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Abstract— In this paper we use ellipsoidal cones to achieve present the controller synthesis framework for multiple
rendezvous of multiple agents. Rendezvous of multiple vehicles modeled as first order linear time invariant
agents is shown to be equivalent to ellipsoidal cone invari- (LTI) systems. This framework is extended to agents

ance and a controller synthesis framework is presented. ' . . . - :
We first demonstrate the methodology on first order LTI with higher order dynamics. The synthesis algorithms

systems and then extend it to rendezvous of mechanical Presented in this paper are then verified and illustrated
systems, that is systems that are force driven. by theoretical results and simulations.

I. INTRODUCTION

Invariant sets play an important role in many situations Il. MATHEMATICAL PRELIMINARIES
when the behaviour of the closed-loop system
constrained in some way. Blanchini in ref.[1] provide
an excellent survey of set invariant control. InvarianfAn ellipsoidal cone inR™ is the following,
sets that are cones have found application in problems

related to areas as diverse as ?npdustrial groF\)/vth [2], Tp={{€R": Kp(§,Q) <0, Tun >0}, (1)
ecological systems and symbiotic species [3], armwhere K,,(¢,Q) = ¢7Q¢, Q € R™" is a symmetric
race [4] and compartmental system analysis [5], [6]nonsingular matrix with asingle negative eigen-value
In general, cone invariance is an essential component, andu,, is the eigen-vector associated wikf).

in problems involving competition or cooperation. For

those interested in cones and dynamical systems, the poundary of the conE, is denoted byoT',, and is
book by Bermaret al. [7] will be useful. defined by

Isi\ Ellipsoidal Cones

In our earlier work [8], we demonstrated that rendezvous 0 # § € Ol ={€ € I : Ky, (£, Q) = 0}.

of multi_ple agents is equivalent to cone invgriaqceThe outward pointing normal is the vectape for
Cones in general could be polyhedral or eII|p50|dal§» € ar,,

and the rendezvous problem can be cast as a cone

invariance problem of either type. In this paper we use

ellipsoidal cones to develop a framework for controlle.emma 1 (2.7 in [10]). If T',, is an ellipsoidal cone,
synthesis that achieves multi-agent rendezvous. In [¢fen there exists a nonsingular transformation matrix
we analyze rendezvous using polyhedral cones. M € R™" such that

P 0

—I\T -1 _ _
The paper is organized as follows. We first present (M=) QM™ = { 0 -1 ] =@n
mathematical preliminaries that is fundamental to

. n—1n—1 _ pT
our research work. The equivalence of rendezvoudhereP € R , P>0andP = P".

and cone invariance is established next. We thepet the transformed state be = M¢. The ellipsoidal
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. condition for exponential non-negativity of ellipsoidal

- S==— cones.
w1 &1
& (“;2 =“(§§) Theorem 1 (3.5 in [10]). A necessary and sufficient
e . —> condition for A € p(T',,) is that there existy € R such
& wn that,
w2 o QuA+ATQ, — Q. < 0.

where@,, is defined in Lemma 1.
Proof Please refer to pg.162 of [10].

Fig. 1. Ellipsoidal cone in 3-dimension.

Ill. RENDEZVOUS OFMULTIPLE AGENTS
wherez = (w 2)T, w e R"7! 2z e R.

In our earlier work [8] we had defined rendezvous to
An ellipsoidal cone in three dimension is shown inbe the problem of driving multiple agents to a desired
Fig.(1). The axis of the cone is the eigen-vector assocpoint such they all arrive within a small time interval
ated with thez axis. of each other. It is also required that the trajectories of
the agents be such that they arrive at the destination

. _ point only once. In the rest of the paper, we refer to
Consider a linear autonomous system the destination point as the origin.

€= At ©)
A coneTl, is said to be invariant with respect to theA. Rendezvous Interpretation on the Phase Plane
dynamics in eqn.(3) ife(to) € T'n = z(t) € I'n, VI > Consider two scalar systerdg and Vs defined by
to, i.e. if the system starts inside the cone, it stays in .
the cone for all future time. Such a condition is also Viio @ = filen), £(0)=0,
known asexponential non-negativity.e. eA'T,, € T,,. Vair @z = faza), f2(0)=0.

