

Controls Primer Fall 2001

Objectives

- Provide familiarity of the basic concepts in feedback control
- Survey tools in Lyapunov and optimization-based control

Proposed Schedule

4 Sep 11 Sep 18 Sep 25 Sep	Overview of feedback control Introduction to state space control and feedback Lyapunov stability and control Lyapunov, continued	Richard Raff Lars Lars	Tue 10 am PDT
2 Oct 9 Oct 16 Oct 12 Oct	Optimal control theory Optimal, continued Model predictive control MPC, continued	Reza Reza Bill Bill	TBD

http://www.cds.caltech.edu/~murray/courses/primer-fa01

Lecture #1 Overview of Feedback Control

Goals

- Provide engineering context for "active control technology", through examples
- Survey some of the standard approaches and tools for feedback control
- Describe some of the future directions for the field

Lecture Outline

- 1. What is Control?
- 2. Basic Concepts in Feedback Control
- 3. Application Examples
 - Automotive Control
 - Flight Control
- 4. Future Directions

Reference: Report of the Panel On Future Directions in Control, Dynamics and Systems, 2001

http://www.cds.caltech.edu/ ~murray/cdspanel

What is Control?

Types of Control

Passive Control

- Make structural modifications to change the plant dynamics
- Use this technique whenever it is a viable option: cheap, robust

Open Loop Control

- Exploit knowledge of system dynamics to compute appropriate inputs
- Requires very accurate model of plant dynamics in order to work well

Active (Feedback) Control

- Use sensors and actuators connected by a computer to modify dynamics
- Allows uncertainty and noise to be taken into account

Early Uses of Feedback

Pre-1700

- Water clock (~300 BC, Alexandria), float valves
- Egg incubator (Drebbel, 1620) control temperature

Watt Governor (1788)

- Regulate speed of steam engine
- Reduce effects of variations in load (disturbance rejection)

Feedback Amplifiers (1920s)

- Laid mathematical foundations for classical control
- Use feedback to reduce uncertainty (robustness)

Modern Application Areas

Flight Control Systems

- Modern commercial and military aircraft are "fly by wire"
- Autoland systems, unmanned aerial vehicles (UAVs) are already in place

Robotics

- High accuracy positioning for flexible manufacturing
- Remote environments: space, sea, non-invasive surgery, etc.

Chemical Process Control

- Regulation of flow rates, temperature, concentrations, etc.
- Long time scales, but only crude models of process

Heating Ventilation and Air Conditioning (HVAC)

- Basic thermostatic controls to building level systems
- Very distributed system with many local control loops

Automotive

- Engine control, transmission control , cruise control, climate control, etc
- Luxury sedans: 12 control instruments in 1976, 42 in 1988, 67 in 1991

AND MANY MORE...

Controls Primer, 4 Sep 01

Emerging Application Areas

Materials Processing

- Rapid thermal processing for increased throughput
- Control of vapor deposition for special purpose materials (e.g. YPCO thin films)

Noise and Vibration Control

- Active mounts and speaker systems for noise and vibration reduction
- Variety of applications: cars, planes, HVAC

Intelligent Vehicle Highway Systems

- Platooning of cars for high speed, high density travel on freeways
- PATH project in California is already in test near San Diego

Smart Engines

- Compression systems: stall, surge, flutter control for increased operability
- Combustion systems: operation at leaner air/fuel ratios for low emissions

Technology Trends Affecting Active Control

Computation/microprocessors

- Early controllers used analog computation Þ only simple algorithms were possible
- Development of microprocessor in 1970s opened the door to control applications
- Virtually all modern active control loops use microprocessors ⇒ rapid progress

Sensors and Actuators

- Sensors are getting cheaper, faster, smaller
- Macro-scale actuation evolves slowly; power electronics getting cheaper
- Micro-scale actuation is changing rapidly

Communications and Networking

- Increased use of sensing and actuation across networks
- Examples: IVHS, ATC, UAVs

Basic Concepts in Feedback Control

Active Control = Sensing + Computation + Actuation

Goals: Stability, Performance, Robustness

Benefits of Feedback: Disturbance Rejection & Robustness

$$m\dot{v} = -bv + u_{\text{engine}} + u_{\text{wind}}$$
$$u_{\text{engine}} = k(v_{\text{des}} - v)$$

velocity

Stability/performance

- Steady state velocity approaches desired velocity as $k \rightarrow \infty$
- Smooth response; no overshoot or oscillations

