
Probabilistic Safety Analysis of Sensor-Driven
Hybrid Automata

Julia M. B. Braman and Richard M. Murray

Dept. of Mechanical Engineering, California Institute of Technology
braman@caltech.edu

Abstract. The control programs of complex autonomous systems that
have conditional branching can be modeled as linear hybrid systems.
When the state knowledge is perfect, linear hybrid systems with state-
based transition conditions can be verified against a specified unsafe set
using existing model checking software. This paper introduces a formal
method for calculating the failure probability due to state estimation
uncertainty of these sensor-driven hybrid systems. Problem complexity
is described and some reduction techniques for the failure probability
calculation are given. An example goal-based control program is given
and the failure probability for that system is calculated.

1 Introduction

Autonomous robotic missions generally have complex, fault tolerant control sys-
tems. There are several ways to incorporate the necessary fault tolerance in a
control architecture. One way is to create a flexible control system that can re-
configure itself based on the state of the system and environment in the presence
of faults. However, if the control system cannot be analyzed for safety in the pres-
ence of estimator error, the added complexity of the system’s reconfigurability
could reduce the system’s effective fault tolerance.

One particularly useful way to model a fault tolerant control system is as a
hybrid system. When the continuous dynamics of these systems are sufficiently
simple, it is possible to verify that the execution of the hybrid control system will
not fall into an unsafe regime [1]. There are several software packages that can
be used for this analysis, including HyTech [2], UPPAAL [3], and PHAVer [4],
all of which are symbolic model checkers. PHAVer in particular is able to exactly
verify linear hybrid systems with piecewise constant bounds on continuous state
derivatives. Safety verification for fault tolerant hybrid control systems ensures
that the occurrence of certain faults will not cause the system to reach an unsafe
state.

However, these verification software packages cannot handle uncertainty in
the estimated state variables involved in mode transition logic. For autonomous
systems, none of the state variables used in the control system are known per-
fectly, and these uncertainties can affect the safety of the system. Stochastic
hybrid systems include uncertainty in the transitions of the hybrid automaton

Submitted, 2009 Hybrid Systems: Computation and Control (HSCC)
http://www.cds.caltech.edu/~murray/papers/2008s_hm09-hscc.html



as probabilistic transition conditions. Many papers have been written on the ver-
ification of stochastic hybrid systems. For example, Prajna et al [5] use barrier
certificates to bound the upper limit of the probability of failure of the stochastic
hybrid system and Kwiatkowska et al [6] discuss a probabilistic symbolic model
checking software called PRISM. However, purely probabilistic transition con-
ditions do not model estimation uncertainty in the constrained state variables
well; deterministic transitions with probabilistic components may be a better
model.

In this paper, a formal method for determining the failure probability due to
estimation uncertainty of a verifiable hybrid system with sensor-driven, state-
based transitions, which builds on the work in [7], is given. These particular hy-
brid systems are derived from goal-based control programs called goal networks.
Mission Data System (MDS), a goal-based control architecture developed at the
Jet Propulsion Laboratory, is the basis for the design of these goal networks
[8]. The goal networks are then converted using a bisimulation to linear hybrid
automata and verified against an unsafe set using existing symbolic model check-
ing software such as PHAVer [9]. The discrete mode transitions in the hybrid
automata are then based on the state variables of the system estimated from
sensor values.

As an illustration of the type of tasks analyzed, consider the sensor-based
planning problem shown in Fig. 1. This rover, which must safely follow the
path to the specified end point, has three main sensor systems: GPS, LADAR,
and an inertial measurement unit (IMU). The speed limit along the path is
dependent on the combined health of these sensors. Each sensor degrades or
fails in a specified way. The GPS can experience periods of reduced accuracy
(e.g. satellite dropouts) or failure (electrical or structural signal interference),
and these can both be modeled as recoverable stochastic events. The LADAR
health depends on the location of the sun in the sky and whether the robot is in
dusty conditions; however it will also be modeled as degrading and recovering
stochastically. Finally, the IMU health is dependent on the temperature of the
device. If the temperature of the IMU is too low, a heater can be used to heat
the sensor. If the IMU temperature gets too high, the unit must be powered off.
For the safety of the system, it is important to verify the goal networks for this
problem against the following unsafe set:

1. The rover is not stopped when the IMU is off and the GPS is degraded.
2. The rover moves forward when the LADAR unit is compromised.

