

TX-TL Workshop 26-30 Aug 2013

Richard M. Murray Clare Hayes Zach Sun

California Institute of Technology

Vincent Noireaux

University of Minesota

Emzo de los Santos (BE) Shaobin Guo (BMB) Victoria Hsiao (BE) Jongmin Kim (BE) Dan Siegal-Gaskins (BE) Vipul Singhal (CNS) Anu Thubagere (BE) Zoltan Tuza (CDS) Yong Wu (ChE) Enoch Yeung (CDS)

Sponsored by: DARPA Living Foundries (HR0011-12-C-0065)

Biomolecular Breadboarding ("Wind Tunnel" [Klavins])

Richard M. Murray, Caltech CDS/BE

0.39400

.394800

Biomolecular Breadboards

TX-TL cell-free toolbox

- \$0.03/ul, 1 day cycle time
- Linear DNA (w/ protect'n)
- Protein degradation (via YbaQ and ssrA tags)
- Detailed protocols (JoVE)
- Circuits: switch, IFFL, toxin-antitoxin, RNA logic
- CSHL course in Jul 2013

Open source information

• TX-TL protocols, data, tools: http://www.openwetware.org/wiki/breadboards Sun et al, JoVE 2013

DNA thio-iunk-ptet--rbs--tetR-lva-DNA p70-rbs--gamS

TX-TL modeling library: http://www.sourceforge.net/projects/txtl

夏 0.4

• TX-TL announcements mailing list: http://groups.google.com/d/forum/txtl-announce

TX-TL modeling toolbox

- MATLAB (Simbiology) based toolbox with 10 line circuit specs
- Validated models for gene expression, regulation, w/ resource lims
- Full source code and user documentation available on web

-NTP (mM

RNAP70 Inh Ribo (nM)

TX-TL vesicles & droplets

- Inducer-based expression in vesicles, droplets
- Time course measurements of circuits in 0.3 µl droplets on Liquid Logic microfluidic platform
- Recent: protocols for mixing, merging, splitting plus improved imaging

Tuza et al, CDC 2013 (s)

Sample TX-TL Based Design Process

S0: modeling (minutes/cycle, systematic design & analysis)

- Desired function + specs → set of possible designs (circuits) + sensitivity analysis
- Goal at this stage is to determine what circuits to test in TX-TL and predict outputs

S1: linear DNA (4-8 cycles @ 2 cycles/day, 24-96 variants)

- Components from std library or PCR extension (no cloning)
- Test in TX-TL with GamS, ClpX. Try multiple circuits + vary ratios of copy numbers (based on achievable copy #'s)
- Compare w/ models; insure we can model what we see
- Goal: downselect 4-8 designs to test in plasmids

S2: plasmids (2-4 cycles @ 2 days/cycle, 8-24 variants)

- Clone into plasmid(s), using std sequences/protocols
- Verify operation in TX-TL, incl copy number variability
- Test robustness in multiple extracts w/ varying conditions
- Match results to S0 models and S1 linear DNA

S3: validate in cells (1 cycle, 4 days, 1-4 variants)

• Test top constructs from plasmid-based TX-TL assay

TX-TL Core Processes

Zachary Sun, Vincent Noireaux

Rapid prototyping using linear DNA

 Use PCR products with GamS to get expression levels of ~60% of plasmid

- Allows rapid assembly of constructs
 - PCR extension for simple circuits
 - IDT gBlocks + isothermal ass'y

Protein degradation

• Use clpXP machinery to degrade tagged proteins

Tested components

- RNA polymerases: E. coli*, T7
- Activators: sigma28*, AraC*
- Repressors: TetR*, Lacl*
- Reporters: deGFP*, MG, mSpinach
- Phosphorylation: NRI/pgInA
- DNA/RNA/protein deg: gamS*, clpXP*

* preliminary models also available

Living Foundries, 25 Oct 2012

Murray, Rothemund, Noireaux (Caltech/UMN)

Effects of Resource Limits

Richard M. Murray, Caltech CDS/BE

Tuza, Singhal, Kim and M, CDC 2013 (s)

TX-TL Modeling

Zoltan Tuza, Vipul Singhal, Dan Siegal-Gaskins

MATLAB toolbox (sf.net/projects/TXTL)