Disturbance rejection

• Effect of disturbances (wind) approaches zero as $k \rightarrow \infty$

Robustness

• None of these results depend on the specific values of *b*, *m*, or *k* for *k* sufficiently large

Modern Control System Components

PlantPhysical system, actuation, sensingControllerMicroprocessor plus conversion hardware (single chip)FeedbackInterconnection between plant output, controller input

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Active Control Methodologies

Black box methods

- Basic idea: Learn by observation or training
- Examples:
 - Auto-tuning regulators
 - Adaptive neural nets
 - Fuzzy logic

Advantages:

- No need for complex modeling or detailed understanding of physics
- Works well for controllers replacing human experts

Disadvantages:

- No formal tools for investigating robustness and performance
- Don't work well for high performance systems with complicated dynamics

Model-based methods

- Use a detailed model (PDEs, ODEs) for analysis/design
- Examples:
 - Optimal regulators
 - H_{∞} control
 - Feedback linearization

Advantages:

- Works well for highly coupled, multivariable systems
- Rigorous tools for investigating robustness and performance (using models)

Disadvantages:

- Tools available only for restricted class of systems (e.g., linear, time-invariant)
- Requires control-oriented physical models; these are not always easy to obtain

Control Using Fuzzy Logic

Example: Fuzzy Control of an Inverted Pendulum

$\mathbf{\dot{\theta}}^{\boldsymbol{\theta}}$	NL	NM	NS	ZR	PS	PM	PL
PL							
PM							
PS			ZR		PS		
ZR		NM		ZR		PM	
NS			NS		ZR		
NM							
NL							

- Basic control structure unchanged: sense, compute, actuate
- Use simple (and overlapping) rules to specify control action
- Gives satisfactory performance with very simple control specification

Source: Yamakawa, Fuzzy Sets and Systems, 1989

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Additional Applications of Fuzzy Logic

Pilotless, voice-controlled helicopter (Sugeno)

- System in operation since 1992
- Responds to "hover", "forward", "left", etc
- Motivated by automated crop dusting

Elevator scheduling (Kim et al)

- Simulated 3 car system; multiple scenarios
- Improvement over "conventional" algorithm
 - 9% decrease in avg waiting time
 - 20% decrease in long waiting periods
 - 4% decrease in power consumption

Other applications

- Sendai railway systems (1987)
- Autofocus cameras (Panasonic)
- Air conditioning (Mitsubishi)

Common features that fuzzy exploits

- Feedback able to improve performance
- Lack of high-fidelity, control oriented models
- Good human expertise available
- Relatively low performance requirements (non-catastrophic failure modes)

Control using Artificial Neural Networks

Basic idea: encode controller logic using neural network architecture

- Train weights based on learning, inputs gradient search ,etc
- Controller "figures out" proper inputs to get desired response

Advantages:

- Does not require explicit model of plant; learns from observing
- Structure allows complex, nonlinear control actions

Disadvantages:

- Can require long training periods
- Applications appear limited compared to other methods

Model-Based Control

Classical control

- Frequency domain based tools; stability via gain and phase margins
- Mainly useful for single-input, single output (SISO) systems
- Still one of the main tools for the practicing engineer

Modern control

- "State space" approach to linear control theory
- Works for SISO and multi-input, multi-output (MIMO) systems
- Performance and robustness measures are often not made explicit

Optimal control

- Find the input that minimizes some objective function (e.g., fuel, time)
- Can be used for open loop or closed loop control (min-time, LQG)

Robust control

- Generalizes ideas in classical control to MIMO context
- Uses operator theory at its core, but can be easily interpreted in frequency domain

Nonlinear control, adaptive control, hybrid control ...