The methods described in this paper allow the analysis of the safety of the
control program against the given unsafe set when the estimation of the sensor
health values is not perfect. If these states were known exactly, a traditional
hybrid system verification would be a sufficient test of the safety of this system.
However, a full analysis of this system must include the calculation of the failure
probability due to estimation uncertainty, for which a method is introduced here.

The paper is organized as follows. A summary of goal network specifications
and the conversion procedure can be found in Section 2. Section 3 is the main



Fig. 1. A depiction of the example task where the rover must traverse a path and reach
the end point, which is marked with a star, and the goal network associated with it.

contribution of this paper, the failure probability calculation for the converted
linear hybrid systems, which formalizes and extends the process developed in
[7]. Section 4 describes the complexity of this calculation and lists some reduc-
tion techniques. Section 5 is the failure probability calculation for the example
introduced above, and Section 6 summarizes the contributions and describes
directions for future work.

2 Background Information

2.1 Linear Hybrid Automata

There are several symbolic model checkers available that are capable of verifying
linear hybrid automata. A linear hybrid automaton H consists of the following
components [2]:

1. A finite, ordered list of continuous state variables, X = {x1, x2, ..., xn}, and
their time derivatives, Ẋ = {ẋ1, ẋ2, ..., ẋn}.

2. A control graph, (V,E), where V is the set of control modes or locations
of the system, and E is the set of control edges or transitions between the
different modes of the system.

3. The set of invariants for each location, inv(v), the set of initial conditions for
each location, init(v), and the set of flow conditions, dif(v, Ẋ), where v ∈ V .

4. The set of transition labels, Σ, and transition actions or reset equations, A.

These components describe a linear hybrid system that can be successfully
verified using HyTech or PHAVer. The reachability analysis used in the safety
verification of these hybrid automata finds the set of all states that are connected
to a given initial state by a valid run. This can cause a huge explosion of the
state space, however, so symbolic model checkers partition the state space into
sets that are similar in the given reachability analysis. For example, given some
interesting condition, PHAVer will return the set of the state space in which
it is reachable; these interesting conditions given to the software are generally
“unsafe” conditions for the particular system.



2.2 Goal Network Conversion and Verification Procedure

A software control architecture developed at the Jet Propulsion Laboratory uses
state models and reconfigurable goal-based control programs for the control of
autonomous systems [10]. Using MDS, systems are controlled by networks of
goals, which directly express intent as constraints on physical states over time.
Unlike the more traditional sequences of commands used to control robotic space
missions, goal networks allow for branching in the execution plan so that more
fault tolerance is built into the control program at the cost of added complexity
[11]. In the goal network, there are parent goals that elaborate different tactics,
or methods, of accomplishing the parent goal’s state constraint. Whether a tactic
is elaborated in a goal network execution depends on the states of certain state
variables that are passively constrained in the tactics. A passive constraint on
a state variable simply means that goal success depends on the present state of
the state variable; active, or controlled, constraints on state variables are goals
in which control action is employed for the success of the goal.

Let G be the set of all goals in a goal network, where G = G∪U . The set G =
{gi1,j1

1 , gi2,j2
2 , ..., giN ,jN

N } consists of all controlled goals in a goal network, where
in is the parent goal index and jn is the tactic number into which the goal is elab-
orated, for n = 1, ..., N . The set of passive goals is U = {ui1,j1

1 , ui2,j2
2 , ..., uiM ,jM

M },
where im is the index of the goal’s parent goal (which is always a controlled goal)
and jm is the goal’s tactic number for m = 1, ...M . Let T = {T1, T2, ..., TK+1}
be the set of time points in the goal network, where T1 < T2 < ... < TK+1 for
increasing time. Each goal gin,jn

n and uim,jm
m has several associated functions:

1. start() returns the goal’s starting time point.
2. end() returns the goal’s ending time point.
3. svc() returns the state variable constrained by the goal.
4. cons() returns the constraint (or invariant) on the state variable; cons() ∈

Q× R, where R is the set of real numbers and Q = {=, $=, <, >,≤,≥}.

