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ABSTRACT

Modern safety-critical systems are difficult to formally
verify, largely due to their large scale. In particular, the
widespread use of lookup tables in embedded systems
across diverse industries, such as aeronautics and auto-
motive systems, create a critical obstacle to the scala-
bility of formal verification. This paper presents a novel
approach for the formal verification of large-scale sys-
tems with lookup tables. We use a learning-based tech-
nique to automatically learn abstractions of the lookup
tables and use the abstractions to then prove the desired
property. If the verification fails, we propose a falsifi-
cation heuristic to search for a violation of the specifi-
cation. In contrast with previous work on lookup ta-
ble verification, our technique is completely automatic,
making it ideal for deployment in a production envi-
ronment. To our knowledge, our approach is the only
technique that can automatically verify large-scale sys-
tems lookup with tables.

We illustrate the effectiveness of our technique on a
benchmark which cannot be handled by the commer-
cial tool SLDV, and we demonstrate the performance
improvement provided by our technique.

1. INTRODUCTION

Cyberphysical systems are growing in scale and com-
plexity, and are being deployed for safety-critical appli-
cations as well as applications that require high perfor-
mance and quality of service. These systems, used for
in diverse applications such as aeronautics and driver-
assistance features, require the highest level of assur-
ance. Existing formal verification techniques, however,
cannot scale to the size of even the smallest components,
which we estimate would require millions of years on

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Sumanth Dathathri

Shashank Vernekar Sicun Gao

Richard M. Murray

machines with millions of cores.

Based on our experience with industrial systems, we
have observed that the widespread use of lookup tables
creates a critical obstacle to scalability of formal meth-
ods. Lookup tables are an important and irreplaceable
element of modern engineering design.

Lookup tables serve many critical roles in system de-
sign. Some are used to model severely nonlinear physi-
cal components—for which no satisfactory equational
model exists. Others serve as control laws in cases
where no traditional control design method delivers the
required performance for these complex components.
Others still serve as arithmetic shortcuts to quickly com-
pute complex functions, such as trigonometrics, in em-
bedded systems with timing constraints.

Lookup-tables are a challenge for traditional verifica-
tion techniques because each entry of the lookup table
must be treated as a separate case. If the system un-
der analysis contains a large number of cascaded lookup
tables, the number of proof cases grows exponentially,
quickly outstripping the ability of a supercomputer to
deliver timely verification results as part of a product-
development cycle.

We estimate that a small component in a production
system contains over 10°° total proof cases, which would
require an estimated 10** years on a machine with one
million cores, assuming 0.01 seconds per proof case.

We propose a novel technique to improve the scala-
bility of formal verification techniques for systems with
lookup tables. First, we automatially learn an abstrac-
tion for each lookup table by treating the table data
as training data. Our specially designed learning pro-
cedure learns a conservative overapproximation of the
function implemented by the lookup table. This over-
approximating abstraction can then be used to prove
the desired property with an automatic SMT solver.

If the proof attempt fails, an SMT solver returns a
candidate counterexample or a specific case in which
the abstractions hold but the desired specification is vi-
olated. In this case, there are two possibilities, either
the model is incorrect or the abstractions are inade-
quate.

The first possibility is that the system has a true
counterexample, a condition that violates the desired



specification, but the case returned by the SMT solver
is not necessarily a true counterexample. To address
this first situation, we present a technique to search for
a true counterexample based on examining the lookup
table entries near the candidate counterexample. As a
result, our abstractions can also be used to guide the
search for a counterexample, yielding both verification
and falsification functionality.

The second possibility is that the abstractions are too
coarse. In this case, we describe an iterative refinement
procedure which increases the fidelity of the abstrac-
tions, while incurring the cost of higher complexity ab-
stractions.

We have implemented our abstraction, verification,
and falsification techniques in the tool ‘Osiris’. Osiris
makes use of a user-extensible and modifiable library
of templates. This extensibility is useful for engineers
working in different domains, since the lookup tables
that arise in different applications may be abstracted
well by domain-specific abstraction templates.

