
Minimally Constrained Testing for Autonomy
with Temporal Logic Specifications

Apurva Badithela, Josefine Graebener, Richard M. Murray

Abstract—In this paper, we study automated test generation for
discrete decision-making modules in autonomous systems. First,
we consider a subset of Linear Temporal Logic to represent
formal requirements on the system and the test environment.
The system specification captures requirements for the system
under test while the test specification captures basic attributes
of the test environment known to the system, and additional
structure provided by a test engineer, which is unknown to
the system. Second, a game graph representing the high-level
interaction between the system and the test environment is
constructed from transition systems modeling the system and
the test environment. We provide an algorithm that finds the
projection of the acceptance conditions of the system and test
specifications on the game graph. Finally, to ensure that the
system meets the test specification in addition to satisfying the
system specification, we present a framework to construct a
minimally constrained test. Specifically, we formulate this as
a multi-commodity network flows problem, and present two
optimizations to solve for the minimally constrained test. We
conclude with future directions on applying these algorithms to
constrain test environments in self-driving applications.

I. INTRODUCTION

Operational testing of autonomous systems at various levels
of abstraction — from low-level continuous dynamics to high-
level discrete decision-making — is essential for verification
and validation. In formal methods, testing refers to simulation-
based falsification, where inputs to a model of the system are
found which result in system violating its requirements [8, 6,
1]. Our notion of testing in this work is complementary to
falsification — we seek to observe certain desired behavior
during a test execution that is successful with respect to the
system’s specifications. As illustrated in Figure 1, the system
is required to park in a spot, while the test is setup such that the
system needs more than one attempt to pull into the parking
spot. We characterize the mission requirements on the system
as a system specification, and characterize the desired behavior
observed during the test via a test specification.

We begin with a test environment that has little influence on
the system. However, we might not be able to find a strategy
for such a test environment to realize the test specification.
Thus, we seek to constrain the test (by constraining actions
that the system can take) such that: a) the system can still

A. Badithela is a PhD candidate in Control and Dynamical Systems,
Computing and Mathematical Sciences, California Institute of Technology,
Pasadena, CA 91106, USA apurva@caltech.edu

J. Graebener is a PhD candidate in Space Engineering, Graduate Aerospace
Laboratories, California Institute of Technology, Pasadena, CA 91106, USA
jgraeben@caltech.edu

R.M. Murray is with the Control and Dynamical Systems, Computing
and Mathematical Sciences, California Institute of Technology, Pasadena, CA
91106, USA murray@cds.caltech.edu

satisfy its requirements, and b) the test specification is satisfied
in a successful execution. Additionally, we seek to minimally
constrained tests as these might translate to more flexibility
for the autonomous system to satisfy its requirements. The
contributions are the following:

• Transforming the problem of finding a test environment
consistent with specifications as a graph partitioning
problem,

• Defining the notion of minimally constrained test en-
vironment and mapping these constraints to the graph
partitioning problem,

• Presenting a convex optimization to solve for a minimally
node-constrained test (under a special case), and

• Presenting a convex-concave min-max optimization to
solve for a minimally edge-constrained test (for the
general case).

II. PRELIMINARIES

A. Temporal Logic, Transition Systems, and Automata

Linear Temporal Logic (LTL) can describe temporal proper-
ties on a trace of propositional formulas [2]. The syntax of LTL
comprises of both logical (∧ and, ∨ or, and ¬ negation), and
temporal operators (⃝ next, □ always, ♢ eventually, and U
until) operators. A Nondeterministic Büchi Automaton (NBA)
is a tuple B = (Q, 2AP , δ, Q0, F ), where Q represents the
states, AP is the set of atomic propositions, δ represents the
transition function, Q0 ⊆ Q represents the initial states, and
F ⊆ Q is the set of acceptance states. A transition system is
a tuple T = (S,A,→, I, AP,L) where S is a set of states, A
is the set of actions, →: S ×A→ S is the transition relation,
I ⊆ S is the set of initial states, AP is the set of atomic
propositions, and L : S → 2AP is a labeling function that
indicates the set of atomic propositions that evaluate to true
at a particular state.

