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Abstract— Fault tolerance and safety verification of control
systems that have state estimation uncertainty are essential
for the success of autonomous robotic systems. A software
control architecture called Mission Data System, developed at
the Jet Propulsion Laboratory, uses goal networks as the control
program for autonomous systems. Certain types of goal net-
works can be converted into linear hybrid systems and verified
for safety using existing symbolic model checking software.
A process for calculating the probability of failure of some
verifiable goal networks due to state estimation uncertainty
is presented. Extensions of this procedure to include other
types of uncertainties are discussed, and example problems are
presented to illustrate these procedures.

I. INTRODUCTION

Autonomous robotic missions generally have complex,
fault tolerant control systems. There are several ways to
incorporate the necessary fault tolerance in a control archi-
tecture. One way is to create a flexible control system that
can reconfigure itself in the presence of faults. However, if
the control system cannot be verified for safety, even in the
presence of state variable estimation uncertainty, the added
complexity of the reconfigurability of a system could reduce
the system’s effective fault tolerance.

One particularly useful way to model a fault tolerant
control system is as a hybrid system. The control of hybrid
systems has been well researched [1]. When the continuous
dynamics of these systems are sufficiently simple, it is
possible to verify that the execution of the hybrid control
system will not fall into an unsafe regime [2]. There are
several software packages available that can be used for this
analysis, including HyTech [3], UPPAAL [4], and PHAVer
[5], all of which are symbolic model checkers. PHAVer in
particular is able to exactly verify linear hybrid systems with
piecewise constant bounds on continuous state derivatives.
Safety verification for fault tolerant hybrid control systems
ensures that the occurrence of certain faults will not cause
the system to reach an unsafe state.

However, these verification software packages cannot ver-
ify linear hybrid systems that have uncertainty in the esti-
mated state variables that are involved in mode transition
logic. For autonomous systems, none of the state variables
used in the control system are known perfectly, and these
uncertainties can affect the safety of the system. Stochastic
hybrid systems include uncertainty in the transitions of the
hybrid automaton as probabilistic transition conditions. Many
papers have been written on the verification of stochastic
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hybrid systems. Prajna et al [6] use barrier certificates to
bound the upper limit of the probability of failure of the
stochastic hybrid system; Kwiatkowska et al [7] discuss
a probabilistic symbolic model checking software called
PRISM; and Amin et al [8] describe stochastic reachability
and maximal probabilistic safe set computations for discrete
time stochastic hybrid systems. However, purely probabilistic
transition conditions do not model estimation uncertainty in
the constrained state variables well; deterministic transitions
with probabilistic components may be a better model.

In this paper, systems specified using Mission Data System
(MDS), a goal-based control architecture developed at the
Jet Propulsion Laboratory, are analyzed. The structure of
this paper is as follows. Section II summarizes important
concepts of MDS that pertain to this work and describes the
goal network conversion and verification procedure. Section
III summarizes the previous work on verifying goal-based
control programs in the presence of estimation uncertainty,
including the problem set up and the uniform completion
case [9]. Sections IV and V describe the major contributions
of this paper, the extension of the failure probability calcula-
tion to non-uniform completion goal networks, goal networks
with completion time uncertainty, and goal networks with
location uncertainty. Section VI has some examples of the
failure probability calculation for verifiable goal networks,
and Section VII concludes the paper.

II. BACKGROUND INFORMATION

A. State Analysis and Mission Data System

State Analysis is a systems engineering methodology that
focuses on a state-based approach to the design of a system
[10]. Models of state effects in the system to be controlled
are used for such things as the estimation of state variables,
control of the system, planning, and goal scheduling. State
variables are representations of states or properties of the
system that are controlled or that affect a controlled state.
Examples of state variables could include the position of a
robot, the temperature of the environment, the health of a
sensor, or the position of a switch.

Goals and goal elaborations are created based on the
models. Goals are specific statements of intent used to
control a system by constraining a state variable in time.
Goals are elaborated from a parent goal based on the intent
and type of goal, the state models, and several intuitive rules,
as described in [10]. A core concept of State Analysis is
that the language used to design the control system should
be nearly the same as the language used to implement the
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control system. Therefore, the software architecture, MDS,
is closely related to State Analysis.