We illustrate the performance of our approach on an
adaptive cruise control benchmark with a monitor that
tries to detect dangerous conditions. This benchmark
could not be verified with the commercial tool Simulink
Design Verifier (SLDV) nor with the SMT solver z3.

The paper is structured as follows. Section 2 de-
scribes related work, Section 3 provides background on
lookup tables and SMT verification approaches, and 4
explains our problem statement. Section 5 describes our
technique for computing abstractions, as well as how we
use them for verification and falsification, and how we
refine them if the specification cannot be proved nor fal-
sified. Section 6 describes our tool, Section 7 presents
our case study, and Sections 8 and 9 conclude and de-
scribe directions for future work.

2. RELATED WORK

To the best of our knowledge, no technique exists
that can automatically verify large-scale systems with
lookup tables.

The work of [14] uses a user-assisted mechanical the-
orem prover to prove safety of a large-scale aircraft col-
lision avoidance system, which includes a large lookup
table. The work of [14], however, relies on a human user
to provide insight and manually reduce the system to
simpler forms, until it is possible to derive input-output
conditions on the lookup table to guarantee safety. This
technique works top-down, starting from an overall sys-
tem specification and decomposed with user assistance
to a specification on the lookup table itself. This tech-
nique would be difficult to apply in a scenario with mul-
tiple cascaded lookup tables, since it would be difficult
to decompose the high-level specification into obliga-
tions for each table, which would require the computa-
tionally infeasible task of propagating logical formulas
through the tables.

In contrast, our technique works bottom-up, treat-

ing the lookup table as training data for an automatic
learning procedure, which learns an abstraction of the
lookup table. This abstraction is then used as part of
an SMT query to check that the system specification is
satisfied.

3. BACKGROUND

Lookup Tables.

Informally, a lookup table is a function defined by
a table of input and output values. A lookup table
maps certain points of its input space, called break-
points, to values prescribed by a given table, such as
the one shown in Table 1. The output of the function
for values that do not appear in the table are computed
by multi-linear interpolation if they are contained in the
range of the breakpoints, and by saturation otherwise.

xgl) o ajgl) . :cﬁf) y(l)
xgj) :cgj) xslj) y(j)
xgm) .. xgm) . x%m) y(m)

Table 1: Lookup Table with n inputs and m
breakpoints

Formally, an n-dimensional lookup table with m-breakpoints

is a function X : R™ — R, such that

1. for each breakpoint (z®),y®*) (k € {1,...,m})
that appears in the table, A(z(®)) = y*) and

2. for every point x € R™ that does not appear in the
table,

(a) if each component x; is contained in the range
of the lookup table, i.e. mirlk(z(k)) <z <

7
maxk(zgk)) for each i € {1,...,n}, then A(x)
is given by some interpolation function in-
terp.

(b) otherwise, A\(x) is given by some extrapolation
scheme extrap.

Our approach is general, and can be applied to any
interpolation and extrapolation functions. However, in
our case study, we will interpolate the lookup table by
the multilinear interpolation formula described in [5].
For n dimensions, we will use the notation

multiLinInterpn((aj(l)7 y(l)), (QT(Q)a y(z))’ )

to mean the n-dimensional interpolation function be-
tween points (z(1),yM)) and (2(?),y(?), evaluated at .
For simplicity, we will not extrapolate the lookup tables
in our case study and simply assume that the range of
interest is restricted to the range of the lookup tables.



Lookup tables as logical formulas.

Our technique relies on the ability to encode the sys-
tem and its specification into first-order logic. An n-
dimensional, m-breakpoint lookup table can be encoded
as a first-order logical formula as follows.

Consider, for example, a two-dimensional lookup ta-
ble with m breakpoints. Thek-th breakpoint can be en-

coded by the following logical formula when k =1,..., m—

1.

by, Exgk) <z < mgkﬂ) A sr:ék) <z < a:ékﬂ) —

y = multiLinInterp, ((z®, y®)), (a4 *+D) )

The vector x is the input of the lookup table, and x; and
2o are its components. The function multiLinInterp,
is bilinear interpolation.

The overall lookup table can be expressed by the con-
junction of the logical formulas for the breakpoints.