The time points of the goal network are constrained to be well-ordered which
means that the time points fire in strictly increasing order. Due to the structure
imposed on the time points, goals can be grouped into K groups, Gk, k = 1, ...,K
where

Gk = {gin,jn
n ∈ G|start(gin,jn

n ) ≤ Tk ∧ end(gin,jn
n ) ≥ Tk+1}. (1)

A similar definition exists for Uk.
A valid execution of the goal network consists of a sequence of alternating

flow and transition conditions,

φIf (tf )...φI2(t2)ρI2I1φI1(t1)X0, (2)

where X0 is the set of initial conditions of the controlled state variables, φIn(tn)
is the set of flow conditions associated with the executable set of goals θIn

and propagated forward in time tn steps, ρIn+1In is the transition between the
executable sets of goals θIn and θIn+1 , and In is the set of indices of the goals
associated with a certain executable set. Executable sets are subsets of the goals



that can be executed at the same time. The set of all executable sets that are
built from the goals in Gk is Θk. Completion goals are controlled goals gin,jn

n

with non-trivial exit conditions; each executable set θI ∈ Θk either contains all
completion goals in the group or has exit conditions based on goal failure only.

There are two different types of transitions between the goals in the goal
network, transitions based on goal completion, ρc

IJ,k ∈ Scomp, and transitions
based on goal failure, ρf

IJ,k ∈ Sfail, where Scomp and Sfail are the sets of all
completion and failure transitions, respectively. The transition ρc

IJ,k is from θI ∈
Θk to θJ ∈ Θk+1, and its conditions are based on the completion goals in the
group. The transition ρf

IJ,k is from θI ∈ Θk to θJ ∈ Θk or to Safing (in which
case, the transition is labeled ρf

ISafe,k). For both ρc
IJ,k and ρf

IJ,k, only transition
conditions that evaluate to true are taken.

The conversion procedure between goal networks and linear hybrid automata
is a bisimulation and is more fully described in [9]. First, the hybrid automaton
created from the goal network contains all possible executions of the goal network
in its paths. The locations vI are created directly from each of the executable
sets θI , and transitions τ s

J,k, τe
I,k, and τf

IJ,k are created directly from ρc
IJ,k and

ρf
IJ,k. Next, other hybrid automata are created from the models of the state

variables that are constrained by passive goals. This linear hybrid automata is
then analyzed using an existing symbolic model checking software against an
unsafe set to verify that the goal network never reaches the unsafe state. A goal
network whose linear hybrid automata passes the test is then called verified.

3 Failure Probability Calculation

3.1 Automata Specification and Models

The hybrid automaton created from the goal network, called the ‘goals’ automa-
ton, has execution paths of the form

ψIf (tf )τIf If−1 ...ψI2(t2)τI2I1ψI1(t1)X0 (3)

where X0 is the set of initial conditions on the controlled state variables, ψIn(tn) =
dif(vIn , X)(tn) is the flow associated with location vIn for tn time steps, and
τInIn−1 is the transition from location vIn to vIn−1 . The locations of the hybrid
automaton have the same group structure as do the goals in the goal network,
with disjoint sets of locations, V1, V2, ..., VK where

⋃K
k=1 Vk = V and where

Vk ≡ Θk.
Each location vI ∈ Vk directly corresponds with an executable set θI ∈ Θk;

therefore, the location vI is associated with a set Ig of controlled goals and a set
Iu of passive goals. The dynamics of a location are derived from the constraints of
the controlled goals, which include completion goals. Each location vI has a func-
tion, pcons(), associated with it, where pcons(vI) returns the set CI of passive
goal constraints associated with that location, CI = {cons(uim,jm

m )|uim,jm
m ∈ θI}.

