween locations within groups is as follows, for all Vk, k =
1, ...,K:

1. For all vIn ∈ Vk, let Un = {F1, F2, ...} where Fm are
all possible combinations of uil,jl

l ∈ An, where set An

contains all unique uil,jl

l ∈ vIn (repeated constraints
are excluded).



2. For all Fm ∈ Un, let fm = {∀uil,jl

l ∈
vIn , failto(il, jl)}.

3. For all vIn ∈ Vk and for all Fm ∈ Un, if Safe ∈ fm,
create a transition edge from vIn to the Safing location.
The transition condition associated with the edge is

τf
nSafe,k =

∧

Fm

¬cons(uil,jl

l ) ∧
∧

An\Fm

cons(uil,jl

l ).

(9)

4. For all vIn ∈ Vk and for all Fm ∈ Un, if Safe /∈ fm,

τf
na,k =

∧

Fm

¬cons(uil,jl

l )∧

∧

An\Fm

cons(uil,jl

l ) ∧
∧

Aa

cons(uil,jl

l ). (10)

If τf
na,k is not invariantly false, create a transition edge

from vIn to vIa whose transition condition is τf
na,k.

5. Remove any transition edge whose condition, τf
nSafe,k

or τf
na,k is invariantly false.

The first two steps create all possible sets of failure con-
ditions for a given location and then the set of locations to
which the execution continues for each of these sets of fail-
ure conditions. The third and fourth steps create the transi-
tion and condition depending on the contents of the “fail to”
set. If Safe is not in the set, then the location that the fail-
ure transition goes to depends on which location’s passive
goal conditions agree with the failure conditions. Finally,
the last step removes any invariantly false transition. This
concludes the procedure to create the goals automaton.

Next, separate hybrid automata are created for each USV
and DSV in the following way. These automata drive state
transitions for the state variables that are not propagated by
the flow equations in the goals automaton’s locations.

1. The locations of each automaton are created from the
discrete states or discrete sets of states that the state
variable is constrained to be in the goal network if there
are passive goals on that state variable or if the state
variable is discrete. If not, then the locations are based
on the different rates of change that the variable can
have.

2. The transitions between the locations are based on the
model of the state variable; the transitions may be
modeled as stochastic if they are uncontrollable or de-
pendent on something that is not modeled, such as time
of day. The transitions may be based on state variables
on which there are model dependencies, and the tran-
sition conditions are derived from those models.

Once the hybrid system is created, the verification work
begins.

1. Specify the unsafe set. This is what the hybrid system
is verified against; when the system is said to be “veri-
fied,” that means that the unsafe set is not reached.

2. Run the hybrid system with the unsafe set through
model checking software; currently, PHAVer is the de-
fault symbolic model checking software used.

3. Make and record any changes needed to verify the hy-
brid automaton. Translate these changes into adjust-
ments to the goal network.

3.3 Soundness and Completeness

It is possible to prove that this conversion procedure is
a bisimulation between the goal network and the goals au-
tomaton. By construction, the locations of the hybrid au-
tomaton correspond exactly to the executable sets of the
goal network, and the transitions of the goals automaton
are exactly those of the goal network. The following two
lemmas are used to show that the locations of the goals au-
tomaton correspond one to one with all of the executable
sets of the goal network.

Lemma 3.7. For all Θk, k = 1, ...,K and for all θI , θJ ∈
Θk, I &= J , θI is incompatible with θJ .

Lemma 3.8. If there exists vIr ∈ Vk s.t. there exists
gin,jn

n ∈ vIr where there is a gim,jm
m ∈ Gk, im = n but

for all gil,jl

l ∈ vIr , il &= n then there exists vIs ∈ Vk s.t. vIr

is compatible with vIs .

Lemma 3.7 says that each executable set of goals is in-
compatible with every other executable set. This just means
that each executable set of goals in a group contains at least
one different tactic from a common parent goal than every
other executable set in the group. The proof is by contra-
diction; one can show using the properties of executable
sets that if two executable sets are compatible, they are the
same set. Lemma 3.8 says that if a location in the goals au-
tomaton contains a parent goal but none of the parent goal’s
children, that location will be compatible with another lo-
cation in the group. Because of the construction procedure
that combines locations until all in a group are incompati-
ble, this lemma shows that the locations satisfy property 3
in the executable set specifications. The proof is by induc-
tion; one can show that this lemma is true in the initial set of
locations V 1

k and then that is also true in all following sets.
The following proposition uses the lemmas to show that

all executable sets are represented one to one by locations.
It is easy to see from this proposition that the flow condi-
tions φIn = ψIn for corresponding executable sets and lo-
cations.



Proposition 3.9. For all Θk, k = 1, ...,K and for all θI ∈
Θk, there exists vIn ∈ Vk s.t. θI ≡ vIn .