1940

1960

1970

1980

Representations of Systems

Ordinary Differential Equations Block diagrams (Operators) $\dot{x} = f(x, u)$ y(t)u(t)Р y = h(x, u)Linearization around $x_0=0$ Linearization around $x_0 = 0$ Laplace transform $\dot{x} = Ax + Bu$ u(s) y(s)P(s)y = Cx + Du $P(s) = \frac{a_{n-1}s^{n-1} + \dots + a_0}{s^n + b_{n-1}s^{n-1} + \dots + b_0}$

Richard Murray, Caltech

Stability and Robustness

Stability: bounded inputs produce bounded outputs

- Necessary and sufficient condition: check for nonzero solutions around feedback loop
- Basic problem: positive feedback (internal or external)

Robustness: stability in the presence of unknown dynamics

- Check for stability in presence of uncertainty
- Need to check stability for set of systems
- "Small gain theorem" gives tight conditions based on bounds of uncertainty operator

No uncertainty \Rightarrow No need for control

Modeling Uncertainty

Noise and disturbances

- Model the amount of noise by its signal strength in different frequency bands
- Can model signal strength by peak amplitude, average energy, and other norms
- Typical example: Dryden gust models (filtered white noise)

Parametric uncertainty

- Unknown parameters or parameters that vary from plant to plant
- Typically specified as tolerances on the basic parameters that describe system

Unmodeled dynamics

- High frequency dynamics (modes, etc) can be excited by control loops
- Use bounded operators to account for effects of unmodelled modes:

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Robust Performance

- *d* disturbance signal
- *z* output signal
- Δ uncertainty block
- W_2 performance weight
- W_2 uncertainty weight

Goal: guaranteed performance in presence of uncertainty

 $||z||_2 \le \gamma ||d||_2$ for all $||\Delta|| \le 1$

- Compare energy in disturbances to energy in outputs
- Use frequency weights to change performance/uncertainty descriptions
- "Can I get X level of performance even with Y level of uncertainty?"

Tools for Analyzing and Synthesizing Controllers

(Post-) Modern Control Theory

- Generalizes gain/phase margin to MIMO systems
- Uses operator theory to handle uncertainty, performance
- Uses state space theory to performance computations (LMIs)

Analysis Tools

- H_{\sim} gains for multi-input, multi-output systems
- μ analysis software
 - Allow structured uncertainty descriptions (fairly general)
 - Computes upper and lower bounds on performance
 - Wide usage in aerospace industry

Synthesis Tools

- LQR/LQG + H_{∞} "loop shaping"; modern tools for control engineers
- μ synthesis software; tends to generate high order controllers
- Model reduction software for reducing order of plants, controllers

 \boldsymbol{P}

K

Achilles Heel: Effects of Time Delay on Performance

Communications delays and uncertainty can have a major effect on high performance systems

Application Examples

Smart cars and intelligent highways

Flight Control

Feedback Control in Automobiles

Richard Murray, Caltech

Engine Control

Reliance on active control is increasing

- Increasingly strict emissions and fuel efficiency requirements
- Continued Improvements in sensing, actuation, electronics, microprocessors
- Main bottlenecks are uncertainty, complexity, and sensing capability
- Integration of control functions becoming more difficult due to increased reliance on outside suppliers

Source: Barron & Powers, IEEE/ASME T. Mechatronics, Mar 96

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Trends and Lessons in Automotive Control

Advances often driven by gov't regulations

- Muskie laws (1970) for emissions
- Restraint laws in 1980s \rightarrow air bags
- CAFE → electric power steering systems

Electronics + control provided solution

• Feedback was needed to get reliable performance in multiple operating conditions, with variations in parts

Strict reliability and cost requirements

- Control solutions must show demonstrated benefit and have low cost
- Reliability has improved steadily in past 20 years

These issues are common to many emerging applications areas that make use of active control technology

Additional benefits

- Increasing use of controls for non-regulated functions
 - Anti-lock brakes
 - Active suspension
- Increased sensing allows improved diagnostics and prognostics (not used?)