The goals automaton has three types of transitions associated with it: entry tran-
sitions, τ s

J,k, are transitions from the preceding group (or initially for k = 1);



exit transition, τe
I,k, are transitions from location vI in group Vk to locations

in group Vk+1 (or to the Success location for k = K); failure transitions, τf
IJ,k,

are transitions from location vI to location vJ , where vI , vJ ∈ Vk. Some fail-
ure transitions may instead go from location vI ∈ Vk to Safing; in that case,
the transition is labeled τf

ISafe,k. These failure transitions are the sensor-driven
state-based transitions conditions for which the failure probability is calculated.

Failure probability can be calculated for a subset of all verifiable goal net-
works. An additional restriction on the hybrid automaton is that all failure and
entry transition conditions must be entirely state-based; failure and entry con-
ditions cannot be based on the order of tactics attempted. This restriction is
not a serious one; in general, state-based transitions are a characteristic of more
robust control programs. Due to the construction of the hybrid automaton [9],
these entry and failure transitions for location vI are based on the passive goal
constraints associated with that location. The uncertain state variables are the
set of state variables Uk such that Uk = {svc(uim,jm

m )|∀uim,jm
m ∈ Uk}.

It is assumed that certain statistical information is known about the system.
For each of the uncertain state variables in set Uk, there must be a way to model
the propagation of the state variable as a stationary Markov process; since these
state variables are not controlled, oftentimes this approximation is a good one.
Also, for each uncertain state variable, there must be some measure of how good
its state estimator is. With this information, the failure probability of the goal
network with respect to the unsafe set may be calculated.

3.2 Failure Path Specification

The calculation of failure probability means nothing unless the conditions of goal
network failure are specified; these failure conditions are called the unsafe set.

Definition 1. An unsafe set is a set of failure conditions Z = {z1, z2, ..., zn}
where each zj has associated functions:

1. plc(zj , γi) returns the set of unsafe location constraints, α, on state variable
γi ∈ Γ where Γ = {svc(uim,jm

m )|∀uim,jm
m ∈ U} and where α ⊂ Λi, the set of

all possible locations (or discrete sets of states) for the passively constrained
state variable γi.

2. loc(zj , vI) returns true if the unsafe condition applies in location vI and false
if it does not.

Definition 2. A complete system state is both the estimated and actual states,
λij,e and λij,a of each uncertain state variable γi ∈ Γ at a point in time in a
possible execution of the goal network. The set of all possible complete system
states is S. Each complete system state has two functions associated with it.

1. est() returns the estimated states λij,e of each uncertain state variable γi ∈ Γ .
2. act() returns the actual states λij,a of each uncertain state variable γi ∈ Γ .



Definition 3. A system state s (actual or estimated) satisfies a set of state
constraints Cs if

s ∧ Cs $= False. (4)

A function sat(s, Cs) will return true if s satisfies Cs and false otherwise.

Lemma 1. Let Ωk ⊂ S be the set of complete system states that drive the
automata execution from group Vk into the unsafe set Z. For a complete system
state ω ∈ S, ω ∈ Ωk if and only if there exists zj ∈ Z and vI ∈ Vk such that

sat(act(ω), plc(zj)) ∧ sat(est(ω), pcons(vI)) ∧ loc(zj , vI) (5)

is true.