. _ . _If V1 and V, are exponentially stable systems then
It is well known that certain structure in the matrixthey will arrive at the origin at eventually as time
A imposes constraints O_At [11]. The most well tends to infinity. The trajectories may also be such that
known result is the condition of non-negativity ot 1, arrives long before), does, which is undesirable.

which states that ifA;; > 0 for i # j, then non- Therefore, just exponential stability doesn't ensure
negative initial conditions yield non-negative solutionsyendezvous.

Schneider and Vidyasagar [12] introduced the notion

of cross-positivityof A on I', which was shown to be o achieve rendezvous in finite time we relaxed the

equivalent to exponential non-negativity. Meyer al.  gefinition of rendezvous to be such that rendezvous

[13] extended cross-positivity to nonlinear fields. is achieved if the agents enter a certain neighborhood
around the origin. We defined this region to be tae-

Let us characterizp(I',) to be the set of matriced €  gezyous regionWe also demonstrated that rendezvous

R™" which are exponentially non-negative ®n. Itis s pest visualized in the phase plane. To interpret ren-

B. Ellipsoidal Cone Invariance

defined by the following lemma. dezvous fon); andV,, we defined the following regions
Lemma 2 (3.1 in [10]). LetT,, be an ellipsoidal cone in the phase plane,
as in egn.(2). Then, Ui = {(z1,22): —6 < a1 <6},
_ nn . Up = {(z1,22): -0 <z <6}
Th)={AeR™" :< AL, QE ><0,VEeTl,}. (4 1 1,42 J
P =1 £Q6><0, ¥ €T, () 2 2 e
F = U1 UU; — U NUs,
W = R2-U,UU,.

Lemma 2 states thatl is such that the flow of the
associated vector field is directed towards the interioFhe rendezvous problem is well posed if the initial
of T',,, i.e. the dot product of the outward normalldf condition of the two agents satisfy:;(0), z2(0)) € W,

and the field is negative at the boundary of the coné.e. they both start far away from the destination point.
This leads to the result on the necessary and sufficiefihe setF is the set of all points where one agent enters



the rendezvous region much before the other. Therefore,
trajectories must avoidr for a valid rendezvous, i.e.

z1(t), x2(t)) & F Vt. 5)
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the wedge defined by the point&), dpges), (0,0)
and (dpges,d). In Fig. 3(a), trajectory A achieves

Fig. 2. Rendezvous in Phase Plane f .
approximate rendezvous, but trajectdsydoes not.

In Fig. 2, trajectory B starts from an invalid initial . . . .
condition and trajectory’ enters the rendezvous regionTherefOre the only admissible traje_ctorles for approxi-
prior to the final entry. Such trajectories are not valignate rendezvous are those that arrive at the origin while

rendezvous trajectories. Trajectory is an example of ;e;nallr;mg in the wed?:_a-h!(e regmgjﬁ as shomr/]n in Fig.
a valid rendezvous trajectory. (b). Forn agents achieving rendezvous, the regibn

becomes a cone in-dimensional space. Depending on

With the constraint defined in eqgn.(5), the only Wa)}he norm used to defing in eqn.(6), the cone could

: . L e either polyhedral or ellipsoidal. Fex-norm, as is
trajectories can approach the origin is through the coF2 :
ners ofS, i.e. through one of the point®, ), (4, —9), in eqn.(6), the cone is a polyhedral cone withi — 2

(—0,9) or (=6, —4). This also restricts the trajectories toSides. The measure can aiso be defined usirignorm

be confined to the quadrant they originate from. Enteri:%r 2-norm. The wedge in that case becomes a polyhedral

S from one of its corners also implies that the agent O:;r\]’qv't_?ﬁi:'iezhfgxﬂﬁrg 02 an ellipsoidal cone for
enter the rendezvous region at precisely the same time. : 9.4
In reality it may be acceptable to allow agents to arrive
within AT seconds of each other. We distinguished
between the two cases by referring to rendezvous with
AT = 0 asperfect rendezvouand rendezvous withhT S—
. . Desired region  Polyhedral Cone Quadratic Cone in 7~dimension Polyhedral Cone
small asreal or approximaterendezvous. The notion Of  ofinvariance  wit sices with 27-2sides
- ; Norm ll-l1x ll1l2 II-l1o0

approximate rendezvous led to a design parameter
and a measure of rendezvouglefined by

ma$(|$1(ta)|, |a?2 (ta)|) Fig. 4. RegionZ in 3 dimensional state space.