Goal networks replace command sequences as the control
input to the system. A goal network consists of a set of
goals with their associated starting and ending time points
and temporal constraints. A goal may cause other constraints
to be elaborated on the same state variable and/or on other
causally related state variables. The goals in the goal network
and their elaborations are scheduled by the scheduler soft-
ware component so that there are no conflicts in time, goal
order or intent. Each scheduled goal is then achieved by the
estimator or controller of the state variable constrained.

Elaboration allows MDS to handle tasks more flexibly
than control architectures based on command sequences. One
example is fault tolerance. Re-elaboration of failed goals is
an option if there are physical redundancies in the system,
many ways to accomplish the same task, or degraded modes
of operation that are acceptable for a task. The elaboration
class for a goal can include several pre-defined tactics. These
tactics are simply different ways to accomplish the intent
of the goal, and tactics may be logically chosen by the
elaborator based on programmer-defined conditions. This
capability allows for many common types and combinations
of faults to be accommodated automatically by the control
system [11].

B. Goal Network Conversion and Verification Procedure

Hybrid system analysis tools can be used to verify the
safe behavior of a hybrid system; therefore, a procedure to
convert goal networks into hybrid systems is an important
tool for goal network verification. A process for converting
certain types of goal networks is described in [12] and sum-
marized in Fig. 1. These goal networks can have several state
variables and several layers of goal elaborations, however
time points must be well-ordered, which means that the time
points must fire in the order they are listed in the elaboration.

Each state variable in the goal network is labeled as either
controllable, uncontrollable, or dependent. A controllable
state variable (CSV) is directly associated with a command
class. An uncontrollable state variable (USV) is not as-
sociated with a command class in any way. A dependent
state variable (DSV) has model dependencies on at least
one controllable state variable. Different hybrid automata are
created from goals on and states of these different types of
state variables.

An outline of the conversion procedure for the goals on
CSVs and DSVs is as follows:

1) Create elaboration and transition logic tables for each
goal that elaborates any constraints on CSVs and for
each CSV and DSV, respectively.

2) Place all goals on CSVs and DSVs between consecu-
tive time points into groups.

3) In each group, create locations (modes) by combining
branch goals (goals that are not ancestors of other goals
in the group) with all parent and sibling goals (goals in
the same tactic or other root goals). Label each location

Fig. 1. Representation of a goal network to hybrid system conversion.
The goals are represented by rectangles between circular time points, and
elaboration is depicted by a dashed line, with child goals below the line.
In the hybrid automaton, one group is shown where the circles represent
group connectors and rectangles represent locations.

with the dynamical update equations for all CSVs and
continuous DSVs constrained in the location. Create
Success and Safing locations.

4) Create transitions between locations and groups using
the elaboration and transition logic tables found above.
Elaboration logic controls transitions into groups and
failure transitions between locations in a group, and
transition logic controls the transitions to the next
group or to the Success location.

5) Add exit and failure transitions based on time to
locations in groups that have time constraints. Add
entry actions that reset the time variable to zero when
transitions into these groups are taken.

6) Remove unnecessary locations, groups, and transitions.
For each each USV, a separate hybrid automaton is created

by making locations from the discrete states or discrete sets
of states that the variable can take. The transition conditions
are stochastic rates or are based on the state models. For
safety verification, the hybrid automata are converted into
PHAVer code and the appropriate transitions are synchro-
nized between the automata. The unsafe (or incorrect) set
is determined and conditions that would cause the hybrid
automata to enter the unsafe set are searched for using the
verification software. If no such conditions are found, the
goal network is said to be verified.

III. FAILURE PROBABILITY CALCULATION FOR THE
UNIFORM COMPLETION CASE

In the previous section, the safety verification of the goal
network could be completed assuming that all state variables
are known exactly. For certain classes of verifiable goal
networks, if the uncontrollable state variables that drive the



transitions into and between locations in a group have some
bounded estimation uncertainty, the probability of reaching
the unsafe set due to this uncertainty can be calculated. These
uncertain state variables must have stochastic transitions
between their discrete states (or discrete sets of states) that
depend only on the previous state and can be modeled
by a stationary Markov process. The probability that the
estimated value of an uncertain state variable is the same
as or different from the actual value is derived from the
estimation uncertainty, and only depends on the actual value
of the state variable.

