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Abstract— Fault tolerance and safety verification of control
systems are essential for the success of autonomous robotic sys-
tems. A control architecture called Mission Data System (MDS),
developed at the Jet Propulsion Laboratory, takes a goal-
based control approach. In this paper, an automatic software
algorithm for converting goal network control programs into
linear hybrid systems is described. The linear hybrid system
can then be verified for safety in the presence of failures using
existing symbolic model checkers. Several benchmark problems
are converted from goal networks to linear hybrid automata,
illustrating that complex goal networks can be converted and
verified using this method.

I. INTRODUCTION

Autonomous robotic missions by nature have complex
control systems. In general, the necessary fault detection,
isolation and recovery software for these systems is cum-
bersome and added on as failure cases are encountered
in simulation. There is a need for a systematic way to
incorporate fault tolerance in autonomous robotic control
systems. One way to accomplish this could be to create
a flexible control system that can reconfigure itself in the
presence of faults. However, if the control system cannot be
verified for safety, the added complexity of reconfigurability
could reduce the system’s effective fault tolerance.

One particularly useful way to model fault tolerant control
systems is as hybrid systems. Much work has been done
on the control of hybrid systems [1]. When the continuous
dynamics of these systems are sufficiently simple, it is
possible to verify that the execution of the hybrid control
system will not fall into an unsafe regime [2]. There are
several software packages available that can be used for this
analysis, including HyTech [3], UPPAAL [4], and VERITI
[5], all of which are symbolic model checkers. PHAVer, the
symbolic model checker used in this paper, is a more capable
extension of HyTech [6]. PHAVer is able to exactly verify
linear hybrid systems with piecewise constant bounds on
continuous state derivatives and is able to handle arbitrarily
large numbers due to the use of the Parma Polyhedra Library.
Safety verification for fault tolerant hybrid control systems
ensures that the occurrence of certain faults will not cause
the system to reach an unsafe state.

Often times, the control program used for an application
is not in a form that is conducive to verification. The control
program must then be transformed to an acceptable form by
some suitable means. One such tool exists for the conversion
of AgentSpeak, a reactive goal-based control language, into
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two languages: Promela, which is associated with the Spin
model checker [7], and Java, for which the JPF2 is a general
purpose model checker [8]. Another popular approach is
to create correct by design control programs from Buchi
automata on infinite words [9], or from specifications and
requirements stated in a restricted subset of LTL [10].

The software control architecture that the control programs
in this paper are based on is Mission Data System (MDS),
developed at the Jet Propulsion Laboratory [11]. MDS is
based on a systems engineering concept called State Analysis
[12]. Systems that use MDS are controlled by networks of
goals, which directly express intent as constraints on physical
states over time. By encoding the intent of the robot’s actions,
MDS has naturally allowed more fault response options to
be autonomously explored by the control system [13].

In this paper, an automated process to convert goal net-
works to linear hybrid systems is presented. A procedure
that allows a user to work through the conversion by hand
is found in a previous work [14]. This procedure and some
supporting information about State Analysis and linear hy-
brid systems is briefly described in Section II. The automated
software version of the conversion process that allows more
complicated goal networks to be correctly converted into
linear hybrid systems is discussed in Section III. Benchmark
examples are introduced in Section IV, and conclusions and
future work are presented in Section V.

II. BACKGROUND INFORMATION

A. State Analysis and Mission Data System

State Analysis is a systems engineering methodology
that focuses on a state-based approach to the design of a
system [12]. Models of state effects in the system that is
under control are used for such things as the estimation of
state variables, control of the system, planning, and goal
scheduling. State variables are representations of states or
properties of the system that are controlled or that affect a
controlled state. Examples of state variables could include
the position of a robot, the temperature of the environment,
the health of a sensor, or the position of a switch.

Goals and goal elaborations are created based on the
models. Goals are specific statements of intent used to
control a system by constraining a state variable in time.
Goals are elaborated from a parent goal based on the intent
and type of goal, the state models, and several intuitive rules,
as described in [12]. A core concept of State Analysis is
that the language used to design the control system should
be nearly the same as the language used to implement the
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control system. Therefore, the software architecture, MDS,
is closely related to State Analysis.