- ®)

where t, is arrival time of the first agent. From the B. Rendezvous as Cone Invariance

definition of p it is clear that for a given trajectory In our earlier work [8] we showed that agents achieve

p > 1. Therefore a specification of rendezvous igendezvous if they rendered the regidn invariant.

meaningful if and only ifpge.s > 1. As mentioned before, the regiod in a higher
dimensional phase space becomes a cone. Therefore

The notion of approximate rendezvous is illustrated ifor n agents, rendezvous is guaranteed if the cone in

Fig.3(a). the n-dimensional state space is invariant with respect

Approximate rendezvous allows trajectories in phast their dynamics.

plane to enterU; U Uy as long as they are within

Complexity n constraints 1 constraint 27-2 constraints.




Cone invariance alone does not guarantee that the agespecified measure of rendezvous .

reach the origin. Figure 5 shows trajectoriés B and

C. Trajectory A achieves cone invariance but does nofherefore, given a con&, andn agents modeled as
reach the origin. TrajectonyB reaches the origin but first order LTI systems, we are interested in determining
escapes the cones. Trajectatyis the only trajectory controlu(t) such that the following are true,

that reaches the origin and stays within the cone. We

are interested in trajectories such@s
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Fig. 5. Possible trajectories

In this paper we assume thatis defined using the
2-norm and hence we are interested in the invarian

of ellipsoidal cones.

C. Problem Formulation

§(to) € I'n = () € I'n, Vt > 1o, and
@)

&(t) — 0ast — oo

D. Controller Synthesis in the Lyapunov Function
Framework

In this section we address ellipsoidal cone invariance
in the framework of Lyapunov functions. Given a cone
I',, as in egn.(2), let us define two Lyapunov functions
Vw(w) andV,(z) as

V(w) = w? Pw (8)
Vi(z) = 2° )

Note thatV,, is a valid candidate for Lyapunov function
asP > 0.

Cone invariance in this context is defined by
Vw(w(t)) < V. (2(t)), Vt > to.
This is guaranteed if and only if
V., <V, whenV,, = V.. (10)

which is the condition for exponentially non-negativity
onT,,.

For controller synthesis we transforly}, as defined by

(ie mma 1. Therefore,

r=M¢=i=MAM 'z + MBu.

If we consider afull state feedbaclkontrol framework,

Let us assume that there aneagents for which ren- then

dezvous is desired. Let us also assume that the agents
are modeled afirst order LTI systems. Collectively, they

can be written as

é:-l a1 0 0 61
| 52 |: 0 . 0 ] ( 52 )
=1 . = : : :

‘. 0 0 - anl\e

b1 0 e 0 U1

0 by --- 0 Uo
I : :

0 0 - by n

= Af+ Bu.

We also assume that we are given an ellipsoidal cone

u=F¢=FM 'z
and the closed-loop system is therefore
= M(A+ BF)M ™ 'z. (12)

With respect to the partition = (w 2)7, the closed-
loop system in egn.(11) can be written as

()= [t (). a2

Therefore, the inequality,, < V. in eqn.(10) implies

T
( w )T ApwP + PAyw PAw:— Asw < w ) 0
z AzzP_Agw _2AZZ ?

I',, as defined by egn.(2), wher@ depends on the Substitutingw” Pw = 22 to impose the conditio,, =



V., Vi, < V. at the boundary of the cone implies for all w(t), z(¢). Adding2A4. .2 to both sides gives us
AL P+ PAy, —2A..P PA,.— A, ( w >T
< 0. z
AL p— AT 0
13)

To ensure thatl/,, and V, reaches zero as time goes©’
to infinity, it is sufficient to constraind,, €¢ R <

—ucs. The parameterv,, iS a positive real number Thjs jmplies that the largest exponent of the closed-

that governs the decay rate af¢t). Therefore, the ; .
controller synthesis problem in this framework is thd@0P SyStem isd... With A.. < 0, we can conclude

following LMI feasibility problem in the state feedback V' (w; 2) < 0, hence the proof.
gain matrix F:

AT P+ PAyw PAy.— AL, ( w >T
AL p— AT, 24.. z

<24, (wT Pw + 2%)

V(w,z) < 24,V (w, 2).