Emerging Trends

- Networking: car is no longer an isolated
 - Security systems: lo-jack, etc
 - GPS-based navigation
 - Diagnostics? IVHS?
- Distributed control
 - Increased reliance on suppliers for (smart) components
 - Presents integration challenges

Intelligent Vehicle Highway Systems (IVHS)

Use Feedback Control to Regulate and Optimize Traffic Control

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Optimization-Based Control

- Real-time model predictive control for online control customization: theory + software
- Online implementation on Caltech Ducted Fan

High Confidence, Reconfigurable, Distributed Control

Development

automation and

heuristics

Language Support

Application development

Control compiler/ theorem prover

Open Control Platform

Control

Libraries

Software Environments

Testbed

- Logical programming environments for embedded control systems design
- "On-the-fly", correct by construction techniques

Multi-Vehicle Testbed

- Implementation on multivehicle, wireless testbed using Open Control Platform
- Bluetooth-based point to point communications with ad-hoc networking

Output: Framework and Prototype Environment for Robust, Software Enabled Control Systems

Overview: Optimization-Based Control

- Use *real-time* trajectory generation to construct (suboptimal) feasible trajectories
- Use model predictive control for *reconfigurable* tracking & robust performance
- Extension to multi-vehicle systems performing cooperative tasks (ongoing)

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Overview: Optimization-Based Control

Online control customization

- System: f(x,u)
- Constraints/environment: g(x,u)
- Misssion: L(x,u)

Update in real-time to achieve *reconfigurable* operation

Theory: MPC + CLF Approach

Basic Idea

- Use online models to compute receding horizon optimal control
- CLF-based terminal cost gives stability + short time horizons

Properties

- Can prove stability (in absence of constraints)
- Incremental improvement property \Rightarrow finite iterations OK
- Increased horizon \Rightarrow larger region of attraction

Real-Time Trajectory Generation / Optimization

$$\dot{x} = f(x, u)$$

Collocation

$$(x,u) = \sum \alpha_i \psi^i(t)$$
$$\dot{x}(t_i) = f(x(t_i), u(t_i))$$

Flatness

$$z = z(x, u, \dot{u}, \dots, u^{(p)})$$
$$x = x(z, \dot{z}, \dots, z^{(q)})$$
$$u = u(z, \dot{z}, \dots, z^{(q)})$$
$$z = \sum \alpha_i \psi^i(t)$$

Quasi-collocation

$$y = h(x)$$

(x,u) = $\Gamma(y, \dot{y}, \dots, y^{(q)})$
$$0 = \Phi(y, \dot{y}, \dots, y^{(p)})$$

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Experimental Results: Caltech Ducted Fan

Multi-Vehicle Optimization-Based Control

Assume we have real-time, finite horizon optimal control as a *primitive*

$$u_{[t,t+\Delta T]} = \arg\min\int_{t}^{t+T} L(x,u)dt + V(x(t+T))$$
$$x_{0} = x(t) \quad x_{f} = x_{d}(t+T)$$
$$\dot{x} = f(x,u) \quad g(x,u) \le 0$$

Choose f, g, L to represent the *coupling* between the various subsystems

Cooperation depends on how we model "rest of the world"

$$\ddot{q}_{1} = 0 \quad |u_{1}| \leq L$$

$$u_{2,[t,t+\Delta T]} = \arg\min\int_{t}^{t+T} L(q_{1,}x_{2},q_{3},u_{2})dt + V$$

$$\dot{x}_{2} = f(x_{2},u_{2}) \quad g(x_{2},u_{2}) \leq 0$$

$$\ddot{q}_{3} = 0 \quad |u_{3}| \leq L$$

Reconfigurable based on condition, mission, environment

Simulation Example: Formation Flight

Controls Primer, 4 Sep 01

Richard Murray, Caltech

Multi-Vehicle Wireless Testbed for Integrated Control, Communications and Computation

(Hickey, Low, Murray, Doyle, Effros + 8 undergrads)

Testbed features

- Distributed computation on individual vehicles + command and control console
- Point to point, ad-hoc networking (bluetooth) + local area networking (802.11)
- Cooperative control in dynamic, uncertain, and adversarial environments

Controls Primer, 4 Sep 01

Richard Murray, Caltech

RoboCup Video (Raff D'Andrea [Cornell], CIT `96)

Summary

Feedback enables performance in the presence of uncertainty

- Uncertainty management requires clever and appropriate use of feedback
- Model-based control and black box controllers can both enhance performance

Rapid improvements in sensing, computation, communication drives control

- All of these are becoming cheaper and more ubiquitous; networking will have a large impact on control, diagnostics, prognostics, maintainence, etc
- Actuation still remains a bottleneck; control configured design is key