% Set up a tube that will contain our DNA tube3 = txtl_newtube('circuit'); dna_tetR = txtl_dna(tube3, 'ptet', 'rbs', 'tetR', 100, 'linear'); dna_gamS = txtl_dna(tube3, 'p70', 'rbs', 'gamS', 10, 'plasmid');

% Mix the contents of the individual tubes and add some inducer well_a1 = txtl_combine([tube1, tube2, tube3], [6, 2, 2]); txtl_addspecies(well_a1, 'aTc', 0.1);

% Run a simulation
[t_ode, x_ode, names] = sbiosimulate(well_a1);

Resource utilization effects

- Model+TXTL shows effects of fixed number of RNAPs and ribosomes
- Additional sigma factor gene introduces significant 'crosstalk', reduces output
- Calibrated models that match experimental results

External TX-TL Circuit Testing

Circuit testing (DARPA LF, ONR MURI)

- Stage 1: you send us cells/plasmids; we verify *in vivo* operation (in our hands)
- Stage 2: we perform TX-TL runs, compare to *in vivo*, send you back data
- Stage 3: extended TX-TL modeling and characterization (joint activity)

Things that work

- Transcriptional circuits: neg autoreg, genetic switch, feedforward loops, logic
- RNA-based circuits (sometimes)
- Phosphorylation circuits (NRI)
- Metabolic pathways (2,3 BDO)

Things that haven't worked (yet)

- Green light sensor (??)
- Multi-layer cascades (resource lims)
- DNA integrase/excisionase (copy #?)
- Modified T7 RNAP (leaky expression)

PI (+ contact)	Circuit/Technology	123
Lucks (CH)	RNA-sensing TFs	$\sqrt{\sqrt{4}}$
Del Vecchio (EY)	Loading effects	$\sqrt{\sqrt{4}}$
Temme (VH)	Orthogonal RNAPs	√?-
Voigt (DSG)	4 input, 11 gene	√x -
Tabor (JK)	Green light sensor	√√ ○
Endy (VH)	DNA memory	√ ○ -
Del Vecchio (SG)	Phospho-insulator	$\sqrt{\sqrt{4}}$
Kortemme (EdIS)	Molecular sensors	√ ○ -
Jewett (YW)	Butanediol pathway	√√ ○

TX-TL Limitations: Lessons Learned/Future Research

Resource limitations must be taken into account

- Easy to overload TX-TL machinery and create crosstalk
- Extend *duration* via "feeding solution", but still limited
- Models capture limits => should be able to avoid

Linear ≠ plasmid, *in vitro* ≠ *in vivo*

- Gene expression is dependent on DNA context
- OK for simple expression, but TX circuits require care
 - Just scaling up DNA concentration won't be enough
 - Use models to map between environments?
- Also: temperature, salts, co-factors and other effects
 - Eg: RNA structure depends on temp, [MG]/[K], ...

Batch-to-batch variations can create problems

- Typically see 2X differences in expression levels between batches; sometimes different dynamics
- Some circuits that work in one batch don't work in others

Some circuits not yet working at all

• Green-light sensor (Tabor) - co-factors?

Biomolecular Breadboard Suite

Cell-free breadboard

- Linear DNA assembly (build on work of others)
- Implemented ~8 circuits
- Document'd design cycle times (vs std cloning)
- Extract preparation video (Sun et al, JoVE, 2013)
- Predictive models for switch, IFFL, neg fbk

Artificial Cells

- Kinetics of expression inside vesicles
- Statistics of expression and induction (% of vesicles induced)
- Expression (and induction) as a function of vesicle size (1-100 fL)

Spatial Localization

- Control spatial location of DNA, RNA, proteins using DNA origami
- Explore effects of distance on hybridization, binding, scaffolding
- Demo'd transcription of bound DNA

Prototyping and debugging of in vivo and in vitro circuits

- Very little knowledge/infrastructure required to build in vitro circuits (try it!)
- Exploring use for synthetic biology courses (1 week labs); prototype at CSHL '13

Open source information

• TX-TL protocols, data, tools: http://www.openwetware.org/wiki/breadboards