In previous work [9], the failure probability calculation
for the uniform completion case was derived. In the uniform
completion case, the minimum execution time of a group
is also the maximum execution time; in other words, all
locations in the group contribute an equal amount to the
completion of the goals or to the time constraint placed on
the group. Therefore, a uniform completion time ck would
require exactly ck execution time steps before the group
would be exited normally. The given information for this
problem includes the completion time ck for each group, gk,
where k = 1, ..., N and N is the total number of groups in a
goal network’s hybrid automaton conversion. Also known is
the number of state variables that are uncertain, n, and the
number of discrete states or sets of states that each uncertain
state variable can take, mi, where i = 1, ..., n. Let ji (ki)
represent the jth (kth) possible value of the ith uncertain
state variable, where ji = 1, ...,mi,∀i = 1, ..., n (likewise
for ki). Let vei represent the estimated value of the ith
uncertain state variable and let vai represent the actual value
of each uncertain state variable. Stationary Markov transition
probabilities are given for each uncertain state variable
from each discrete state to each discrete state, P (vai =
ji|vai,p = ki), where vai,p is the previous actual value of
the ith uncertain state variable. Finally, the probabilities of
estimating each state variable to be each discrete state given
the actual value, P (vei = ji|vai = ki), which are calculated
from the estimation uncertainty for the state variable, are
given.

Let S be the set of all possible combinations of ac-
tual and estimated values that each uncertain state vari-
able can take; in Fig. 2, S is the overall closed set. S
has

∏n
i=1 m2

i elements, and each element takes the form
va1ve1va2ve2...vanven. For each group there are sets Ωk ⊂
S, where the elements of Ωk cause the automaton to enter
the unsafe set from gk and are called “unsafe” elements.
Since the goal network was verified, entrance into this set is
always due to estimation uncertainty, and the probability of
entering this set is the failure probability. Entrance into the
unsafe set for each group is dictated by the actual values of
the uncertain state variables, while the transition conditions
within the group are dependent on the estimated value of the
uncertain state variable. There also are sets Fk ⊂ S in which
each element causes the automaton to leave gk and enter the
Safing location without also entering the unsafe set. A set

Fig. 2. A representation of sets of uncertain state variable elements. Set S
is the sum of the set of unsafe elements, Ωk , the set of “Safing” elements,
Fk , and the set of non-failing elements, Ξk . A representative path starting
at s(0) = p that the automaton takes with completion time ck = 5 is
shown.

Fk may be empty. Finally, there are sets

Ξk ≡ S − (Ωk + Fk) (1)

to which the remainder of elements in S belong. Elements
in Ξk, called “non-failing” elements, allow operation to
continue in the group or allow a successful transfer out of the
group to the next one. These sets are represented graphically
in Fig. 2.

The necessary parameters for the failure probability calcu-
lation are found in the following way. The probability of fail-
ing due to the initial condition is the sum of the probability of
each element of Ωk occurring, ak =

∑uk

u=1 P (s(0) = xu).
Let uk be the number of elements in set Ωk and let xu

represent the uth element. So,

ak =
uk∑

u=1

n∏
i=1

P (vai = ji,au)P (vei = ji,eu|vai = ji,au),

(2)
where ji,au is the uth actual value of the ith uncertain state
variable in set Ωk and ji,eu is the uth estimated value of the
ith state variable.

The vector Wk contains the probability of starting in
each non-failing initial condition. Let qk be the number of
elements in Ξk and Wk(q) be the qth element of Wk, where
q = 1, ..., qk and Wk(q) = P (s(0) = xq).

Wk(q) =
n∏

i=1

P (vai = ji,aq)P (vei = ji,eq|vai = ji,aq) (3)

For each group, there is a qk × qk matrix, Qk, whose
elements are the probability of making a transition from
element q ∈ Ξk to element q′ ∈ Ξk, where q, q′ = 1, ..., qk,
and Qk(q, q′) = P (s(r + 1) = xq′ |s(r) = xq).

Qk(q, q′) =
n∏

i=1

(P (vai = ji,aq′ |vai,p = ji,aq)×

P (vei = ji,eq′ |vai = ji,aq′)), (4)



where vai,p is the previous actual value of the ith uncertain
state variable.

For each group, there exists a qk × 1 vector, Wu,k, whose
elements are the sum of probabilities of the transitions from
the qth element in Ξk to each element in Ωk, which is the
transition from each non-failure state to any failure state, or
Wu,k(q) =

∑uk

u=1 P (s(r + 1) = xu|s(r) = xq).