O

AT P+ PApw —2A..P PAy, — Asw 0 We next analyze trajectories that start outside the cone
I',. It is interesting to note that the condition of cone
AL P — AT 0 0 <0. ; L : : .
invariance implies that all trajectories that start outside
0 0 A, the cone enter the cone. This is given by the following
(14)  theorem.
Therefore_, if thgre exists af’ such that the LMIP in* 1. 0.c 1 3 For a systemi: = Az as in egn.(11),
eqn.(14) is feasible, then the control lawit) = F¢(t) )
solves the problem posed by eqn.(7). Kn(x,Qn) <0,Vz € Iy
= Kn(z,Qn) <0,Vz: Kn(z,Qn) > 0.
The constraint in egn.(13) is a necessary and sufficiefroof Equation (14) implies,
condition for cone invariance and can be proved as fol-
()
z

T T _
lows. Theorem 1 states that the necessary and sufficie tg’ ) AvwP + PAvw Phuwz = Azw

condition for exponential non-negativity is the existence AP — Az, 0
of v € R such that < 24..w" Pw
QnA + ATQ, —vQ,, < 0. for all w(t), 2(¢). Adding —2A. .22 to both sides gives
us
This is equivalent to ( " )T AT P+ PAyy  PAy. — Aoy < w )T
AﬁwPTJr PAWT— YP PAy. — Ay } <0 z AT p— AT, 24, z
)
AT p— AT, v—2A.. < 24..(w" Pw — 2%).

which is eqn.(13) fory = 24... Recalling thatA.. < 0 and K, (z,Q,) > 0 implies

wT Pw — 2% > 0, we can conclude that
The next theorem states the Lyapunov certificate theo- T
ApwP + PAww PAy: — Ay ( w )
z

rem for the rendezvous problem defined by eqn.(7). ( w )T
z

AT p— AT, —2A,,
Theorem 2. The LMI in eqn.(14) implies that < 0,Va: Kn(z,Qn) > 0
T 2 .
V(w,z) =w Pw+ 2z which is equivalent toK, (z,Q,) < 0 for x outside
is a Lyapunov function for the closed-loop system ifhe cone K, (z,Qy). This condition implies that all
eqn.(12). trajectories that start outside the cone will arrive at the

boundary of the cone.

Proof For P > 0, V(w, z) is a valid Lyapunov function. 0
V(w, z) for the system in eqn.(12) is,

. w \T| AL P+ PAyw PAuw.— Asy w
Viwz)={ AT p— AT 24

wz zw

Example 1. Figure 6 demonstrates rendezvous for three
agents modeled as first ordgen-loop unstablsystems
with a; = 1, b; = 1. The trajectory of3 is worth noting.

Equation (14) implies, The initial condition for¢; is closer to the origin relative

( w )T AT P+ PAyw PAy. — Asy ( w ) to that for&; and&,. It is interesting to observe that
z AP — AL, 0 z initially moves away from the origin before making the
- ! d
<240 Pw final entry, along with¢; and&,. Therefore the control



formulation presented in this paper allows agents tbe represented by
procrastinate as demonstrated ki, in order to achieve 13 0 1 & 0
rendezvous. Figure 7(a) shows thidt, < V, for all 7 ( 61 ) = { & } ( §Z )+ [ 1 }w
times. Figure 7(b) shows the trajectory inside the cone ¢ !

r,. For n agents the collective dynamics can be represented
by the equation

. EN [ o I 3 0
() =L 4 ] (5 )+ 5, ]n 6o

and we assume that the system is controllable.

_k _d
m m m

50]
u(t)

For dynamical systems given by eqn.(15), the cbne
defined on position statesis not closed-loofholdable
(pg.65 [7]). A cond’,, is said to be closed-loop holdable
if there exists control(¢) such that the condition of
exponential non-negativity can be enforced, i.e.

T T e Ju(t): K,(€,Q) <0, Ve € oT

Time

Time

For the system in egn.(15) and the cone in eqgn.(1),
Fig. 6. State and control trajectories - sofig(u1), dash-dotfs, u2),

dashes, us) Ku(6,Q) = £1QE+7Q¢
= 1 RE+EQ
which is independentf u. Therefore, the condition of

exponential non-negativity cannot be enforced by any
choice ofu.

Controller Synthesis

We propose to solve the rendezvous problem by the
following two-step controller synthesis algorithm.