Definition 1 (Product Automaton). The product of a transition
system T = (S,A,→, I, AP,L) and a NBA B = (Q, 2AP ,→
, Q0, F ), is the tuple T ⊗B = (S′, A,→′, I ′, AP ′, L′), where:

• S′ = S ×Q,

• ∀s, t ∈ S, ∀q, p ∈ Q such that s a→ t and q
L(t)
→p, then,

(s, q)
a

→′(t, p),

• I ′ = {(s0, q) : s0 ∈ I, ∃q0 ∈ Q0 s.t. q0
L(s0)→ q},

• AP ′ = Q, and
• L′ : S ×Q→ 2Q such that L′((s, q)) = {q}.

RSS 2022 Workshop on Envisioning an Infrastructure for Multi-Robot and Collaborative Autonomy Testing and Evaluation
http://www.cds.caltech.edu/~murray/preprints/bgm22-rss.pdf



Fig. 1: Caltech’s entry Alice in the 2007 DARPA Urban Challenge undergoing a qualifying test. Top row: Alice entering the lot
and navigating to parking spot, Bottom row: Multiple attempts to pull-in to spot before successful parking. Alice’s requirement,
or system specification, is to safely park in a parking spot. Informally, one possible test specification could be that Alice should
require more than one attempt in entering the parking spot to successfully park. Given an empty parking lot as the original test
environment, how should obstacles be placed such that Alice requires more than one attempt (satisfying the test specification)
to successfully park (satisfying the system specification)? The locations of obstacles was manually decided in this test; how
can we automate finding constraints on the test environment?

B. System and Test Environment

The system specification and the test specification represent
requirements on the system under test and the test environ-
ment, respectively. In addition to capturing the assumptions of
the system, the test specification captures additional require-
ments that the test environment must be designed for in order
to observe the behavior □ψs

test ∧□♢ψf
test on a test execution.

Definition 2 (System and Test Specification [5]). A system
specification is the an LTL formula,

φsys = (φinit
test ∧□φs

test ∧□♢φf
test)→

(φinit
sys ∧□φs

sys ∧□♢φf
sys) ,

(1)

A test specification is the LTL formula,

φtest = (φinit
sys ∧□φs

sys ∧□♢φf
sys)→

(
(φinit

test ∧□φs
test

∧□♢φf
test) ∧□ψs

test ∧□♢ψf
test

)
,

(2)

where φinit
sys is the initial condition of that the system needs

to satisfy, □φs
sys encode system dynamics and safety require-

ments on the system, and □♢φf
sys specifies recurrence goals

for the system. Likewise, φinit
test, □φ

s
test, and □♢φf

test represent
assumptions the system has on the test environment. Addition-
ally, the propositional formulas ψs

test and □♢ψf
test represent the

safety and recurrence formulas of the test specification that
is not known to the system. Note that the system and test
specifications are in a form known as GeneralReactivity(1)
or GR(1) formulas, for which efficient synthesis techniques
are well-known [3].

Remark 1. In this paper, we consider a subset of the formulas
described in equations (1) and (2) in which the subformulas
representing initial conditions, safety and progress require-
ments are sets of atomic propositions in the set 2AP .

C. Network Flows

We build on the concept of network flows to define a
minimally constrained test. An extension of network flows to
the game setting is known as a flow game [7].

Definition 3 (Network Flow). A network flow is a tuple N =
⟨V,E, c, s, t⟩ where V is a set of vertices, E is a set of directed
edges, E ⊆ V × V , c is a capacity function for the amount
of flow that each edge can transfer, and s ∈ V are the source
vertices and t ∈ V are the target sink vertices.

D. Example

We will use the following as a running example throughout
this paper. Consider a maze in a grid world setting. The system
under test is an agent starting at its initial position on the
bottom left corner of the grid with the intention of reaching
its goal position in the top right corner. The dynamics are given
as simple grid world dynamics enabling horizontal and vertical
transitions to neighboring grid cells. The test behavior that we
want to observe is that the system passes through specific grid
cells, defined by the test specification. We then constrain the
environment by placing obstacles on the grid cells by solving
optimization (3).