L=/ b (1)
k=1

Satisfiability Modulo Theories.

Let T'(x) be a set of logical formulas with a vector of
free variables x, and suppose x takes values in R™. The
problem of satisfiability modulo theory of the reals is to
find a point » € R™ such that the logical formula I'(r)
is true, or prove that none exists. In this case we say
that r satisfies T'.

Solvers exist that can solve the problem of satisfiabil-
ity modulo theory of the reals for subsets of first-order
logic, such as logical constraints that contain only poly-
nomial functions over the reals[7]. The general problem
is referred to as satisfiability modulo theories (SMT),
since these solvers frequently support logical formulas
over other sets, such as naturals or floating point num-
bers. Other solvers support transcendental functions,
but relax the problem to finding an approximate solu-
tion or proving that not even an approximate solution
exists [11].

4. PROBLEM FORMULATION

In this paper, we consider the problem of proving
input-output properties of controllers. Our work could
be extended to closed-loop properties of a control sys-
tem, by applying our abstraction technique to the lookup
tables, and then using a specialized solver to reason
about the continuous portion of the dynamics. For ex-
ample, bounded-time properties could be handled by
a tool such as [12, 10, 8]. Unbounded-time proper-
ties would need to be supplemented by an automated
invariant-guessing heuristic, such as [15].

Our approach can be applied to controller models
that are given in first-order logic. In industry, con-
trollers are frequently modeled either as imperative pro-
grams (for example in C), or as signal-flow models, e.g.
Simulink.

In the case of imperative languages, Dynamic Logic
provides a generic framework for translating common
imperative control structures into first-order logic [13].

Numerous semantics have been proposed for signal-
flow languages such as Simulink [16, 4] and Lustre.
For our purposes, it suffices that the selected seman-
tics should result in first-order logical constraints. We
assume one of these existing semantic interpretations
has already been used to translate the model appropri-
ately, and in our case study we perform the translation
manually.

Regardless of the original format of the controller,
we assume that it has been translated to a set of log-
ical constraints X(x), not including any lookup tables,
where x is the vector of all variables that occur in the
system, including inputs, outputs, and intermediate as-
signment variables. We handle the lookup tables sepa-
rately, and assume that each lookup table, indexed by i
has been encoded as the first-order logic formula L;(z)
as described in 3. Similarly, we assume that the speci-
fication is given as a first-order formula S(z).

Then, the problem is to determine whether there ex-
ists a value of the variables = that

1. satisfies the model constraints ¥(x), i.e., the values
are related to each other according to the structure
of the model;

2. satisfies each L;, i.e., the values are related to each
other in a way that satisfies the mapping produced
by the lookup tables; and

3. does not satisfy the specification S(z), i.e., it is an
erroneous condition.

To check for the existence of this kind of erroneous
condition, we can use an SMT solver to check the sat-
isfiability of the following logical formula, assuming the
number of lookup tables in the model is N.

N
( A LZ-> AS(z) A-S(z)
i=1

The key obstacle is that the lookup table formulas
L; are large, and existing techniques cannot scale. Our
approach is to generate an abstraction A; for each L;
by using the lookup table data as training data to learn
parameters in an abstraction template. As a result, the
logical formula will be simplified, but the abstraction
loses information. To address this, we provide a falsi-
fication heuristic that can help to find true counterex-
amples when the verification does not succeed.

5. COMPUTING ABSTRACTIONS

Our approach to improve scalability is to abstract
the lookup tables by functional intervals. A functional
interval is a function that for each argument x € R" re-
turns a (closed) interval over R, A(x) = [a(x), b(z)]. We
say that a functional interval A(z) abstracts a lookup



table L(z) over a set S C R™ if for every z € S,
L(z) € A(z).

A functional interval abstraction is an overapproxi-
mation of a lookup table, in the sense that a property
that holds for all values in the interval A(x) must also
hold of L(z), but not vice-versa. The abstraction loses
precision, but provides a simplification if the functions
a(z) and b(z) have a sufficiently simple structure.