Proof. Let ω ∈ Ωk but assume there is no vI that satisfies (5). By the definition
of the unsafe set, there must exist some zj ∈ Z such that sat(act(ω),plc(zj)) is
true, since entrance into the unsafe set is always driven by the actual system
state. Since the unsafe set specifies the total system state, including the location
in the goals automaton, there must exist some vI such that loc(zj , vI) is true.
To enter location vI and thus the unsafe set from complete system state ω,
sat(est(ω),pcons(vI)) must be true since the transitions in the automaton are
state driven by definition and because the estimated state drives the transitions
in the hybrid automata execution. Therefore, vI does satisfy (5). The other
direction of the proof is obvious by the definition of the unsafe set. +,

Since the hybrid automaton has been verified against the unsafe set in the
perfect knowledge case, the only way for the execution of the goal network to
reach the unsafe set is by a difference between the actual and estimated state of
the system. The remaining complete system states fall into two sets. If the esti-
mated system state causes the automaton to transition into the Safing location,
the complete system state is f ∈ Fk, where Fk is the set of all safing system
states. Finally, all other complete system states, ξ, belong to the set of nominal
system states, Ξk. Figure 2 shows the graphical breakdown of system state sets.

Fig. 2. A representation of sets of complete system states.

Definition 4. A failure path in group Vk is a sequence of complete system states
that has the form ξ1ξ2...ξn−1ωn, where n = 1, ..., r and the value of r depends on
the completion time and type of the group.



The number and length of the failure paths in each group depends on several
characteristics of the group which will be described in the following sections.

3.3 Completion Time

The completion time of a group Vk depends on the completion goals in the group.
The type of completion time (uniform or non-uniform) depends on the presence
of rate goals that affect the completion goals in the group.

Definition 5. A nominal execution path of a group Vk is a path ξ1ξ2...ξr ∈ Nk

in which only nominal complete system states are visited before the group is
exited and execution continues in group Vk+1. The set of all nominal execution
paths in group Vk is Nk.

Definition 6. Given the set of nominal execution paths Nk for group Vk, the
completion time, ck, is the minimum length of nominal execution path,

ck = min
ν∈Nk

length(ν). (6)

The completion time of a group is the time it takes to achieve the group’s
completion goals at the fastest constrained rate. If there are no completion goals
in a group and instead there is a time constraint imposed on the bounding time
points, the completion time is simply the time constraint imposed.

Definition 7. In a uniform completion group, Vk,

ck = min
ν∈Nk

length(ν) = max
ν∈Nk

length(ν). (7)

The uniform completion case holds in groups that either have only one rate
goal or have no rate goals and a time constraint. If there is only one rate goal in
a group, all locations will contribute the same amount towards the achievement
of the completion goals. Likewise with a time constraint, each time step in any
location in the group contributes the same amount towards the completion of
the time constraint. Another way to define the uniform completion time case is
that the contribution values of each location in the group are the same.

Definition 8. The contribution value of a location vI ∈ Vk, val(vI) ∈ R, is the
normalized contribution towards the achievement of the completion goals in Vk

that location vI gives each time step. In uniform completion groups, for each
vI ∈ Vk, val(vI) = 1.

Definition 9. A non-uniform completion group is one in which

min
ν∈Nk

length(ν) $= max
ν∈Nk

length(ν). (8)

In the non-uniform completion case, for each location vI ∈ Vk, val(vI) ≤ 1.
In this case, the group would have more than one rate goal that contributes to
the achievement of the completion goals.



3.4 Probability Calculations

The failure probability is calculated from the sum of the probabilities of all the
failure paths in a group; the paths in a group depend on the completion time in
that group, and the procedure for finding all the failure paths in a group depends
on whether it is a uniform or non-uniform completion group. The failure paths
for the uniform completion case are easy to find; the procedure for the non-
uniform completion case is more difficult. Both will be described in this section.
First, let loc(ξ, k) ∈ Vk be a function that returns the location associated with
the nominal complete system state ξ in group Vk.