Future Directions

Panel on Future Directions in Control, Dynamics, and Systems

Richard M. Murray (chair) Caltech

<u>Outline</u>

- Review of Panel Activities
- Overview of Panel Report
- Next Steps & Timeline

http://www.cds.caltech.edu/~murray/cdspanel

Motivation for the Panel

Articulate the challenges and opportunities for the field

- Present a vision that can be used to inform high level decision makers of the importance of the field to future technological advances
- Identify possible changes in the way that research is funded and organized that may be needed to realize new opportunities
- Provide a compelling view of the field that continues to attract the brightest scientists, engineers, and mathematicians to the field

Respond to the changing nature of control, dynamics, and systems research

- Many new application areas where controls tools are playing a stronger role: biology, environment, materials, information, networks, ...
- Controls engineers taking on a much broader, systems-oriented role, while maintaining a rigorous approach and practical toolset

Panel Composition

Siva Banda Air Force Research Lab	Stephen Boyd Stanford	Roger Brockett Harvard	John Burns Virginia Tech
John Doyle Caltech	John Guckenheimer Cornell	Charles Holland DDR&E	Pramod Khargonekar U. Michigan
P. R. Kumar U. Illinois, Champagne- Urbana	Jerrold Marsden Caltech	Greg McRae MIT	George Meyer NASA Ames
William Powers Ford	Gunter Stein Honeywell	Pravin Varaiya UC Berkeley	
	Siva Banda Air Force Research Lab John Doyle Caltech P. R. Kumar U. Illinois, Champagne- Urbana William Powers Ford	Siva BandaStephenAir ForceBoydAir ForceBoydResearch LabStanfordJohn DoyleJohnCaltechJohnCaltechCornellV. Illinois,JerroldChampagne-CaltechUrbanaCaltechWilliamGunter SteinPowersHoneywellFordFord	Siva Banda Air Force Research LabStephen Boyd StanfordRoger Brockett HarvardJohn Doyle CaltechJohn Guckenheimer CornellCharles Holland DDR&EP. R. Kumar U. Illinois, Champagne- UrbanaJerrold Marsden CaltechGreg McRae MITWilliam Powers FordGunter Stein HoneywellPravin Varaiya UC Berkeley

Richard Murray, Caltech

Panel Activities

Panel Meeting: 16-17 June 00

- 47 attendees representing academia, industry, government
- Subpanels in 5 application areas
- Basis for report findings

Writing Committee Meetings

- Boyd, Brockett, Burns, Dahleh, Doyle, Laub, Murray, Stein
- Meetings in Oct 00, Mar 01
- Generated outline + drafts

Panel Presentations

- AFOSR Contractors Meeting, 8/00
- Gov't Program Managers, 2/01
- DARPA UAV workshop, 3/01
- IFAC NOLCOS, 6/01

Announcements

- Control Systems Magazine, 6/00
- Systems and Control E-Letter, 6/00
- Systems and Control E-Letter, 9/00

Communication

- CDS Panel web site
 - Draft copies of report
 - Links to related activities/reports
- Mailing list (150+ people)
- Bulletin board

Linkages

• European Commission Workshop, 6/00

Control in an Information Rich World

Report of the Panel on Future Directions in Control, Dynamics, and Systems (v2.0, 27 Jul 01)

1. Executive Summary (5 pages)

- What is Feedback Control?
- Why Does it Matter?
- Control Will Be Even More Important in the Future
- ...But It Won't Be Easy
- What Needs to be Done

2. Overview (20 pages)

- What is Control?
- Control System Examples
- The Shift to Information-Based Systems
- Opportunities and Challenges Now Facing Us

3. Applications, Opportunities and Challenges (30-40 pages)

- Aerospace and Transportation
- Information and Networks
- Robotics and Intelligent Machines
- Biology and Medicine*
- Materials and Processing*
- Other Applications
 - Environment*
 - Finance and Economics*

4. Education and Outreach* (10 pages)

5. Recommendations (5 pages)

Aerospace and Transportation (DARPA Software Enabled Control Program, H. Gill)

Information and Networks

Pervasive, ubiquitous, convergent networking

- Heterogeneous networks merging communications, computing, transportation, finance, utilities, manufacturing, health, consumer, entertainment, ...
- Robustness and reliability are the dominant challenges
- Need "unified field theory" of communications, computing, and control

Many applications

- Congestion control on the internet
- Power and transportation systems
- Financial and economic systems
- Quantum networks and computation
- Biological regulatory networks and evolution
- Ecosystems and global change

Materials and Processing

Question: can control be used to modify surface morphology?