The proof of Proposition 3.9 uses the procedure steps for
the location creation and the two previous lemmas to show
that all of the executable set properties are satisfied by the
locations that result from the location creation procedure.
Likewise, the two following lemmas relate the transitions of
the goal network to the transitions of the hybrid automaton
and the proofs are also by construction using the transition
creation procedures.

Lemma 3.10. For all ρc
ij ∈ Scomp, there exists an equiva-

lent transition τij,k ∈ Σc
k = Σe

k × Σs
k+1.

Lemma 3.11. For all ρf
IJ,k ∈ Sfail and for all ρf

ISafe,k ∈
Sfail in the goal network, there exists an equivalent transi-
tion τf

IJ,k ∈ Σf
k and τf

ISafe,k ∈ Σf
k in the resulting hybrid

automaton.

Finally, the Lemma 3.12 proves that the transitions are
the same between the goal network and the goals automaton
and Theorem 3.13 proves that the conversion procedure is a
bisimulation.

Lemma 3.12. All transitions of the goal network are repre-
sented in the goals automaton.

Proof. Since only two types of transitions are allowed in
the goal network, this statement is true due to Lemmas 3.11
and 3.10.

Theorem 3.13. The conversion procedure is a bisimulation
between the goal network and the goals automaton.

Proof. By Proposition 3.9 and Lemma 3.12, all executions
of the goal network are represented by paths in the hybrid
automaton constructed from the goal network by using the
conversion procedure. Because of this, all executions of the
goal network are represented by an execution path through
the hybrid automaton. There are no executions in the hybrid
automaton that do not represent an execution of the goal
network because each transition and location in the hybrid
automaton was constructed from a corresponding transition
and executable set of goals in the goal network.

Therefore, the conversion procedure is sound in that if
the hybrid automaton is verified for some unsafe set, the
goal network is also verified. This is easy to see since ev-
ery execution path in the goal network is represented in the
hybrid automaton; so, if there exists a path in the goal net-
work in which the given unsafe set is reachable, that path
will also be present in the hybrid automaton. The conver-
sion procedure is also complete, in that if the goal network
is verifiable, the hybrid automaton will also be verifiable.
There are no extra execution paths in the hybrid automaton

Figure 4: Speed limit goal network. Time points 1 and 3 are
shown.

that are not present in the goal network; in fact, there is a
way to rebuild the original goal network and goal logic from
the hybrid automaton.

3.4 Simple Rover Example

The conversion and verification procedure can be illus-
trated using an extension of the simple rover example in-
troduced in Section 3.1. In this version, a speed limit goal
with two tactics (two speed limits) is added; the speed limit
is chosen by the system health value, much like the exam-
ple in Section 2.2. This extension to the goal network is
depicted in Figure 4. The same state variables are used in
this example, and both position and orientation are control-
lable state variables and the system health state variable is
uncontrollable. The startsin logic of both speed limit tactics
are based on the accompanying passive goals. The failto
location depends on the system health value; if poor, both
tactics fail to Safe, but if fair for the first tactic or good for
the second tactic, the tactics fail to the other tactic. All con-
trol goal combinations in the goal network are consistent.

The goal network has four time points and therefore
three groups. The first group has three sets of sibling branch
goals ({g2,1

4 , u2,1
1 }, {g9,1

10 , u9,1
4 }, and {g9,2

11 , u9,2
5 } from steps

1 and 2 of the location creation algorithm) that combine
to form two incompatible locations in step 4 of the loca-
tion creation algorithm, created from the combination of
the one tactic of g1,1

2 ({g1,1
2 , g2,1

4 , u2,1
1 , g0,0

9 } from step 3
of the location creation algorithm) and the two tactics of
g0,0
9 ({g0,0

9 , g9,1
10 , u9,1

4 } and {g0,0
9 , g9,2

11 , u9,2
5 }). The second

group starts with four sets of sibling branch goals that com-
bine into four locations, which covers all possible execu-
tion paths of the goal network between those time points.
However, two locations were removed due to inconsistent
accompanying goals due to step 6 of the location creation
algorithm (u5,1

2 and u9,2
5 for one location, and u7,1

3 and u9,1
4

for the other). The third group has only one goal, and there-
fore only one location.

The transitions into the locations either initially (group
1) or from the group connector are conditioned by startsin
elaboration logic, which is just the accompanying passive



Figure 5: Automata for rover example

goal constraints in each tactic, and entry transition logic
contributions from all goals in the group. The failure transi-
tions between the locations in the groups or from the loca-
tions to the Safe location are due to the accompanying goals
and the failto function of the goals present; if the system
health becomes poor at any time, the goal network safes.
The transition logic out of the locations to the following
group connector or to the Success location (group 3) are
the exit logic conditions for each of the completion goals
present in the location (the “GetTo” goals). The final ver-
sion of the goals automaton can be found in Figure 5.