Data structures called software state variables are central
to MDS [15]. A state variable can contain much information;
for example, a position state variable for a robot in the
plane could contain the robot’s (x, y) position, its velocity
in component form, and uncertainty values for each piece of
information. Each state variable has a unique estimator, and
if necessary, a controller. Goals can be created that constrain
some or all of a state variable’s information. For example, a
goal could constrain the velocity of the position state variable
used in the previous example, but could leave the position
or uncertainties unconstrained.

Goal networks replace command sequences as the control
input to the system. A goal network consists of a set of
goals with their associated starting and ending time points
and temporal constraints. Temporal constraints on a goal may
be based on execution time, or based on the completion
of the goal. A goal may cause other constraints to be
elaborated on the same state variable and/or on other causally
related state variables. The goals in the goal network and
their elaborations are scheduled by the scheduler software
component so that there are no conflicts in time, goal order or
intent. Each scheduled goal is then achieved by the estimator
or controller of the state variable that is constrained.

Elaboration allows MDS to handle tasks more flexibly
than control architectures based on command sequences. One
example is fault tolerance. Re-elaboration of failed goals is
an option if there are physical redundancies in the system,
many ways to accomplish the same task, or degraded modes
of operation that are acceptable for a task. The elaboration
class for a goal can include several pre-defined tactics. These
tactics are simply different ways to accomplish the intent
of the goal, and tactics may be logically chosen by the
elaborator based on programmer-defined conditions. This
capability allows for many common types and combinations
of faults to be accommodated automatically by the control
system [13].

B. Linear Hybrid Automata
There are several symbolic model checkers available that

are capable of verifying linear hybrid automata. A linear
hybrid automaton H consists of the following components
[3]:

1) A finite, ordered list of continuous state variables,
X = {x1, x2, ..., xn}, and their time derivatives, Ẋ =
{ẋ1, ẋ2, ..., ẋn}.

2) A control graph, (V,E), where V is the set of control
modes or locations of the system, and E is the set
of control edges or transitions between the different
modes of the system.

3) The set of invariants for each location, inv(v), the set of
initial conditions for each location, init(v), and the set
of flow conditions for each location, dif(v, Ẋ), where
v ∈ V .

4) The set of transition labels, Σ, and transition actions
or reset equations, A.

Fig. 1. Representation of a goal network to hybrid system conversion.
The goals are represented by rectangles between circular time points, and
elaboration is depicted by a dashed line, with child goals below the line. In
the hybrid automaton, the circles represent group connectors and rectangles
represent locations.

5) The set S of synchronization labels.
The above components fully describe a linear hybrid

system that can be successfully verified using HyTech or
PHAVer. The reachability analysis used in the safety verifi-
cation of these hybrid automata finds the set of all states that
are connected to a given initial state by a valid run. This can
cause a huge explosion of the state space. PHAVer deals with
this explosion by partitioning locations into simpler ones, or
by using overapproximation of sets of locations to limit the
complexity of the system and to accelerate convergence and
force termination by approximating a system where reacha-
bility is decidable [6]. In analyses where overapproximation
is not required, an exact safety guarantee is possible.

C. Goal Network Conversion and Verification Procedure

Hybrid system analysis tools can be used to verify the
safe behavior of a hybrid system; therefore, a procedure to
convert goal networks into hybrid systems is an important
tool for goal network verification. A manual process for
converting certain types of goal networks is described in
[14], and is graphically represented in Figure 1. These goal
networks can have several state variables and several layers
of goal elaborations, however time points must be well-
ordered, which means the time points fire in the order that
they are listed in the elaboration.

Each state variable in the goal network is labeled as either
controllable, uncontrollable, or dependent. A controllable
state variable (CSV) is directly associated with a command
class. An uncontrollable state variable (USV) is not as-
sociated with a command class in any way. A dependent
state variable (DSV) has model dependencies on at least
one controllable state variable. Different hybrid automata are
created from goals on and states of these different types of
state variables.

An outline of the conversion procedure for the goals on
CSVs and DSVs is as follows:



1) Create elaboration and transition logic tables for each
goal that elaborates any constraints on CSVs and
for each CSV and continuous DSV, respectively. List
transition conditions between states for each discrete
DSV.

2) Place goals between consecutive time points into
groups.

3) In each group, create locations (modes) by combining
branch goals (goals on CSVs that are not ancestors
of other goals on CSVs in the group) with all parent
and sibling goals (goals in the same tactic or other
root goals) that constrain CSVs. Label each location
with the dynamical update equations for all CSVs and
continuous DSVs constrained in the location. Create
Success and Safing locations.