As a result, a procedure to compute a functional in-
terval abstraction must balance between two conflicting
requirements. On the one hand, it should be as precise
as possible, by keeping the size of the interval small for
every x, but it must also have a simple arithmetic struc-
ture, preferably consisting of linear or low-order poly-
nomial terms, so that proving that the desired property
holds of the abstraction is as simple as possible.

To navigate these conflicting requirements, we first
try to abstract the lookup tables with linear abstrac-
tions, and see if these simple abstractions are sufficient
to prove the specification or to guide the search to a
counterexample. If the simple, linear abstractions are
insufficient, then we iteratively increase the complexity
to two linear pieces, then to quadratic, etc. As we de-
scribe in Section 6, our tool uses a library of abstraction
templates that are indexed by complexity, and iterates
through them on each subsequent abstraction attempt.

Next, we describe our procedure for computing ab-
stractions, which consists of first computing an approx-
imation and then finding an offset that makes the ap-
proximation into an upper and lower bound for the
lookup table function. Then, we will describe our ap-
proach to learn piecewise abstractions. We proceed to
describe how these abstractions can be used to search
for a counterexample when the specification cannot be
proved on the first attempt, and finally we explain how
we refine our abstractions when no counterexample was
found by the falsification procedure.

Computing abstractions by approximation.

We will use a learning-based procedure to automati-
cally compute a functional interval for each lookup table
in the model. First, we fix a parametric template for a
function that approximates the lookup table data, and
then we will proceed to learn parameter values that al-
low the function to approximate the lookup table data.
Next, we use bisection search to search for the small-
est offset that can be added and subtracted from the
approximation to yield upper and lower bounds for the
lookup table function.

We begin by learning an approximation of the lookup

table data. Formally, let f(a, z) be a function parametrized

by a € RP, with the same domain and range as the
lookup table function L. We solve a regression problem
to find the value of the parameter vector a that min-
imizes the mean-squared error over the breakpoints of

Figure 1: Lookup table function L(z) abstracted
by upper and lower bounding functions, ob-
tained by shifting an approximation f(z).

the lookup table.

k
minimize Z(y(k) — f(a,z"))?

i=1

Next, we use the approximation f to learn a func-
tional interval. We begin by setting the offset to some
initial value, eg. € = 1. Then, we use an SMT solver
to check whether the lower and upper offset functions
f(z) — e and f(x) + € are lower and upper bounds and
for the lookup table function over all values in the range
of interest S C R™. This is equivalent to checking the
validity of the following logical formula with an SMT
solver.

VeeR. f(z) —e<L(x) N L(z) < f(z)+e¢

Note that the expression for L(z) contains the values of
the breakpoints as well as the multilinear interpolation
expressions in between the breakpoints of L.

If the validity check fails, i.e. the SMT solver is able
to find an z € S such that the lookup table produces
a value outside of the upper and lower bounds, we try
again with a larger value of e. If it succeeds, with this
value as the upper cap (valid €) and 0 (invalid €) as the
lower cap we do a bisection search to find the smallest
value of e(within some tolerance) such that the offset
functions abstract the lookup table. This yields a func-
tional interval,

Ax) = [f(z) — € f(2) + €]

such that for all z € S, L(x) € A(z). This relationship
is illustrated in Figure 1 A bisection search is used to
determine the optimal € approximately as using a quan-
tifier to directly determine the optimal e, which turns
out to be computationally expensive.

Approximation by piecewise functions.

Many lookup tables that appear in automotive soft-
ware display sharp corners that cannot be well approx-
imated by smooth functions. Our scheme learns func-



tional approximations that are piecewise smooth func-
tions with simple arithmetic structure. The number
of pieces in the approximation learned is much smaller
than the number of interpolations in the lookup table.

We use the piecewise template of the following form.

fila,z) if g1(a,x) >0
fala,z) if ¢gi(a,2) <0 A go(a,z) >0
fla,z) = :

otherwise

fr(a, )

We cannot, however, directly train this template with
lookup table data, since the function is not necessarily
differentiable at the switching surfaces. Instead, we ap-
proximate the piecewise function by a smooth function.
We begin by observing that the piecewise function can
be represented as a sum of functions that are turned on
or off by using a step function.