Lemma 2. For every failure path π = ξ1ξ2...ξr−1ωr ∈ Πk, where Πk is the set
of all failure paths in group Vk,

r−1∑

i=1

val(loc(ξi, k)) < ck. (9)

Proof. The proof of this lemma is simple; if the sum of the contribution values
of the nominal states visited in a failure path equals or exceeds ck, the execution
continues into the next group by the definition of completion time. +,

For both uniform and non-uniform completion groups, the failure probability
of the group, Ws(k) is the sum of the path probabilities of all the failure paths
in that group,

Ws(k) =
∑

Πk

P (π). (10)

For the uniform completion case, collections of stationary and transition
probabilities between nominal and unsafe system states can be created. These
probabilities are calculated from the stationary Markov processes that model
the state propagation of each uncertain state variable and the estimation uncer-
tainty model for each state variable that only depends on the actual state of the
state variable. First, let the probability of executing a failure path of length one
in group Vk be ak, where

ak =
∑

Ωk

P (ω). (11)

Let Wk be a vector of probabilities whose elements are the stationary prob-
abilities of each nominal system state, ξi ∈ Ξk, where Wk(i) = P (ξi). Let Qk

be the matrix of transition probabilities between all nominal system states. Let
Wu,k be the vector of transition probabilities from each nominal system state to
all the unsafe system states,

Wu,k(i) =
∑

Ωk

P (ωr|ξi,r−1). (12)



Proposition 1. The failure probability for the uniform completion case in group
Vk can be calculated using the following formula, for ck ∈ [2,∞),

Ws(k) = ak + Wk · (
ck−2∑

i=0

Qi)Wu,k. (13)

When ck →∞, the equation becomes

Ws(k) = ak + Wk · (I −Q)−1Wu,k. (14)

Proof. The failure probability is the sum of all the failure path probabilities; for
the uniform completion case and the definitions of ak, Wk, Qk, and Wu,k given
above, equation (13) sums the path probabilities of all failure paths of length one
to length ck. If a path has length ck +1, ck of the path elements must be nominal
states; because for the uniform completion case, val(ξ) = 1 for all ξ ∈ Ξk and
Lemma 2, a path of length ck +1 is not possible in group Vk. Therefore, equation
(13) is the sum of all possible failure paths in Vk. Using

∞∑

i=1

Qi = (I −Q)−1, (15)

one can derive (14) from (13). +,

The infinite completion time case is equivalent to finding the stationary proba-
bility of the expanded system state Markov chain. It is essentially one minus the
probability of entering the Safing location from group Vk.

For non-uniform completion groups, path length depends on the order in
which the locations are visited. However, the problem is able to be simplified
by collecting locations into sets based on their contribution values. Then, failure
paths can be found based on these sets of locations, and vectors and matrices
of stationary and transition probabilities for each set of locations can be defined
like the ones defined above for the uniform completion case.

Let B = {b|b = val(vI), for all vI ∈ Vk}, where all b ∈ B are unique (for all
bi, bj ∈ B, bi $= bj) and ordered (B = {b1, b2, ..., bm} such that b1 > b2 > ... >
bm). Since val(vI) is the rate of location vI ∈ Vk normalized by the maximum
rate in group Vk, b1 = 1. Now, let βi = {ξj |loc(ξj , k) = vI ∧ val(vI) = bi,∀ξj ∈
Ξk}. Then, failure paths can be created using βi instead of using the individual
nominal system states, where for failure path βi1βi2 ...βir−1ωr,

r−1∑

j=1

bij < ck. (16)

Like in the uniform completion case, the path probabilities can be summed over
the unsafe system states and the probabilities of the nominal system states in
each contribution value set can be collected into vectors and matrices.

Since the failure probability of a group is always the sum of the failure path
probabilities, the only real difference between the two types of groups is how to



find the failure paths. In the uniform completion group, all nominal system states
could be placed in set β1; so, all failure paths could be made from zero up to
ck−1 instances of β1 followed by some ω ∈ Ωk. For the non-uniform completion
case, the order of the β sets in the failure path matters. The following basic
procedure finds all of the failure paths of a non-uniform completion group.

1. Add all paths of the form βiω to the set Πk of failure paths in group Vk.
2. For all βi where i = 1, ...,m and m is the number of sets β, and for all failure

paths πj ∈ Πk, add βi to the beginning of path πj .
(a) If path βiπj = πl for some πl ∈ Πk, discard the new path.
(b) If bi +

∑
βl∈πj

bl ≥ ck, discard the new path.
(c) Else, add the new path to Πk.