4) Create transitions between locations and groups using
the elaboration and transition logic tables found above.
Elaboration logic controls transitions into groups and
failure transitions between locations in a group, and
transition logic controls the transitions out of a group
to the next group or to the Success location.

5) Add exit and failure transitions based on time to
locations containing goals that have time constraints.
Add entry actions that reset the time variable to zero
when transitions into these locations from the group
connector are taken.

6) Remove unnecessary locations, groups, and transitions.
For each each USV, a separate hybrid automaton is created

by making locations from the discrete states or discrete
sets of states of the variable. The transition conditions
are stochastic rates or are based on the state models. For
safety verification, the hybrid automata are converted into
PHAVer code and the appropriate transitions are synchro-
nized between the automata. The unsafe (or incorrect) set
is determined and conditions that would cause the hybrid
automata to enter the unsafe set are searched for using the
verification software. If no such conditions are found, the
goal network is said to be verified.

III. CONVERSION SOFTWARE DESIGN

The software version of the goal network conversion
procedure is not yet as comprehensive as the version outlined
in the previous section, however most of the important
capabilities are present. The conversion software is written
in Mathematica because of the list structure it employs and
its extensive library of pattern-matching functions.

A. Software Inputs
The inputs to the conversion software are derived from

the necessary design components needed to have an imple-
mentable goal network in MDS. A set of five lists are needed,
and they are {goals, usv,merge, elab, trans}.

The goals list is an ordered list of all the goals on con-
trollable and dependent state variables in the goal network.
The goals must be ordered by ancestory; no goal can appear
in the list ahead of its parent. As goal elaboration is a
top-down procedure, this constraint on the goal ordering is

trivial to achieve. Each goals entry must have the following
information listed in this order:

1) Goal number - this is assigned according to the ances-
tory constraint only.

2) Time point list, {ts, te} - this sublist has two elements,
the number of the beginning time point and the number
of the ending time point. The time points are numbered
by order of execution and it is always true that ts < te.

3) Parent goal number - this is zero if the goal has no
ancestor.

4) Tactic number - this is zero if the goal has no parent.
5) Constraint list, {sv, type, {c1, ..., cn}} - the first ele-

ment of this sublist is the numerical representation of
the controllable or dependent state variable (the set
of controllable state variables is ordered arbitrarily,
followed by an arbitrary ordering of dependent state
variables), the number of the constraint type for that
state variable (also ordered arbitrarily), and the set of
n constraints that accompany that constraint type.

The usv list is an ordered list of all of the uncontrollable
state variables that are constrained in the goal network. The
ordering of the uncontrollable state variables is arbitrary.
Each usv entry must have the following information listed
in this order:

1) State variable name - this is a symbol that will be used
in all elaboration and failure logic. The symbol must
be unique for each uncontrollable state variable.

2) Discrete value list, {v1, ..., vm} - this sublist contains
the m discrete values or sets of values that the uncon-
trollable state variable can take. The m value names
can be numerical or strings, and must be unique for
that specific USV, but not across all USVs.

3) Transition list, {{{c, vi}, ...}, ..., {{c, vj}, ...}} - this
list has m sublists, one for each discrete value that
the USV can take. In each sublist, there is a set of
lists that describe all the transitions that can be taken
out of that state value. The first element of those lists,
c, is the transition condition, and the second element
is the value label to which the transition goes.

The merge list has a sublist for every controllable and
dependent state variable in numerical order. These sublists
have several parts that describe the type of goal constraints
that can be placed on them and how these constraint types
merge with one another if two or more constraints on the
same state variable are active at the same time. Inside
the sublists, there are lists of merge conditions for each
constraint type with itself and with each constraint type
whose numerical label is larger than its own. The parts of
these lists are as follows:

1) Merge type - if the merge is conditional on the
constraints, this value is −1. If the merge is always
impossible, the value is 0, and there are no more list
elements. If the merge is always possible, this value is
the constraint type number that the merged constraint
becomes.

2) Merge rules for constraints - these are symbolic and are



replaced by actual constraint values in the procedure.
This is the last entry for merges that are always
possible.

3) Merge conditions - these are also symbolic, and the
actual constraint values must be substituted during
the merging procedure. If the conditions are true, the
merge happens.

4) Constraint type - for conditional merges only, this is
the number of the constraint type that the merged
constraint becomes.