Let s : R — {0, 1} denote the Heaviside step function.

s(m):{(l)

Using the step function, we can represent the piece-
wise function of Eq. 5 by

f=s(g) - fi+Q—s(g2) fa+...

+ <H(1 - 8(90)) - 5(gr) frt

if <0
otherwise

Note that f is possibly discontinous and non-differentiable.

To enable learning the function with a gradient-based
minimization technique, we approximate f with a con-
tinuous differentiable function by replacing the step func-
tion by the sigmoid function o, which smoothly transi-
tions from 0 to 1 as its argument crosses zero [6].

1

)= T

k i—1
Ja(x) = Z fi(x;a) <H(1 - 0(9k(x7a)))> o(gi(x;a))

k=1

5.1 Falsification

If the verification attempt does not succeed, it means
that a value x = & was found such that the abstractions
were satisfied, but the specification was falsified. This
candidate counterexample is not necessarily a true coun-
terexample, since a point that satisfies the abstractions
may not satisfy the lookup tables.

However, this candidate counterexample serves as a
flag of a region that may contain a true counterexam-
ple. It is sensible to search between the breakpoints
that contain this counterexample, but note that this

point may fall between different breakpoints in differ-
ent lookup tables, which could potentially lead us to
choose intervals from different lookup tables that are
inconsistent with each other. To prevent this, instead
of simply selecting the two breakpoints that contain the
candidate counterexample, we select a small number r
of the nearest breakpoints. See Figure 2 for an illus-
tration of this mechanic. In our experiments, r = 3 or
r = 4 are usually large enough to prevent inconsistent
intervals.

Informally, we construct new lookup tables with only
r entries each, and attempt to verify the same model
with the reduced lookup tables, this time directly, with-
out abstractions. If the verification succeeds, we know
the candidate counterexample was spurious, and can
repeat the procedure with a different candidate coun-
terexample. If the verification fails, it provides a true
counterexample which can be returned to the engineer
as a design flaw that must be fixed.

Formally, let x;,...,2;4n be the n inputs of lookup
table L;. Then, consider the values of these variables
in the candidate counterexample Z;, ..., Z;,. We wish
to extract the r nearest entries along each dimension—
(k) w§k+r) (k) (k1)

supposetheyarexj e s Lipn

Then, construct a new lookup table L; that contains
only these breakpoints, and maps them to the same out-
puts as L;. Finally, check satisfiability of the following
logical formula.

(/\ L) AS(z) A=S(z) (2)

If a satisfying instance is found, then that instance is
a true counterexample of the original model. If no sat-
isfying instance is found, then we can try the proce-
dure with a different candidate counterexample that is
at some minimum distance § from Z. If there are no
more candidate counterexamples at this minimum dis-
tance, we move on to the next step, which is to refine
the abstractions and attempt verification again.

through x

5.2 Abstraction refinement

When the SMT solver finds candidate counterexam-
ples, unable to prove correctness, and the falsification
procedure fails to find a true counterexample, we refine
the abstractions and repeat the verification attempt.
There are three basic mechanisms by which we refine
abstractions: (1) increasing arithmetic complexity of
the templates, (2) increasing the number of cases in
a piecewise template, and (3) fitting the error of an ab-
straction.

Our tool implementation tries all three of these tech-
niques at the same time, and keeps the technique that
yields the approximation with lowest error.

The first two methods are simple. Increasing arith-
metic complexity means moving from linear templates
to quadratic templates, higher-order polynomials, or
possibly transcendental functions if one is using an SMT
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Figure 2: The red X represents a candidate
counterexample. To search for a true counterex-
ample, we construct a reduced table consisting
of the four nearest breakpoints, which comprise
the three intervals marked by the dotted rect-
angle

solver that supports such functions, such as [11]. In-
creasing the number of cases in a piecewise template
means moving from a simple equational template to a
template with two cases, or from two to three, etc.

Fitting the error of an abstraction.

This technique is loosely inspired by boosting meth-
ods for regression, where performance of a machine learn-
ing algorithm is improved by iteratively training on the
residuals [9].