Fig. 2: Example maze layout, the agent (pacman) wants to
reach its goal state (gold). The test specification wants to route
its path through the intermediate state (blue).

III. ALGORITHMS

A. Projecting Acceptance States from Büchi Automata

Suppose that we’re given the system and test environment
transition systems, Tsys and Ttest, and the system and test spec-
ifications, φsys and φtest, respectively. Construct the product
transition system G = Tsys × Ttest, and construct the Büchi
automata, Bsys and Btest, corresponding to the system and test
specifications, respectively. The start nodes Sn, intermediate
nodes In, and target nodes Tn are vertices on G are of special
importance. The start nodes Sn correspond to initial conditions
of a test. The target nodes Tn correspond to states when
the system specification φsys is satisfied, and the intermediate
nodes In correspond to states when the test specification φtest
is satisfied. Algorithm 1 details how Sn, In, and Tn are
determined.

Remark 2. The product transition system G is a 2-player
turn-based game graph. For the system, the objective is to
find a strategy that reaches (or repeatedly reaches) Tn on G.
Likewise, the test environment’s objective is to find a strategy
that passes through In before the state(s) Tn are reached.

Algorithm 1 Project Acceptance States on G
1: procedure P (Tsys, φsys, Ttest, φtest)
2: G ← Tsys × Ttest ▷ Game graph
3: Bsys ← BA(φsys) = (Qsys, 2

AP ,→sys, Q0,sys, Fsys)
4: Btest ← BA(φtest) = (Qtest, 2

AP ,→test, Q0,test, Ftest)
5: G ⊗ Bsys = (S′

sys, Asys,→′
sys, I

′
sys, AP

′
sys, L

′
sys)

6: G ⊗ Btest = (S′
test, Atest,→′

test, I
′
test, AP

′
test, L

′
test)

7: PG(I
′
sys) = {s ∈ SG |∃qsys ∈ Qsys s.t. (s, qsys) ∈ I ′sys}

8: PG(I
′
test) = {s ∈ SG |∃qtest ∈ Qtest s.t. (s, qtest) ∈ I ′test}

9: Sn ← PG(I
′
sys) ∩ PG(I

′
test) ▷ Start nodes on G

10: In ← {s ∈ SG |∃qtest ∈ Qtest, L
′
test((s, qtest)) ⊆ Ftest} ▷

Intermediate nodes on G
11: Tn ← {s ∈ SG |∃qsys ∈ Qsys, L

′
sys((s, qsys)) ⊆ Fsys} ▷

Target nodes on G
12: return Sn, In, Tn
13: end procedure

Consider the product transition system G = (V,E) with sets
of vertices: start Sn, intermediate In, and target Tn defined
prior. For every edge e ∈ E, let de ∈ B be an indicator
variable for whether edge e is cut, and likewise, for every
vertex v ∈ V , let dv ∈ B be an indicator variable for whether
vertex v is removed from G. The cuts de and dv represent
node constraints and edge constraints on G, respectively. Let
Paths(Sn, Tn) denote all paths on G from source vertices Sn

to target vertices Tn, and for some path p ∈ Paths(Sn, Tn),
let fp denote the flow along path p. Now, we can properly
define a minimally constrained test.

Definition 4 (Minimally Constrained Test). A minimally
constrained test, with respect to node constraints, is such that∑

In∩p=∅ fp = 0 while
∑

v∈V dv∑
In∩p ̸=∅ fp

is minimized. Similarly, a
minimally constrained test, with respect to edge constraints,
is such that

∑
In∩p=∅ fp = 0 while

∑
e∈E de∑

In∩p ̸=∅ fp
is minimized.

Variable change from flow on paths to flow along edges is
detailed in [9].