The elab list has a sublist for every goal listed in the goals
list. The sublists each have lists for different logic types and
conditions if the goal is a parent goal. If not, the sublist for
that goal has only a zero. These elaboration logic information
types are listed below:

1) “Starts in” logic - this lists for each tactic the con-
ditions that cause the elaboration of one tactic over
another.

2) “Failure” logic - this lists for each tactic the conditions
that would fail a tactic and to which goal (or a
representative goal, if execution goes to another tactic
with more than one goal) the tactic fails. There may
be more than one set of conditions and goals for each
tactic. The tactic may fail to “Safe” and a failure
condition may be the failure of children goals, labeled
“CGF.”

The trans list has a sublist for every controllable and
dependent state variable. The lists in the sublists have transi-
tions conditions must be true for each constraint type for that
controllable or dependent state variable. These conditions
have two components, as follows:

1) Incoming transition logic - these conditions must be
true for this type of constraint to be entered.

2) Outgoing transition logic - these conditions signify the
completion of a constraint type.

B. Software Outputs

Since all the necessary information (except flow) for the
USV automata are inputs to the software, the output from
the software has information only about the CSV/DSV goal
automaton. This structure, called cdsva, has many parts,
organized first into groups and second into locations. In each
location’s list, the following information is present in order:

1) List of goals present - listed by goal number.
2) List of merged constraints - including CSV and DSV

number, type of merged constraint, and constraint
values.

3) “Starts in” transition condition - this transition is from
the group connector between the previous group and
the current group, so only the condition is listed.

4) Incoming and outgoing transition conditions - these
transitions are from the preceding group connector to
the location, and from the location to the following
group connector, respectively. The conditions involve
the CSVs and DSVs constrained in that location.

Fig. 2. Flow chart of the conversion software execution

5) Outgoing failure transitions - both the condition and
the accepting location are listed. There may be more
than one per location.

6) Incoming failure transitions - both the condition and
the originating location are listed. There may be more
than one per location.

C. Conversion Algorithms

The general outline for the structure of the conversion
software is shown in Figure 2. There are four main parts
to the conversion algorithm: location creation, constraint
merging, transition creation, and location removal. Each of
these algorithms is described in this section.

The location creation algorithm takes the goals input
structure and uses the time point, parent, and tactic infor-
mation to sort the goals into groups and then into locations.
The time point information is first used to sort the goals
into groups, where some goals may occur in more than one
group if te > ts +1. Then, the parent and tactic information
is used to find all incompatible goals for each goal in the
group. These incompatible goals cannot occur in the same
location as the goal because they are either in different tactics
elaborated from the same parent goal or are descended from
goals that are in different tactics from the same parent goal.
Next, branch goals for each group are found and each is
made into a location; sibling branch goals are combined into
one location. Branch goals have no children in the group, and
sibling goals are goals that are elaborated into the same tactic
or are root goals (goals with no ancestors in the group) that
have no common ancestors. Parent goals and their siblings
are added to each location until the root goals are reached.
Each location is then combined with each other compatible
location and repeat locations are removed until no more
locations can be combined or removed. Compatible locations
are locations that share two or more goals in common and
no goals in one location are on the incompatible goal list of
any goal in the other location. These steps ensure that each
possible execution of the goal network between two time
points is represented in exactly one location.

The constraint merging algorithm uses the location output
from the location creation algorithm and the goals and
merge inputs to combine the constraints on all of the
controllable and dependent state variable constrained in each



location. The constraint types of goals on the same state
variable are compared to find the proper field of the merge
input, and then the symbolic merge conditions and merged
constraint values are replaced with the actual constraints
found in the goals input. If the merge is successful, the new
merge type and merged constraints are added to the location.
If the merge is not successful, the location is removed.

The transition creation algorithm creates the transitions
from the preceding group connector into the locations in
each group, the failure transitions between locations in a
group, and the transitions from each location to the following
group connector using the goals, elab, trans, and usv
inputs, as well as the location and constraints output from the
constraint merging algorithm. The “starts in” logic for each
goal in each location are combined using a logical ‘AND’
connector, and then simplified and checked for viability.
If the resulting logical expression evaluates to False, the
transition is removed. The transition logics for all of the
constrained state variables based on the constraint types
present in the location are also combined and simplified.
Failure logic for each goal in each location is listed, and
the conditions for failure transitions to the same location are
combined with a logical ‘OR’ connector and are simplified.
The locations that are receiving these failure conditions are
updated to reflect that fact. An unsimplified cdsva structure
is the output of this algorithm.