3. Repeat step 2 until no new failure paths are added to Πk.

This procedure could be more efficient, but it is guaranteed to find all possible
failure paths.

The overall hybrid automata failure probability can be calculated by sum-
ming the probabilities of all the failure paths through the automata. To do this,
the probability of each group reaching the Safing location, Wf (k), must be cal-
culated using the same procedure as described above with states f replacing
states ω at the end of the “failure” paths. The probability of traversing group
Vk nominally is then

Wn(k) = 1−Ws(k)−Wf (k). (17)

Proposition 2. The failure probability of the system of K > 1 groups is given
by

Ws = Ws(1) +
K∑

i=2

(
i−1∏

j=1

Wn(j))Ws(i). (18)

Proof. The failure probability of the hybrid system is the sum of the failure
path probabilities through the system. Since the failure paths can only consist
of zero to K − 1 nominal group transitions followed by a failure, (18) gives all
failure paths through the hybrid system. Any entrance into Safing removes the
execution from the hybrid system and precludes failure in the future, and so is
excluded from the failure probability calculation. +,

4 Problem Complexity and Reduction Techniques

The quality of the failure probability calculated above depends only on the qual-
ity of the probability models used; the procedure is exact in that it finds all failure
paths and calculates the probability of each. The problem of finding all the path
probabilities increases in complexity exponentially fast. Because the paths can
be collected into similar sets in both the uniform and non-uniform completion
cases, the complexity explosion is mostly due to the number of uncertain state
variables and the number of states of each of those state variables.



Let y(γi) be the number of states in Λi for each uncertain state variable
γi ∈ Γ . Then, the number of complete system states goes as

∏

Γ

y(γi)2. (19)

In the non-uniform completion case, the number of distinct path sets depends
on the number of rate goals in the group and the completion time ck; however,
this generally increases less quickly than the number of complete system states
for a system under control.

There are two ways to reduce the number of complete system states for a sys-
tem, and therefore decrease the complexity of the failure probability calculation.
The first is to form derived state variables from the existing uncertain state vari-
ables. A derived state variable is a non-physical uncertain state variable whose
state propagation completely depends on one or more other uncertain state vari-
ables. An example of this would be a system health state variable that is based
on all of the sensor health state variables for the system. If there is a way to
replace all instances of several uncertain state variables in the goals automaton
with a derived state variable that is based on those uncertain state variables, the
derived state variable can be used in the failure probability calculation instead.
An example of this technique is described in the next section.

The second way to reduce the complexity of the failure probability calcula-
tion is to leverage the state models of the uncertain state variables by taking
advantage of dependent state variables. A dependent state variable is an uncer-
tain state variable that has model dependencies on the state of at least one other
state variable. In some cases, only certain complete system states are possible
because of these model dependencies. That will produce zero probability of be-
ing in these impossible system states; these system states can then be removed
from the overall set S of complete system states. An example of this complexity
reduction technique can also be found in the next section.

5 Rover Example

To find the failure probability of the verified goal network described in the in-
troduction and in [9], it is noted that the calculation can be done for group
V1 only due to the similarity between the first three groups and the inability
of reaching the unsafe set in the fourth. The goal network as verified has four
uncertain state variables (IMU Temperature, GPS Health, LADAR Health, and
IMU Health), each with three possible state values. Since that translates into
38 = 6561 complete system states, simplification is necessary. Instead, if the
System Health state variable with three states replaces the sensor health state
variables, and a two state IMU Health is used, the number of complete system
states reduces to 22 ∗ 34 = 324.