Problem 1. Given the transition systems Tsys and Ttest, and
specifications φsys and φtest, find the minimally constraint test
with respect to node constraints and/or edge constraints.

B. Minimally Constrained Test: Node Constraints

We are given a game graph G, which represents the allowed
transitions through the maze grid, with the set of vertices V
and the set of edges E. Now we find the minimum number
of vertices to cut (i.e. obstacles to place) to constrain the flow
through the designated intermediate vertex I . First we find
a combination of paths from the source s to the goal g. If
these are disjoint, i.e. do not share vertices (other than I) or
have direct edges from a vertex in one path to a vertex in the
other path - these vertices are designated as the set of critical
vertices H . We then augment the graph by removing the vertex
I , such that Ḡ = ⟨V̄ , E, c, s, t⟩, with V̄ = V \I and then find
the minimum number of obstacles as follows:

min
x

V̄∑
i=1

x2i

s.t. x0source = 1, x1goal = 1,∑
k

xki = 1, ∀i ∈ V̄

x2j = 0, ∀j ∈ H
x0i = 1→ x1j = 0, ∀i ∈ V̄ , (i, j) ∈ E
x1i = 1→ x0j = 0, ∀i ∈ V̄ , (i, j) ∈ E

(3)

where the vector X , which consists of the binary values xki ,
∀i ∈ V̄ and k ∈ {0, 1, 2}. Intuitively, we partition the set of
vertices V into three partitions, where 0 represents the vertices
that can be transitioned before reaching I and 1 represents the
vertices after reaching I . All vertices in partition 2 will be cut
(obstacles will be placed) to separate partitions 0 and 1.

Remark 3. Solving for minimum node cut according to op-
timization (3) depends on identifying the correct combination



Fig. 3: Comparison of the flow through the maze from the initial position in the bottom left corner to the goal position in the
top right corner without obstacles and with obstacles (red). By constraining the environment all flows now pass through the
grid cell (2, 2) as specified in φtest.

of paths that ensure feasibility. In general, finding the right
combination of paths is intractable due to the combinatorial
nature of the problem.

C. Minimally Constrained Test: Edge Constraints

In this section, we address the issue of the previous remark
by providing an convex-concave min-max optimization that
does not require knowledge of the right combination of paths
apriori. The test environment can be thought of as routing
commodity-1 from Sn to In, and commodity-2 from In to Tn,
while the system can be thought of as routing commodity-3
from Sn to Tn without passing through In. Thus, the system
and the test environment can be thought of as two players
with different objectives. This problem can thus be framed as
a constrained min-max optimization problem with dependent
feasible sets, a convex-concave min-max Stackleberg game [4].
The objective function of this game is the flow-cut gap and
the max flow for commodity-3 on Ḡ. The resulting min-
max Stackleberg game can be solved by the gradient-descent
methods introduced in [4]. This convex-concave min-max
optimization can be formalized as follows,

argmin
f1
e ,f

2
e ,F,de

argmax
f3
e

∑
e∈E

de
F

+ λ
∑

v:(s3,v)∈E

f3e
F

s.t. 1 ≤
∑

v:(s1,v)∈E

f1e
F
, 1 ≤

∑
v:(s2,v)∈E

f2e
F
,

0 ≤ de
F
≤ 1

F
,∀e ∈ E

0 ≤ fke
F
≤ 1

F
,∀e ∈ E, ∀k ∈ {1, 2, 3},

de
F

+
fke
F
≤ 1

F
,∀e ∈ E, ∀k ∈ {1, 2, 3},

(4)
where fke ≥ 0 represents the flow along edge e ∈ E, and is
defined for every e ∈ E and for each of the three commodities
k = 1, 2, 3. The variable de represents whether edge e ∈ E
is cut (de = 1) or not (de = 0), and the auxiliary variable
F ≥ 0 represents the maximum of the commodity-1 flow
and commodity-2 flow. The regularization parameter λ places

weight on commodity-3 flow. The max-player is the system,
which tries to maximize commodity-3 flow from Sn to Tn,
while the min-player is the test environment, which optimizes
to cut off commodity-3 flow while achieving a sparse cut of
edges. The conservation and capacity constraints are not listed
above but apply to each vertex and edge respectively. Note
that a similar formulation could be extended to minimally
constrained tests with node constraints.