Wu,k(q) =
uk∑

u=1

n∏
i=1

(P (vai = ji,au|vai,p = ji,aq)×

P (vei = ji,eu|vai = ji,au)) (5)

For both the uniform completion case and the non-uniform
completion case described in the next section, the objective
of finding the failure probability is to discover the effect that
the estimation uncertainty has on the execution of otherwise
correct goal networks. After entering a group in a goal
network execution, there are only three ways to exit:

1) The completion time is reached, and the execution
moves normally into the next group.

2) A transition to the “Safing” set, s(r) ∈ Fk, is taken
before the completion time is reached.

3) A transition to the unsafe set, s(r) ∈ Ωk, is taken
before the completion time is reached.

Only execution paths that fall under the third category are
failure paths, and because only verifiable goal networks are
considered, these paths are only possible due to the estima-
tion uncertainty of the state variables that control transitions
into the unsafe set. The definition of being verifiable is that
there are no paths that reach the unsafe set when there is no
estimation uncertainty.

The failure probability for each group, Ws(k), is cal-
culated by summing the path probabilities of all possible
execution paths into the unsafe set. For ck = 1, the only
way to reach the unsafe set is to start in it, the probability
of which is represented by Ws(k) = ak. For ck = 2, the
probability of starting in the non-failure initial conditions
and then making the transition to the unsafe set is added to
the probability of starting in the unsafe set, and so on. The
equation for the failure probability for ck ∈ [2,∞), where
k = 1, ..., N , is

Ws(k) = ak + Wk ·

[
ck−2∑
x=0

Qx
kWu,k

]
. (6)

IV. NON-UNIFORM COMPLETION FAILURE PROBABILITY

In the non-uniform completion case, the minimum execu-
tion time of a group is not the same as the maximum execu-
tion time. Sets of locations contribute a different amount to
the completion of goals or time constraints on the group. An
example of this is a group with a goal constraining a robot
to cover some distance, however, different locations in this
group constrain the maximum speed of the robot to different
values. The set of locations with the maximum speed limit
constraint have a contribution to the goal completion of 1;
that is, this set of locations dictates the minimum execution
time of the group. All other sets of locations with lower

speed limit constraints have contribution values that are less
than one. Paths that exit the group normally due to goal
completion have location contribution value sums that are
equal to or exceed the completion time.

Unlike the uniform completion case, the normal comple-
tion paths have different lengths and location contribution
value patterns in the non-uniform completion case. There-
fore, the number of ways to reach group completion, and
likewise the unsafe set, is much larger in this case. The
failure probability is calculated in the same way for this
problem as for the uniform completion case, by summing
the path probabilities of each failure path. This section will
describe the algorithm to find all the failure paths and how
the path probabilities are calculated.

A. Failure Path Algorithm

To find all the possible failure paths, the algorithm must
be given a vector that contains the contribution values
corresponding to each subset of locations in the group. The
contribution value corresponding to the fastest subset of
locations will always be 1 due to the definition of completion
time; for the non-uniform completion case, there will always
be at least one other subset of locations with a contribution
value, cv ∈ [0, 1) and let ng be the number of contribution
values. The algorithm to find all failure paths is shown in
Fig. 3 and can be summarized as follows:

1) Add a failure path that consists of one normal execu-
tion step for each subset of locations with cv < ck into
set s1.

2) For the next ng steps, create a set of paths si+1 (where
i = 1, ..., ng) by appending a transition into the subset
of locations with the ith contribution value to each
path in the previous i sets whose path sum plus the ith
contribution value is less than ck.

3) Until the previous ng sets are empty, create new sets
of paths by appending a transition into the subset of
locations with the ith contribution value (where i =
1, ..., ng , looping through the values until complete) to
all the paths in the previous ng sets whose path sum
plus the ith contribution value is less than ck. If the
last subset of locations transitioned into in a path has a
contribution value of zero, another transition into that
same subset cannot be added to that path due to how
the path probabilities are calculated.

