STABILITY PROOF FOR PD CONTROLLER

FRANCESCO BULLO

January 31, 1996

Control and Dynamical Systems California Institute of Technology

This is a corrected proof of Proposition 4.10 at page 194, Chapter 4, Section 5.3 of (Murray, Li & Sastry 1994).

We adopt the notations as in Section 5.1. The equation of motion of a robot manipulator is given by

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = \tau,$$
 (4.47)

where the various symbols are defined in the book. Let $e = \theta - \theta_d$ be the error; we call augmented PD control law the feedback given by:

$$\tau = M(\theta)\ddot{\theta}_{d} + C(\theta,\dot{\theta})\dot{\theta}_{d} + N(\theta,\dot{\theta}) - K_{v}\dot{e} - K_{p}e. \tag{4.53}$$

Assume the desired trajectory satisfies

$$\sup_{t} \|\theta_{\mathbf{d}}\| < \rho_0, \qquad \sup_{t} \|\dot{\theta}_{\mathbf{d}}\| < \rho_1. \tag{Bounds}$$

Then the control law (4.53) applied to (4.47) results in exponential trajectory tracking if $K_v, K_p > 0$.

Proof. The closed-loop system is

$$M(\theta)\ddot{e} + C(\theta, \dot{\theta})\dot{e} + K_v\dot{e} + K_pe = 0$$

or, rearranging the terms,

$$\ddot{e} = -M(\theta)^{-1} \Big(C(\theta, \dot{\theta}) \dot{e} + K_v \dot{e} + K_p e \Big).$$

Consider the candidate Lyapunov function

$$V(e, \dot{e}, t) = V_0(e, \dot{e}, t) + V_{\text{cross}}(e, \dot{e}, t),$$

where as usual

$$V_0(e, \dot{e}, t) = \frac{1}{2}e^T K_p e + \frac{1}{2}\dot{e}^T M(\theta)\dot{e}$$

and

$$V_{\text{cross}}(e, \dot{e}, t) = \epsilon e^T M(\theta) \dot{e}.$$

Computing the time derivative of V_0 , we can easily prove stability:

$$\dot{V}_{0}(e, \dot{e}, t) = e^{T} K_{p} \dot{e} + \dot{e}^{T} M(\theta) \ddot{e} + \frac{1}{2} \dot{e}^{T} \dot{M}(\theta) \dot{e}
= e^{T} K_{p} \dot{e} + \dot{e}^{T} \left(-C(\theta, \dot{\theta}) \dot{e} - K_{v} \dot{e} - K_{p} e \right) + \frac{1}{2} \dot{e}^{T} \dot{M}(\theta) \dot{e}
= -\dot{e}^{T} K_{v} \dot{e} + \frac{1}{2} \dot{e}^{T} \left(\dot{M}(\theta) - 2C(\theta, \dot{\theta}) \right) \dot{e}.$$

From Lemma 4.2 we know that the matrix $\dot{M}(\theta)-2C(\theta,\dot{\theta})$ is skew-symmetric, hence

$$\dot{V}_0(e,\dot{e},t) = -\dot{e}^T K_v \dot{e}$$

and the closed-loop system is proven to be (at least) Lyapunov stable. Exponential stability is proved by introducing V_{cross} . Its time derivative satisfies

$$\dot{V}_{\text{cross}}(e, \dot{e}, t) = \epsilon \left(\dot{e}^T M(\theta) \dot{e} + e^T \dot{M}(\theta) \dot{e} + e^T M(\theta) \ddot{e} \right)
= \epsilon \dot{e}^T M(\theta) \dot{e} + \epsilon e^T \dot{M}(\theta) \dot{e} - \epsilon e^T \left(C(\theta, \dot{\theta}) \dot{e} + K_v \dot{e} + K_p e \right)$$

and rearranging terms

$$\dot{V}_{\text{cross}}(e, \dot{e}, t) = \epsilon \left(-e^T K_p e + \dot{e}^T M(\theta) \dot{e} + e^T (\dot{M}(\theta) - C(\theta, \dot{\theta}) - K_v) \dot{e} \right)$$

$$\triangleq A_1 + A_2 + A_3,$$

The first addendum A_1 ensures that \dot{V} is negative definite. The second addendum sums up with $\dot{V}_1 = -\dot{e}^T K_v \dot{e}$. Since A_2 is of size ϵ , \dot{V} will remain negative definite. Now, we only need to show that the third addendum preserves this property too. Since A_3 is a a cross term in e and \dot{e} , it suffice to show the boundedness of the operator norm of

$$\dot{M}(\theta) - C(\theta, \dot{\theta}) - K_v.$$

Since K_v is constant, it is bounded. Also, using the definitions in the text, we have

$$e^T \dot{M}(\theta) \dot{e} = \frac{\partial M_{ij}}{\partial \theta_k} \dot{\theta}_k e_i \dot{e}_j$$

and

$$e^T C(\theta, \dot{\theta}) \dot{e} = \Gamma_{ijk} \dot{\theta}_k e_i \dot{e}_j = \frac{1}{2} \left(\frac{\partial M_{ij}}{\partial \theta_k} + \frac{\partial M_{ik}}{\partial \theta_i} - \frac{\partial M_{kj}}{\partial \theta_i} \right) \dot{\theta}_k e_i \dot{e}_j$$

so that we have the following bound

$$||e^{T}(\dot{M}(\theta) - C(\theta, \dot{\theta}))\dot{e}|| \le \frac{5}{2} \left| \left| \frac{\partial M}{\partial \theta} \right| \right| \cdot ||\dot{\theta}|| \cdot ||e|| \cdot ||\dot{e}||.$$

Since $M(\theta)$ is analytic in θ , also $\|\frac{\partial M}{\partial \theta}\|$ is a bounded operator, as long as θ remains in a compact set. This is ensured by the boundedness assumptions in equation (Bounds) coupled with the Lyapunov stability of the closed loop, proven above.

Finally we have

$$A_3 \le \left(||K_v|| + \frac{5}{2} \left| \left| \frac{\partial M}{\partial \theta} \right| \right| \cdot ||\dot{\theta}|| \right) ||e|| \cdot ||\dot{e}||.$$

By using the boundedness assumptions, it's easy to conclude that A_3 is a size ϵ bounded operator evaluated on e, \dot{e} . Hence, the time derivative of V is negative definite and exponential convergence follows as usual.

For more details, we refer to (Whitcomb, Rizzi & Koditschek 1993).

REFERENCES

Murray, R., Li, Z. & Sastry, S. S. (1994), A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, Florida.

URL: http://avalon.caltech.edu/murray/mls

Whitcomb, L. L., Rizzi, A. A. & Koditschek, D. E. (1993), 'Comparative experiments with a new adaptive controller for robot arms', *IEEE Trans. Automatic Control* **9**(1), 59–70.

E-mail address: bullo@indra.caltech.edu

Caltech 104-44, Padadena, CA 91125