The location removal algorithm checks several conditions
that would warrant the removal of the location or group
for each location and group and then removes the location
or group if any condition is true. These conditions include
the lack of input transitions, all locations having invariantly
True exit conditions, an invariantly True failure condition,
or exit conditions that are a subset of the conditions of all
incoming transitions. The removal of the locations include
the removal of all other failure transitions originating from
that location, and the reassignment of accepting locations for
any entry transitions into the deleted location. The output of
this algorithm is the final output of the software, the cdsva
list.

IV. BENCHMARK PROBLEMS

A. Mars Rover Example

This example was first introduced in a previous work
[14]. It involves a robot with three sensors traversing a path
to get to one point of interest, whose selection depends
on the health of the sensors. Figure 3 depicts the goal
network and the hybrid system to which the goal network
is converted. The inputs to the conversion software consist
of eleven inputs in the goals list; two controllable state
variables, position with four constraint types, and orientation
with two constraint types; one uncontrollable state variable,
system health, with three discrete states; and six parent
goals with elaboration logic. The output of the conversion
software, shown in Figure 4, matches the manual version of
the converted hybrid automaton exactly and was found in
less than one second using the software.

Fig. 3. Numbered goal network and its hybrid automaton conversion for
the Mars rover example

Fig. 4. Annotated conversion software output for the Mars rover example

B. Where’s Waldo Example

The Where’s Waldo example problem was taken from
another work that solves the problem using a correct by
design control system that is generated from requirements
written in a restricted set of LTL [10]. A known rectangular
course broken into four regions (shown in Figure 5) is
traversed by a robot that looks for Waldo, who can be
in region P2 or P4. If the robot finds Waldo in one of
these locations, the robot must stay there; otherwise it must
continue to look. A segment of goal network used to solve
this problem is found in Figure 6 along with the hybrid
automaton that the conversion software found. The input
to the software consisted of ten goals; one controllable
state variable, position, which had two constraint types
(drive and maintain); one uncontrollable state variable, the
location of Waldo, which had three discrete states (P2, P4, or
NotPresent); and four parent goals with elaboration logic.

The hybrid automaton specified by the conversion software
was run in PHAVer with an unsafe (or incorrect) set that
included staying in P2 or P4 when Waldo was not present
and leaving P2 or P4 when Waldo was present in the same
region as the rover. The model checker found no executions
of the hybrid automata that would cause the robot to enter
the unsafe set. The solution for this problem was found and
verified very simply using this goal network conversion and
verification procedure.

C. Complex Goal Network Example

A contrived example to test the capabilities of the conver-
sion software was developed. This example consists of a goal



Fig. 5. Environment for the Where’s Waldo example. The star indicates
the initial rover position [10].

Fig. 6. Goal network and its hybrid automaton conversion for the Where’s
Waldo example, where GTP2 = GetToP2, etc.

network with twenty-five goals; two controllable state vari-
ables, the first with four constraint types and the second with
three constraint types; two uncontrollable state variables,
each with three discrete states; and nine parent goals with
corresponding elaboration logic. A graphical representation
of the goal network and resulting hybrid automaton are
shown in Figure 7. The conversion software successfully
found the correct automaton in about one second.

V. CONCLUSIONS AND FUTURE WORK

The goal network conversion software presented in this
paper is capable of quickly and accurately converting com-
plicated goal networks into linear hybrid automata that can
be verified using existing symbolic model checking software
such as PHAVer. This automatic tool allows more goal
networks to be verified due to its speed and ease of use,

Fig. 7. Numbered goal network elaboration tree and its hybrid automaton
conversion for the complex goal network example

which is a promising development for goal-based control
programs, particularly for control architectures such as MDS.

There is much work to be done with this software.
Many capabilities covered in the original conversion process
can be added to this software. These include dynamical
equations for each controllable and dependent state variable
constraint type, model representations of the evolution of the
uncontrollable state variables, time constraints, replan states,
and removal of unnecessary cycles of locations. Another
capability that will be added soon is a parser to translate
the output cdsva into PHAVer code. Another parser that can
take a more intuitive goal network definition and translate it
into the input lists would also be very useful.
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