B. Path Probability Calculation

The same basic matrices that were used in the uniform
completion case can be modified to apply to the non-uniform
completion case. The initial failure probability, ak, stays the
same. However, the vector of probabilities of initially starting
in the non-failing set, Wk, must be broken into vectors that
describe starting in non-failing elements associated with each
of the subsets of locations with different contribution values.
Therefore, there will be ng different, non-overlapping Wki

vectors, i = 1, ..., ng . The same breakdown of the Wu,k

vector must occur, making ng different, non-overlapping
Wu,ki vectors whose elements are the probabilities of going



Fig. 3. Failure path algorithm

from a non-failing state associated with the ith subset of
locations to all of the states in the unsafe set. The Qk

matrix breakdown is a little more complicated. This matrix
of probabilities of transitions from all non-failing elements
to all other non-failing elements must be broken into n2

g

matrices. Each matrix Qki,j has transition probabilities from
each non-failing element associated with the ith subset of
locations to each non-failing element in the jth subset of
locations, where i = 1, ..., ng and j = 1, ..., ng .

The procedure for finding the failure probability for group
gk is essentially summing the path probabilities of all the
failure paths found with the algorithm described in the
previous section plus the probability of initially reaching the
unsafe set (ak). The path probability for each of the paths
with the initial transition into the non-failing set followed
by a transition into the unsafe set is Wki ·Wu,ki. All other
paths include products of Qki,j matrices for each non-failing
transition after the initial one. The path probability for these
paths has the form Wki1 ·Qki1,i2 ...Qkip−1,ip

Wu,kip
, where p

is the number of transitions in the non-failing set, including
the initial one. If a transition into a subset of locations with a
contribution value of zero is represented in a path, a modified
Qki,j matrix is used in the path probability calculation to
account for the possibility of staying in that subset anywhere
from one to an infinite number of time steps. This modified
Qki,j matrix is

Q′
ki,0 = Qki,0(I −Qk0,0)−1 (7)

because

(I −Qk)−1 =
∞∑

x=0

Qx
k. (8)

V. COMPLETION TIME AND LOCATION UNCERTAINTY

Estimation uncertainty of the uncontrollable state variables
drove the uniform and non-uniform completion time failure

probability derivations. It is possible to add two other sources
of uncertainty; first, in the completion time and second, with
which location in a group an uncertain state variable element
is associated. Methods for dealing with these sources of un-
certainty in the failure probability calculation are addressed
in this section.

A. Completion Time Uncertainty

It may not be possible to exactly know the completion
time for a group. If there is a probability distribution over
a finite number of possible completion times, the failure
probability for that group can be calculated by finding the
failure probability for each possible completion time. The
total failure probability for the group is the sum of the failure
probabilities for each possible completion time multiplied by
the completion time probability. This procedure works for
both the uniform and non-uniform completion cases.

B. Location Uncertainty

For the failure probability calculations presented thus far,
it is assumed that each uncertain state variable element is
uniquely associated with only one location in a group. There
are cases, however, where the transitions between elements
in a group are deterministic, but which location an uncertain
state variable element is associated with is also dependent on
the previous location(s) visited in the execution path. It may
be a misnomer to call this location uncertainty, but the added
dependence on execution path does change the problem in a
significant way.

The method to calculate the group failure probability is
very similar to the ones presented for the uniform and non-
uniform completion cases. In fact, the only changes to the
processes involve the matrices and vectors that are used in the
path probability calculations. A composite transition matrix
between all combinations of uncertain state variable elements
is created from the original stationary Markov transition ma-
trices and the estimation uncertainty for each uncertain state
variable. However, if there are sets of elements that could be
associated with more than one location, one representation
of the values for each possible location must be present in
the transition matrix. For example, if element j of

∏n
i=1 m2

i

possible elements could be associated with either location a
or b, then a row and column in the transition matrix would
be added and labeled element jb, and the original row and
column associated with element j would be renamed ja.
The transition matrix would then be a (m2

i + 1)× (m2
i + 1)

matrix. The transition probabilities from element ja to jb

and vice versa are zero and if an element r had a non-
zero transition probability to element j, that same transition
probability would apply from r to one of the new j elements,
while the transition probability from r to the other j element
would be zero. This is true because the transitions between
locations must still be deterministic.

The Wk and Wu,k vectors and Qk matrices also reflect the
addition of the extra elements due to the location uncertainty.
These vectors are calculated in a similar way to the uniform
and non-uniform completion cases, however, the Qk matrices



Fig. 4. Goal network and hybrid automaton for the non-uniform completion
and location uncertainty examples. The transition marked with an asterisk
does not exist in the location uncertainty example.

can be found by simply selecting the appropriate rows and
columns of the composite transition matrix. The process for
calculating the failure probability for the group continues
as previously presented using these augmented matrices and
vectors.

