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Introduction — Motivations

e Cell-free synthetic biology.
e bottom-up construction of biochemical systems.



Synthetic biology era

The design and fabrication of biological components and systems
that do not exist in the natural world:
* to understand gene regulation and make simple computations.
* to use them either as molecular-scale factories.
* to create new hybrid materials.
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Synthetic biology platforms

In vivo

In silico

in vitro




Synthetic biology in a test tube
(cell-free synthetic biology)

Construction of living systems in a test tube
from the DNA program.

e bottom-up, reductionist and constructive approach.

e no endogenous information.

e no interference and response from an organism.

e more freedom of control and design compared to in vivo.
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Cell-free TX-TL




Cell-free TX-TL systems

(a brief history)

» 1961: first cell-free protein synthesis study.
(Matthaei and Nirenberg)

« 70s: gene regulation unraveled with cell-free systems.

« 90s: invention of the efficient hybrid cell-free system.
- large scale protein synthesis.
- high throughput proteomics.
- protein evolution.
- industrial applications.

Not developed and not optimized to program or study
biochemical systems in vitro.



Limitations of the conventional hybrid TX-TL CFS:

e TX: limited to a few bacteriophage RNA polymerases.
repertoire of regulatory parts way too small.

e No control of mMRNA and protein degradation.

e No control of the expression dynamics.
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» 3-6 hours of expression.

* 0.5-1mg/ml of protein synthesized
(20-35uM for eGFP)

* E. coli: [Protein],,, = 500nM

* 10l reactions.



Circuits with conventional TX-TL CFS:

~

Psps T7rnap P;,-lacO fLuc

SP6 RNAP I

12
__ 104 . |
= T
e 8 7
2 e
© © & 7
o O
=g &
ilj) OOO AAM
2 OOO * a4 .
o )

(“ 5 : 3 1 1 1 '
0O 1 2 3 4 5 6 7
Time [hours]

Noireaux et al, PNAS, 2003.

N

5

10



An ‘all’ E. coli cell-free TX-TL system

e crude extract preparation:

- E. coli cells (fast, reproducible).

- cytoplasm is extracted.

- endogenous DNA and mRNA are degraded.

- the extract contains:
- transcription machinery: o,, and core RNAP.
- translation machinery: = 100 molecules.

- dilution factor: 20-30 times compared to in vivo.

(protein :250-300mg/ml in vivo, 10mg/ml in vitro)

e reaction (= 10ul):
- crude extract.
- buffer: energy, building blocks (nucleotides, AA).
- plasmid DNA program prepared in the lab.
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1-gene characterization
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 3-6 hours of expression.

* 0.5-1mg/ml of protein synthesized
(20-35uM for deGFP)

* 10ul reactions.

Shin and Noireaux, JBE, 2010a.
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TX repertoire

Transcriptional activation

* Core RNAP + 0,,: housekeeping TX.
* 6 others E. coli sigma factors: 19, 24, 28, 32, 38, 54-NtrC.
2 bacteriophage RNA polymerases: T7 and T3.

« all the E. coli regulatory parts (promoter/operators) available.

Transcriptional repression

* a set of 5 repressors: lac, tet, ara, ClI, Cro.
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MRNA and protein degradation

e MRNA mean lifetime = 12-13 min for deGFP
Can be shortened down to 0 min with MazF toxin.

e Protein mean lifetime = .
Can be shortened with endogenous AAA+ proteases.

Shin and Noireaux, JBE, 2010b.
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Conclusions:

« all E. coli cell-free TX-TL toolbox.
* repertoire of 14 TX regulatory parts.
» control of synthesis and degradation rates.
* coarse-grained model of TX/TL processes.
* next steps: better cell-free TX-TL (currently optimizing).
* collaboration: Roy Bar-Ziv (Weizmann).

* Noireaux et al. PNAS 2003.

» Shin and Noireaux. J. Biol. Eng. 2010a

» Shin and Noireaux. J. Biol. Eng. 2010b.

» Karzbrun et al. PRL 2011.

» Shin and Noireaux. ACS Synthetic Biology 2012.
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Elementary cell-free circuits
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TX activation cascade
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deCFP/deGFP [uM]

4 outputs circuit
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Conclusion:

 constructed and characterized small cell-free circuits.
* next steps: change cloning technique, test larger circuits.
» collaboration: Richard Murray (Caltech)

Chris Voigt (MIT)

« Shin and Noireaux. ACS Synthetic Biology 2012.
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4
Genome-sized circuits

Bacteriophage synthesis

biological circluits
: —
function
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Genome scale circuits

(information and self-organization)

e What is the real capacity of the system to construct circuits
and living systems?

CFR batch mode: [Protein] = 25-30uM 50-60 genes
E. coli: [Protein],,, = 500nM

e Test the system with genome-sized information.

e Bacteriophages:

- search for genomes composed of < 60 genes.

- with molecular biology technically accessible.

- condition/bottleneck: complexity of the interaction with the
host (beyond TX-TL).
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Phage T7

lytic coliphage.

40 kbp, 60 genes (35 with known functions).
almost host independent (2 host proteins required).
has its own RNA polymerase.

has its own DNA polymerase.
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Phage T7 synthesis In a test tube

X TL
~ genome —>» MRNA ——> phage

e TEM image
e 5-6 hours of incubation
e batch mode reaction
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T7 Genome replication
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e up to 200 times greater
with dNTPs.

e a few billion of functional
phages per milliliter
synthesized after 5-6 hours
of incubation in Dbatch
mode.
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Cell viability [OD at 600 nm]
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e phages per cell = 100.
e phage cycle = 25 min.
e E. coli division = 30 min.
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Conclusion:

* DNA replication and viral self-assembly in a test tube.

» semi-continuous TX-TL.

 next steps: better cell-free TX-TL.
simplified DNA replication.

* Shin, Jardine and Noireaux. ACS Synthetic Biology 2012.
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Artificial cell

Cell-free TX-TL in cell-sized compartments

TX-TL ] .
DNA —— CIrcuits

~
~
~
~
~
~
\\
~



Bottom-up artificial cell
4 )

[Information] C—) [Compartment]
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e Unique property: self-reproduction
- each part is essential.
- each part is made of molecular machineries.

/

e Far objective:
- construct a ‘predictable’ artificial cell from scratch.
- capture the cooperative link between the 3 parts.
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Encapsulation inside lipid vesicles
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Encapsulation method

Reaction
(CFE-DNA-RNAP)

centrlfugatlon %

Feeding solution Feeding solution

emulsion
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Pautot et al., 2004. 32



Continuous exchanges

Alpha Hemolysin

- toxin Staph. Aureus
- soluble monomer

- membrane heptamer
- channel of 1.4nm: 2-3kD

Song et al - 1997

Nutrients

TX\TL
reaction
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Protein S-A at the membrane

The membrane is:

* the physical boundary of the cell.

 a template for self-assembly of proteins.

« essential for spatial organization (symmetry breaking).

Alpha-Hemolysin-eGFP, 25°C

10% SM 10% DHPC
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Cytoskeleton at the membrane

BSA-TRITC

0'70
YFP MreB

Vv ¥
oo YFP-tireE
oy irec]

10 um

Residual integral membrane protein insertion in cell-free TX-TL
system. YidC? Sec system (SecA)?
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