The only pertinent uncontrollable state variable is the
system health state variable, which can be modeled as three
discrete state values, which become locations, with stochas-
tic transitions between them. The system health automaton
is shown in Figure 5. Finally, the unsafe set is determined;
this is any condition that the designer decides the rover
should never reach. The automata and thus the goal net-
work can now be verified using model checking software.

3.5 Conversion Software Design

The automatic conversion software converts a given goal
network when the goals, state variables, goal logic informa-
tion, and the unsafe set specification are input. The output
of the software is an input file for a model checking soft-
ware. The software is written in Mathematica because of the
list structure it employs and its extensive library of pattern-
matching functions. The general outline for the structure of
the conversion software is shown in Figure 6. In addition to
the input and output parsers, there are four main parts to the
actual conversion algorithm: location creation, constraint
merging, transition creation, and location removal.

The conversion software’s input parser takes an XML
file with a specified structure and translates it into sev-
eral lists that the Mathematica code can use. Input spec-

Figure 6: Flow chart of the conversion software execution

ifications consist of all the pertinent goal network infor-
mation. A DTD file for the XML input file can be found
at http://www.its.caltech.edu/ braman/files/PHAVer.txt. The
four main parts of the conversion software generally follow
the conversion procedure outlined in Section 3. The output
of these algorithms describe the goals automaton and all of
the uncontrollable and dependent state variables’ automata
in a very generic form so that they may be used with an out-
put parser that translates the lists into code for any model
checker that uses automata theory to verify systems. The
final output is a file that can be run through the respective
model checker.

The location creation algorithm and the transition cre-
ation algorithms follow the conversion algorithms presented
in the previous section exactly. The constraint merging al-
gorithm combines the constraints on all of the controlled
goals that constrain the same state variable in each location.
If the goals are consistent, the resulting merged constraint
is found from the original constraints. This algorithm also
assigns dynamical update equations to each location once
the final merged constraints have been found. The loca-
tion removal algorithm checks if any location lacks entry
conditions and if so, removes the location and all other fail-
ure transitions originating from that location for state space
considerations. The algorithm also checks for other loca-
tions that would warrant removal, however it can be shown
that none of these conditions will ever occur due to the way
transitions and locations are created.

4 Complex Rover Example

This example involves an autonomous rover whose ulti-
mate goal is to follow a given path to a specified end point.
This rover has three main sensor systems: GPS, LADAR,
and an inertial measurement unit (IMU). The path choice
and speed limit along the chosen path is dependent on the
combined health of these sensors. Each sensor degrades or
fails in a specified way. The GPS can experience periods of
reduced accuracy (e.g. satellite dropouts) or failure (elec-



Table 2: State Variable Types
Controllable Dependent Uncontrollable

Position Rel. Sun Orientation GPS Health
Heading LADAR Health Ambient Temp.

IMU Power System Health Sun Angle
Heater Switch IMU Temperature

IMU Health

Figure 7: Path goal network. Time points 1 through 5 are present
in this goal network.

Figure 8: Speed limit goal network. Time points 1 and 5 are
present in this goal network.

trical or structural signal interference), and these can both
be modeled as recoverable stochastic events. The LADAR
health depends on the location of the sun in the sky. If the
sun is shining directly into the LADAR, its measurements
cannot be used. Some degradation of the LADAR’s capa-
bilities occur at less direct sun angles, as well. Finally, the
IMU health is dependent on the temperature of the device.
If the temperature of the IMU is too low, a heater can be
used to heat the sensor. If the IMU temperature gets too
high, the unit must be powered off.

The lists of state variable types for each state variable
can be found in Table 2. The goal networks for this task
are shown in Figures 7-9. The first goal network describes
the path the robot will take, the second is the speed limits
that will apply to the robot, and the third describes the IMU
temperature management method.

There are 21 controlled goals, including eight parent

Figure 9: IMU Temperature goal network. Time points 1 and 5
are present in this goal network.

goals. There are four CSVs, five DSVs and three USVs.
The conversion software found 46 locations (including the
Success location) in four groups. In all, there are nine au-
tomata with 67 total locations. The conversion software
took less than five seconds to generate the PHAVer code for
this system.

The unsafe set for this problem consists of the following
conditions:

1. The rover is not stopped when the IMU is off and the
GPS is degraded.

2. The rover moves forward when the sun is pointing di-
rectly into the LADAR unit.

The hybrid automata could be verified after employing sev-
eral reduction techniques that are outside the scope of this
paper and some corrections to the automata. The verifica-
tion software found reachable states in the original automata
that entered the unsafe set, so the automata had to be cor-
rected to ensure that the unsafe set was not entered. The
transitions into the locations where the IMU power is off
and the speed is not zero must also have a condition that
the GPS Health is GOOD or FAIR to satisfy the unsafe
set. These changes were added, verified, and then trans-
lated back into the goal network by adding a new tactic in
the speed limit goal network, which can be found in Fig-
ure 10. This makes the control program conservative but
verifiable with respect to the given unsafe set.