IV. CONCLUSIONS AND FUTURE WORK

We outlined the problem of finding the minimally con-
strained test specification as a min-max Stackleberg opti-
mization. For future work, we would like to extend this
algorithm to more general GR(1) formulas, and provide sub-
optimality guarantees on the generated test environment. We
want to illustrate minimally constrained tests identified by our
algorithms on both gridworld and road network examples, with
both static and dynamic test environments. Furthermore, we
aim to extend this framework to include dynamic test agents to
find the minimum number of test agents required to constrain
a test environment for a test specification.

Relevance to workshop theme: The framework presented in
this work-in-progress paper are for automated generation of
test environments. In particular, the cuts (node cuts or edge
cuts) represent constraints that the test environment places on
the system under test. In the test environment, these constraints
can be realized by placing obstacles, both physical and virtual,
to prompt the system to successfully pass the test in order to
meet its requirements. In the physical space, these obstacles
restrict regions of space that the robot can physically occupy.
The virtual constraints make up a test harness which allows
for testing whether the system can satisfy its requirements
even when some software functionality is unavailable. This
inspires the question of what infrastructure, both hardware and
software test harnesses, is necessary for testing certain classes
of requirements used for specifying planning and control
modules in robotics?



ACKNOWLEDGMENTS

The authors would like to acknowledge Professor Eric
Mazumdar, Professor Mani Chandy, Professor Tichakorn
Wongpiromsarn, Professor Joel Burdick, Professor Leonard
Schulman, Dr. Shih-Hao Tseng, Dr. Ioannis Filippidis, and
Dr. Ugo Rosolia for insightful discussions. We acknowledge
funding from AFOSR Test and Evaluation Program, grant
FA9550-19-1-0302 and National Science Foundation award
CNS-1932091.

REFERENCES

[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and
Sriram Sankaranarayanan. S-taliro: A tool for temporal
logic falsification for hybrid systems. In International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 254–257. Springer, 2011.

[2] Christel Baier and Joost-Pieter Katoen. Principles of
model checking. MIT press, 2008.

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Yaniv Saar. Synthesis of reactive (1) designs.
Journal of Computer and System Sciences, 78(3):911–938,
2012.

[4] Denizalp Goktas and Amy Greenwald. Convex-concave
min-max stackelberg games. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

[5] Josefine B Graebener, Apurva Badithela, and Richard M
Murray. Towards better test coverage: Merging unit tests
for autonomous systems. In NASA Formal Methods:
14th International Symposium, NFM 2022, Pasadena, CA,
USA, May 24–27, 2022, Proceedings, pages 133–155,
2022.

[6] James Kapinski, Jyotirmoy V Deshmukh, Xiaoqing Jin,
Hisahiro Ito, and Ken Butts. Simulation-based approaches
for verification of embedded control systems: An overview
of traditional and advanced modeling, testing, and verifi-
cation techniques. IEEE Control Systems Magazine, 36
(6):45–64, 2016.

[7] Orna Kupferman, Gal Vardi, and Moshe Y Vardi. Flow
games. In 37th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[8] Sriram Sankaranarayanan and Georgios Fainekos. Falsifi-
cation of temporal properties of hybrid systems using the
cross-entropy method. In Proceedings of the 15th ACM
international conference on Hybrid Systems: Computation
and Control, pages 125–134, 2012.

[9] Vijay V Vazirani. Approximation algorithms, volume 1.
Springer, 2001.


	Introduction
	Preliminaries
	Temporal Logic, Transition Systems, and Automata
	System and Test Environment
	Network Flows
	Example

	Algorithms
	Projecting Acceptance States from Büchi Automata
	Minimally Constrained Test: Node Constraints
	Minimally Constrained Test: Edge Constraints

	Conclusions and Future Work