Informally, our idea is to replace a lookup table by its
approximation plus a lookup table that computes the
approximation error. Then, we compute an abstraction
for this new error table, and proceed as before.

Suppose we have learned the abstraction A;(z) =
[fi(x)—¢;i, fi(x)+e€;] for the lookup table function L;(x).

We can define the error lookup table function E;(x)
as follows.

Ei(z) = fi(x) — Li(z) (3)

Next, let y; be the output of the lookup table L;. We
augment the logical constraints that define the system
as follows.

E(z) = X(x) A /\yi = fi(x)) (4)

Next, we learn an abstraction Ag,(x) for E;(z). Fi-
nally, we check satisfiability of

SA (/\ Ap, (z)) -S(z). (5)

Note that this error fitting procedure can be applied
recursively to the error of the error table with its ap-
proximation, and in general the three techniques can
be applied sequentially in any order. For this reason

Compute

abstractions

Verification

( ") succeeds
Attempt to prove Terminate,
L specification report success
J

Verification fails

Falsification

" succeeds

Terminate, report

Attempt falsification
counterexample

Falsification fails

A

Refine abstractions

Figure 3: High-level view of Osiris

our tool performs all three at each refinement attempt
and at each stage keeps the one that yields the smallest
error.

6. TOOL IMPLEMENTATION

We have implemented our technique in a tool called
“Opsiris”. Figure 3 shows the overall flow of the tool.

Input.

The input to Osiris is a directory which contains

1. afile with extension *.fmlas, which lists the bounds
on the inputs of the model, as well as calculations
by system elements that are not lookup tables, and

2. for each lookup table, a *.m file, which contains a
lookup table in standard Matlab syntax.

Learning abstractions with an extensible template
library.

Osiris reads the templates for the approximating func-
tions from an external library, which can be modified
and extended by the user. The templates are sorted by
complexity, starting by linear templates with no case
split, followed by linear piecewise functions with two
pieces and linear conditions, followed by quadratic func-
tions with no case split, etc.

Osiris automatically starts working with a batch of
the lowest complexity templates and computes approx-
imations from them in parallel. All approximations are
turned into abstractions by computing the smallest ¢
offset that produces upper and lower bounding func-
tion to the lookup table function. Checking the upper
and lower bound properties is carried out with z3.

Since the learning procedure is not convex and there-
fore not guaranteed to converge to the same solution
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Figure 4: Flow of the abstraction generation
procedure. Bold lines indicate multiple paral-
lel instances.

from different initial parameter values, it is advanta-
geous to have multiple copies of the same template at
the same complexity index in the library. In this way,
Osiris solves multiple instances in parallel with different
initial parameter values. The final selection for lowest
€ ensures that we will be able to keep the best abstrac-
tion. This flow is shown in Figure 4, where bold lines
indicate multiple parallel instances.

Our library also has a section for domain-specific tem-
plates. We envision that future users of our technique
will be interested in augmenting the library with tem-
plates from engine control, fluid dynamics, etc depend-
ing on the application. These domain-specific templates
allow computing abstractions that roughly match the
mathematics of the application.

Learning abstractions.

Osiris works through the template library in order
of increasing complexity, using the machine learning
tool TensorFlow to learn parameter values [3]. Osiris
uses the SMT solver z3 in the bisection search proce-
dure to search procedure to find the minimal offset €
that produces a true overapproximation of the lookup
table function. Osiris also uses z3 to prove incremen-
tally stronger relaxations of the desired specification,
decreasing the parameter 0 to find the strongest version
of the property that can be proven ...

Proving specifications.
Once each abstraction A; has been generated for each
lookup table L; (i = 1,..., k), Osiris forms the following

TensorFlow

logical formula.
Ar(z) Ao AN Ag(x) AS(z) A-S(x)

Then, the SMT solver z3 is used to check for satisfiabil-
ity. If the formula is not satisfiable, z3 has proven that
there is no value that satisfies the abstractions and the
model constraints but falsifies the specification. Since
the abstractions overapproximate the lookup table func-
tions, it follows that the system with the lookup table
functions satisfies its specifications.