Step 1- We first consider the dynamical systefn= 1.
In the first step we determingt) such that(t) achieves
rendezvous. We assume that

20
g,

(a) Solid(;), dash{’,) (b) Trajectory insideK, (£,Q) <
0.

Fig. 7. Cone invariance and asymptotic stability. n(t) = Fé(t) (16)

That is, we treat)(t) as a control variable and determine

the state feedback gaifi such thafl",, is invariant with
IV. RENDEZVOUS OFAGENTS WITHHIGHER ORDER  respect to the system

DYNAMICS .
§ =

In the previous section we formulated the control synthe- = F¢

sis problem for agents thaF were m.odeledﬁaﬂ order This synthesis can be achieved by solving the LMIP in
systemsln reality agents will have higher order dynam—eqn (14)

ics. We continue to restrict our interest to linear systems™ '
and consider the problem of multi-agent rendezvous fcgtep 2_ OnceF is known we treat
agents that are mechanical systems i.e. agents whose

dynamics can be represented by the linear second order N (t) = FE(t)

differential equation . . .
as the reference signal and design a tracking controller

m&i(t) + di&i(t) + ki&i(t) = uy(t) so that

where m;,d; and k; are mass, damping and stiffness
respectively. In matrix-vector notation the dynamics cany control design methodology can be used to design

[In(t) —n-(t)|]] — 0 ast — oc.



this controller. Note that the dynamics gf need not agents arrive at the origin, implying trajectories outside

necessarily be linear. In general, the methodology cahe cone enter the cone before arriving at the origin.

be used to achieve rendezvous for agents with dynami@$is is clearly visible in Fig.9(b). Figure 9(b) also
. demonstrates that the referengeis valid outside the
&= cone. The initial loop in the trajectory indicates that
o= f&n)+g&nu the agents were initially heading towards the wrong

If f(¢,n) andg(¢, ) are nonlinear functions, one would direction. This is due to a large initial error in the

have to adopt a nonlinear control design framework ty§€°City. By reducing this error to zero, the tracking
obtain a tracking controller. controller was able to achieve rendezvous.

40 40
Equation (16) defines a desireg(t) with respect = hoena 0
to position £(t). Even if the agents start insidE,, _" ’ .
it is likely that the initial condition of n(t) will  F= e
not be the desired value. Depending on how larg * N
this initial offset is, it is possible that the agents s o -7
escape the cone whilg,(t) is being tracked. Once o : - 60, ; 5 )
the agents leave the cone, it is important to analyz
if n-(t) = F&(¢) is still a valid reference for rendezvous. = 20
15 20
Theorem 3 states that all trajectories starting outsid 10
T',, will intersect the surface of',,, i.e. the controller > . >0
obtained by solving eqn.(14) will drive agents into the -0
cone for all initial conditions outside the cone. Hence ° <N\ -
agents with dynamics as in eqn.(15) will achieve o 1 2 3 % T 3
rendezvous if they track the referengg(t) = FE(t). Time Time

Fig. 8. Position and tracked velocity

Example 2. In this example we demonstrate the
application of the proposed control methodology to
rendezvous of three double integrators. Figure 8 shows
the position and the velocity of the three systems. I this paper we presented a control synthesis framework
the subplots for velocities; , v, andwvs, the solid line is for multi-agent rendezvous problem. It was shown that

the desired velocity and the dashed line is the velocit{f?€ problem of rendezvous of multiple agents can be
of the agents. cast as a cone invariance problem. We restricted our

attention to ellipsoidal cones. The proposed synthesis
algorithm is based on determining control such that
the closed-loop system renders a given ellipsoidal cone
invariant. We first demonstrated this on agents modeled
as first order LTI systems and extended it to agents that
are mechanical systems with second order dynamics.

V. SUMMARY

The three agents started from positi®¥b, 5, 20) with

velocity (41.4,12.2,21.5). The tracking controller for
velocity reference was designed adirsear quadratic
regulator using the formulation

Y A T T
min —nr) M(n—mny) +u Nu|dt, . . . .
K /0 {(77 ) M =) } The framework presented in the paper is still restricted

such that to rendezvous on a line, i.e. it can achieve rendezvous
é 0 In 0 ¢ on a single state variable of the agent. In reality, it is
( 7 ) = ({ Ane A } + { B, }K) ( n ) desired that rendezvous be achieved on multiple state

variables. Extension of this framework to such cases is

and a subject of our current research.
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