5 Conclusion and Future Work

The goal network conversion software presented in this
paper is capable of quickly and accurately converting com-
plicated goal networks into a bisimilar linear hybrid au-
tomata that can be verified using existing symbolic model



Figure 10: Redesigned speed limit goal network.

checking software such as PHAVer. This automatic tool al-
lows more goal networks to be verified due to its speed and
ease of use, which is a promising development for goal-
based control programs, particularly for control architec-
tures such as MDS.

There are many directions in which future work may go.
The most natural specification of the unsafe set is in terms of
constraints on state variables, while some model checking
software need the unsafe set in terms of locations as well. It
may be possible to automatically translate the natural spec-
ification of the unsafe set to the syntax needed by the spe-
cific model checker. The verification step of the process is
not automated, but certain parts of it may have the potential
to be. There are several reduction techniques that work well
with the structure of the hybrid automata that is output from
the conversion procedure; for example, it may be possible to
verify the system group by group or to combine uncontrol-
lable state variable automata to reduce the state space (both
depend on the unsafe set specified). Also, the changes that
are made to the hybrid automata during the verification pro-
cedure must be tracked and translated back into changes to
the goal network, something that also may be automated.
Finally, using Spin as the model checker for systems that
may have multiple goal networks that run asynchronously
seems like a promising direction for goal networks that have
restricted state spaces. While these changes would be bene-
ficial to this process, the software as it currently stands is a
tremendous improvement over manual methods and allows
more complex goal networks to be quickly converted for
verification.

6 Acknowledgements

The authors would like to gratefully acknowledge Kenny
Meyer, Michel Ingham, David Wagner, Robert Rasmussen,

Kirk Reinholtz, and the rest of the MDS team at JPL
for feedback, suggestions, answered questions, and MDS
and State Analysis instruction. This work was funded by
AFOSR.

References

[1] R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic
verification of embedded systems. IEEE Transactions on
Software Engineering, 22(3):181–201, 1996.

[2] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.
Programming Multi-Agent Systems, volume LNAI 3067,
chapter Verifiable Multi-agent Programs, pages 72–89.
2004.

[3] J. M. Braman and R. M. Murray. Conversion and verifica-
tion procedure for goal-based control programs. Technical
report, California Institute of Technology, 2007. CaltechCD-
STR:2007.001, http://caltechcdstr.library.caltech.edu/view/.

[4] J. M. Braman, R. M. Murray, and D. A. Wagner. Safety ver-
ification of a fault tolerant reconfigurable autonomous goal-
based robotic control system. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2007.

[5] D. Dill and H. Wong-Toi. CAV 95: Computer-aided Verifica-
tion, chapter Verification of real-time systems by successive
over and under approximation, pages 409–422. Springer,
1995.

[6] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Soft-
ware architecture themes in JPLs Mission Data System.
IEEE Aerospace Conference, 2000.

[7] G. Frehse. PHAVer: Algorithmic verification of hybrid sys-
tems past HyTech. International Conference on Hybrid Sys-
tems: Computation and Control, 2005.

[8] G. D. Giacomo and M. Y. Vardi. ECP-99, volume LNAI
1809, chapter Automata-Theoretic Approach to Planning for
Temporally Extended Goals, pages 226–238. 2000.

[9] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A
model checker for hybrid systems. International Journal on
Software Tools for Technology Transfer, 1997.

[10] G. Holzmann. The Spin Model Checker: Primer and Refer-
ence Manual. Addison-Wesley, 2004.

[11] M. Ingham, R. Rasmussen, M. Bennett, and A. Mon-
cada. Engineering complex embedded systems with State
Analysis and the Mission Data System. AIAA Journal
of Aerospace Computing, Information and Communication,
2(12):507–536, December 2005.

[12] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Wheres
Waldo? Sensor-based temporal logic motion planning.
IEEE International Conference on Robotics and Automa-
tion, pages 3116–3121, 2007.

[13] G. Labinaz, M. M. Bayoumi, and K. Rudie. A survey of
modeling and control of hybrid systems. Annual Reviews of
Control, 1997.

[14] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nut-
shell. International Journal on Software Tools for Technol-
ogy Transfer, 1(1-2):134–152, 1997.

[15] R. D. Rasmussen. Goal-based fault tolerance for space sys-
tems using the Mission Data System. IEEE Aerospace Con-
ference Proceedings, 5:2401–2410, March 2001.