Conversely, if a violation z. is found, this does not
necessarily mean that the original system violates its
specifications. For each lookup table L;, Osiris finds
nearest breakpoints in each lookup table.

Falsification.

7. CASE STUDY

A,(rerror)
- \( A(ta'r‘get)

Ay

Figure 5: Diagram of adaptive cruise control sce-
nario

v

For our case study, we consider an adaptive cruise
controller along with an online monitor. When enabled,
adaptive cruise control regulates the speed of the car so
that a target speed is maintained, unless another car is
detected at some distance in front, in which case the
system tries to maintain a safe distance from the lead
car, as shown in Figure 5. This controller takes as input
the current speed of the car, the distance to the lead car,
and the relative speed between the two cars.

The system consists of a cascade of three lookup ta-
bles, as shown in Figure 6. The inputs to the controller
are s, the speed of the controlled car, A, the distance
to the leading car, and A, the relative speed of the two
cars.

The first lookup table uses the current velocity s of
the controlled car to determine a target set distance
(A9 from the leading car. If the controlled car is
moving fast, its braking distance will be larger, which

requires that the controller choose a longer following

distance. AL is the difference between the target

following distance and the chosen following distance,
and the second lookup table uses AlrTor) together with
the relative velocity A, to choose an acceleration. For
the first two lookup tables, we have chosen breakpoints
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Figure 6: Signal-flow model of an ACC con-
troller

that worked well in simulation. The third lookup table
behaves as an online monitor. In practice, a monitor
lookup table would be produced by recording observa-
tions of a physical component. For this example, the
monitor was generated by computing the future dis-
tance between the two cars after 0.1 seconds, given the
current distance, relative velocity, and chosen accelera-
tion. This monitor assumes that the lead car will not
change its velocity within the next 0.1 seconds.

The property we wish to prove is that the online mon-
itor will never predict a future distance that is negative,
i.e., it will never predict that the cars will crash. This
does not mean that the closed-loop system with the real
automotive dynamics will not crash, since that would
require analyzing the continuous-time differential equa-
tions. However, industrial controllers are frequently
equipped with online monitors that predict or prevent
dangerous conditions, and checking that the controller
satisfies its monitor is valuable, as it prevents any ab-
normal behavior as long as system integrity is preserved.

The first lookup table contains 21 breakpoints break-
points, the second contains 1155 breakpoints and the
third, monitor lookup table contains 385 of breakpoints.
In total, the cascaded lookup tables produce 9,338,175
proof cases.

We have implemented this system in Simulink, and
we attempted to prove it with Simulink Design Verifier
(SLDV), a commercial formal verification tool devel-
oped by The MathWorks [1]. However, SLDV could
not verify this model. We conjecture that this is due
to SLDV’s present limitations at working with nonlin-
ear functions [2]. Our model contains non-linear calcu-
lations in the interpolation of the 2D and 3D lookup
tables, which are bilinear and trilinear, respectively.

We are in discussion with our legal department about
making this benchmark public, and we hope it will be
publicly available by the time this article appears in
print. Since it is a Simulink model, our organization
regards it as sensitive material, and a review is required.

We translated our model to first order logic to use an
SMT solver to check validity of the specification. We
do not include the logical formulas that represent the

lookup table due to space constraints.

0< A, <180

—-50< A, <50

0<s5<180

Altarset) — Lyt (s)

Azer'ror) =A, — Agttarget)

a = LUTy (AL AL)

AL = LUT3(Ag, Ay, A7)

The constraints on A,, A,, and s are assumptions
on the bounds of these inputs, and the system cannot
be enabled if these bounds are not met. Similarly, com-
mercial adaptive cruise control systems cannot be used
if the speed of the controlled car is too slow.

We also attempted to verify this model by translat-
ing it into first-order logic constraints and using z3 to
check for a violation of the specification, but z3 did not
terminate after 48 hours.

When we ran this model in Osiris, a counterexample
was found in 3 minutes and 30 seconds, as follows.

s 31.0
a+— —2.0

A, — —4.0

A, — 0.03125
Alerror) y —30.97
Altarget) 31,0
Alrert) s —0.00865

The meaning of this counterexample is that the cars
start at a distance A, of about 3 cm, with a relative ve-
locity of —4m/s, i.e. the controlled car is moving 4m/s
faster than the lead car. The controller tries to brake
by applying a negative acceleration of a = —2m/s?
but the situation is already too dangerous and the cars
have a minor crash, with the controlled car being 0.8cm
further than it should be.