Another observation is that the IMU Health depends on the IMU Temper-
ature. Since there is a model that controls what the IMU Health is estimated
to be given the IMU Temperature, the estimated IMU Health is known given



the IMU Temperature. However, the actual IMU Health may not always be
known given the actual IMU Temperature due to modeling errors. In certain
cases, such as when the estimated IMU Temperature causes the IMU Power to
be turned OFF, that the actual IMU state is known given the estimated IMU
Temperature. This dependence of an uncertain state variable on another causes
the number of elements to be further reduced. Dependencies between two state
variables is dealt with by creating a new “state variable” that consists of all the
possible actual and estimated states that the two variables can take given the
dependencies. For this problem, the new state variable is called TI and has 18
states, which are made up of estimated and actual values of IMU Temperature
and IMU Health. With the nine possible states for the estimated and actual
values of the System Health state variable, the new total number of complete
system states is 18 ∗ 9 = 162.

The group V1 is a non-uniform completion group with three different contri-
bution values, 1, 1/2, and 0, that correspond to the three speed limit goals. The
nominal set, Ξ1, has 120 complete system states, the Safing set, F1, is empty,
and the unsafe set, Ω1 contains the remaining 42 elements. With a completion
time ck = 5, a set of probabilities for the propagation of the TI and System
Health state variables, and given estimation uncertainties for the TI state vari-
able, the estimation uncertainty of the System Health state was varied and the
failure probability for group V1 was calculated. The results are shown in Fig. 3.

Fig. 3. Group failure probability vs. SH estimation uncertainty

6 Conclusions and Future Work

A formal method for calculating the probability of a verifiable sensor-driven
hybrid system entering into a specified unsafe set due to estimation uncertainty
was presented. The hybrid system is derived from a goal network control program
for an autonomous system; the calculation of the failure probability of this system
gives the designer some information about the original goal network. If the failure
probability of a given system is too high for the design requirements, several
changes could be made. First, the estimator for the state variable could be
improved; for some cases, a better sensor could be used to reduce the probability
of failure; and finally, the goal network could be designed to depend less on a
relatively unknown state variable.



Future work on this problem includes extending the reduction techniques
outlined in Section 4 expand the use of this calculation to more complex sys-
tems. Also, there may be ways to design the original system so that the failure
probability due to estimation uncertainty is reduced if the quality of the sensors
and estimators is known in advance. The verification of goal networks in the
presence of different forms of uncertainty, including estimation uncertainty, is
an important problem, and this approach seems promising as a design tool for
goal-based control programs.

Acknowledgements

The authors would like to gratefully acknowledge Michel Ingham, David Wag-
ner, Robert Rasmussen, and the MDS team at JPL for feedback, and MDS
instruction. This work was funded by NSF and AFOSR.

References

[1] R. Alur, T. Henzinger, and P.-H. Ho, “Automatic symbolic verification of em-
bedded systems,” IEEE Transactions on Software Engineering, vol. 22, no. 3,
pp. 181–201, 1996.

[2] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for hybrid
systems,” International Journal on Software Tools for Technology Transfer, 1997.

[3] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” International
Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 134–152,
1997.

[4] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,”
International Conference on Hybrid Systems: Computation and Control, 2005.

[5] S. Prajna, A. Jadbabaie, and G. J. Pappas, “Stochastic safety verification using
barrier certificates,” IEEE Conference on Decision and Control, 2004.

[6] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic model check-
ing with PRISM: a hybrid approach,” Int J Software Tools Technology Transfer,
vol. 6, pp. 128–142, 2004.

[7] J. M. Braman and R. M. Murray, “Safety verification of fault tolerant goal-based
control programs with estimation uncertainty,” American Control Conference,
2008.

[8] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada, “Engineering com-
plex embedded systems with State Analysis and the Mission Data System,”
AIAA Journal of Aerospace Computing, Information and Communication, vol. 2,
pp. 507–536, December 2005.

[9] J. M. Braman and R. M. Murray, “Automatic conversion software for the safety
verification of goal-based control programs.” Submitted, International Conference
on Software Engineering, 2009.

[10] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks, “Software architecture themes
in JPLs Mission Data System,” IEEE Aerospace Conference, 2000.

[11] R. D. Rasmussen, “Goal-based fault tolerance for space systems using the Mission
Data System,” IEEE Aerospace Conference Proceedings, vol. 5, pp. 2401–2410,
March 2001.