VI. EXAMPLES

A. Non-Uniform Completion Example

The task in this example is to drive a rover to a point,
enforcing different speed limits for different sensor capabil-
ities. The goal network and its hybrid automaton conversion
are shown in Fig. 4. The unsafe set is as follows:

1) Location is G1 and sensor health is Fair or Poor
2) Location is G2 and sensor health is Poor
3) Location is Safe and sensor health is Good or Fair.

The goals in this group are completed when the rover reaches
the point, however the two locations in the group drive the
robot to the point at different rates. The speed limit in G1 is
higher, and so the contribution value of location G1 is 1. If
the speed limit in the second location, G2, is half the speed
limit in G1, the contribution value of G2 is 1/2.

The following vectors and matrices are found for this prob-
lem, using shorthand notation like P (GF ), which signifies
the probability of starting in an actual state of Good and an
estimated state of Fair. Wu,k1 and Wu,k2 are not shown, but
are a scalar value and a 2× 1 vector, respectively.

ak = P (GP ) + P (FG) + P (FP ) + P (PG) + P (PF )

Wk1 = P (GG) Wk2 =
[
P (GF )
P (FF )

]
Qk1,1 = P (GG|GG) Qk2,1 =

[
P (GG|GF )
P (GG|FF )

]
Qk1,2 =

[
P (GF |GG) P (FF |GG)

]
Qk2,2 =

[
P (GF |GF ) P (FF |GF )
P (GF |FF ) P (FF |FF )

]
For one given path for ck ≥ 4,

σ = {G1, G2, G1, G2, G2, f}, (9)

the path probability is given as

P (σ) = Wk1 ·Qk1,2Qk2,1Qk1,2Qk2,2Wu,k2. (10)

The overall failure probability of this group is found
given a completion time distribution of [ck, P (ck)] =

Fig. 5. Failure probabilities for various values of estimation uncertainty
for non-uniform completion example

{[4, 0.25], [5, 0.5], [6, 0.25]}, stationary Markov transition
probabilities for the actual values of the sensor health, and
several values for the estimation uncertainty associated with
the sensor health. The results from these calculations are
shown in Fig. 5.

B. Location Uncertainty Example

The goal network is the same for this example, shown
in Fig. 4, except that there is no transition back into G1
once G2 is reached. The location that any element with
an estimated state of Good is associated with now has an
execution path dependency. For this case, the set of possible
uncertain elements would have to be supplemented with three
new elements so that set S would be

S = {GG1, GG2, GF, GP, FG1, FG2,

FF, FP, PG1, PG2, PF, PP}.

The matrices and vectors needed for this problem are updated
from the ones derived for the previous example to include
these new elements. Fig. 6 shows the sets that each of the
elements are in, from which the Wk and Wu,k vectors and
Qk matrices are derived. The probability of going from an
element with a superscript of 1 to one with a superscript of
2 and vice versa is zero. Also, none of the elements with a
superscript of 2 can be reached initially. Once the transition
probabilities between the elements have been worked out and
a completion time given, the problem is solvable using the
same procedure as before.

VII. CONCLUSIONS AND FUTURE WORK

This paper derives the failure probability of certain veri-
fiable goal networks due to state variable estimation uncer-
tainty. Methods to deal with completion time uncertainty and
a type of location uncertainty were presented as extensions
to the estimation uncertainty failure probability calculations.
Two example goal networks were presented to illustrate the
failure probability calculation procedures. The calculation
of the failure probability for the different groups of a goal
network can be used as a verification of the goal network
in the presence of estimation uncertainty as well as a design



Fig. 6. Sets of elements for the location uncertainty example

tool to drive the design of goal networks or the choice of
sensors and estimators to reduce the probability of failure.

Future work includes extending the calculation of a failure
probability to include other types of uncertainty. Uncertainty
in group transitions, controllable state variables, and the
given probability distributions are all examples of possible
types of uncertainty to include. The verification of goal
networks in the presence of different forms of uncertainty,
including estimation uncertainty, is an important problem,
and this approach seems promising as a design tool for goal-
based control programs.
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