To measure the runtime of our verification technique,
we relaxed the specification too Ag(cnezt) > —1.76. With
this relaxed property, the monitor no longer tries to
completely prevent collisions, but simply to reduce their
severity. This relaxed property was provable in 20 min-
utes.

The case study computations were carried out on a
machine with 8 cores and 132 GB of RAM.

7.1 Computed abstractions

The abstraction computed for LUT1 consists of a lin-
ear function, shifted above and below the lookup table
data.

Ay =[1.27s + 0.43 + 29.69, 1.27s 4+ 0.43 — 29.69]
We have deliberately left the constants un-simplified.
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Figure 7: Plot of LUT 1 data and abstractions

The constant e; = 29.69 is useful because it represents
the largest error between the abstraction and the lookup
table itself. Thus, we can compare which lookup tables
are being abstracted with more or less fidelity by looking
at the value of e.

The abstraction computed for LUT2 is a piecewise
linear function, and has the form

Ay = [fao(z) + €2, fa(x) — €2

where

. 0.024A%°") 4+ 0.093A, — 0.508 if go(z) >0
? 0.020A%) 10.093A, — 0.508 otherwise
and
g2(z) = 0.321AL77) —1.232A, — 1

The abstraction computed for LUT3 is also a piece-
wise linear function,

Az = [f3(x) + €3, f3(x) — €3]
where

= B g >0
T
and

£ = 0.997A, 4 0.006A,, — 0.003A0*) 4 0.409
57 = 1.593A, — 0.006A, — 0.059A("") +1.143
g3(z) = 0.795A, — 0.222A,, — 0.476A{"*"") 4 0.503.

otherwise

8. CONCLUSION

We have provided a technique to automatically com-
pute abstractions of lookup tables. We treat the lookup
table breakpoints as training data for a learning pro-
cedure, and learn an abstraction of the lookup table.

Abstracting the lookup tables allows for fast, automatic
verification of input-output properties of large-scale con-
trollers with lookup tables. To the best of our knowl-
edge, this is the only automatic technique for this pur-
pose.

We have implemented our technique in the tool Osiris,
which parses a set of logical constraints along with lookup
tables represented as Matlab programs.

Osiris uses an extensible library of abstraction tem-
plates, sorted by complexity. Starting at the lowest level
of complexity, Osiris attempts to generate abstractions
to prove the desired specification, increasing the level of
complexity after each failed attempt.

The extensible nature of our template library makes
it easy for engineers in different application domains to
add templates that may provide a good fit to the lookup
tables that appear in their discipline.

9. FUTURE WORK

We have identified several directions for future work.
We would like to generalize the form of the abstrac-
tions that we use, since our current abstractions are lim-
ited to upper and lower bounding functions. Also, we
would like to explore the possibility of using a learning
method with better theoretical guarantees (e.g. SVMs),
since our current setup yields a non-convex optimization
problem.

The current implementation of Osiris can only check
single specifications. In the case when the specifica-
tion does not hold, one can obtain insight by relaxing
the specification. In future work, we would like to sup-
port sets of specifications, and to construct a lattice of
relaxed specifications, which Osiris would iteratively at-
tempt to prove. In this way, we would be able to provide
the designer with a trade-off curve of which of the de-
sired specifications are easier or more difficult to prove.
We also plan to extend our template library as we gain
experience with further case studies.

Osiris currently only supports static SMT tools as
back-end solvers. In future work, we would like to ex-
tend the applicability of our technique to handle closed-
loop control systems, which would require a hybrid model
checking tool, or some kind of automatic invariant guess-
ing heuristic.

Additionally, we would like to provide better feedback
to the designer about which parts of the design seem to
be most critical to satisfying the specifications. This
would require an efficient way to quantify the expected
improvement in the specification with respect to the
improvement of each abstraction.
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