- Use unsteady processing conditions and *in situ* diagnostics to alter growth
- Provide more structured approach than existing techniques
- Can also be used to understand actuation of domain walls

Challenges

- Sensing of relevant characteristics
 - Nucleation events
 - Grain boundary features
 - Surface roughness
- Coupling between macro-scale actuation and micro-scale physics
- Models suitable for controllability analysis and control design

Biology and Medicine

"Systems Biology"

- Many molecular mechanisms for biological organisms are characterized
- Missing piece: understanding of how network interconnection creates robust behavior from uncertain components in an uncertain environment
- Transition from organisms as genes, to organisms as networks of integrated chemical, electrical, fluid, and structural elements

Key features of biological systems

- Integrated control, communications, computing
- Reconfigurable, distributed control, built at molecular level

Design and analysis of biological systems

- Apply engineering principles to biological systems
- Systems level analysis is required
- Processing and flow information is key

Software Control Theory 2001 ISAT Study on Vigilant High Confidence Systems

Goal: Info systems you can bet the country on

Approach: VIGILANCE via "software control theory"

Why now?

- Network-centric systems are enablers in military and commercial applications
- BUT, current approaches are inadequate
- Need new approach to robust info systems

Why will it work?

- Real-time monitoring, model checking now feasible
- New ideas in pervasive control, stream checking
- Preliminary investment: OASIS, DASADA, FTN, AT&T...

Example: Feedback Control for Distributed Sorting

Distributed sorting is a necessary operation in many missions

- Example: target prioritization across multiple platforms
- Current approaches: voting, consensus, deconfliction

Question: can we use *vigilance* to provide *robust* operation?

Feedback Algorithm for Target Prioritization

Approach: Interconnect individual modules to get fast, robust, distributed sorting

- **Stability**: bounded computational time in each node + finite time convergence
- Robustness: algorithm converges, even if processor fails or node is hacked
- **Performance**: sort time is optimal with respect to stationary cycle time distribution
- **Robust performance**: algorithm converges quickly even in worst case (eg, hacked node exploiting feedback structure)

Integrating Feedback into Algorithms

Question: how do we compute in face of uncertainty?

- Distributed algorithm with component failure, data corruption possible
- Variable CPU time available on each processor, due to other tasks
- One or more processors might be taken over by adversary
- Require high performance (fast, accurate, dynamically balanced)

Answer: robustness through feedback

- Dynamic load balancing by modulating iterations in partial sort
- Robustness to software failures and data corruption by source selection and feedback
- Requires accurate sensors

Fast Select: New Tools in Program and Stream Checking

Program checking by comparing input/output streams gives confidence levels

- New results give O(log(n)) check of approximate correctness (1-ε sorting)
- Ideas fit well with control approach: provide "sort" metric

Stream checking for rapid assessment and selection of output

- Use to quickly determine closeness of streams
- Provides fast computation of L₁ distance with O(log(n)) memory usage

New results provide ideas for fast and accurate sensors that can be used for feedback

Upgrade and Repair in Sort Example

Question: what happens if we insert faulty code into sort loop?

• Feedback mechanisms correct (resort or reject) data

- Analysis capability: use norms to bound error
 - Can characterize allowable deviation of algorithm and verify stability

CDS Panel Recommendations

- 1. Substantially increase research aimed at the integration of control, computer science, communications, and networking.
 - Principles, methods and tools for control of high level, networked, distributed systems
 - Rigorous techniques for reliable, embedded, real-time software.
- 2. Substantially increase research in Control at higher levels of abstraction, moving toward enterprise level systems.
 - Dynamic resource allocation in the presence of uncertainty
 - Learning, adaptation, and artificial intelligence for dynamic systems.
- 3. Explore high-risk, long-range applications of Control
 - Nanotechnology, quantum mechanics, biology, and environmental science.
 - Dual investigator funding might be particularly useful mechanism in this context.

Preliminary Recommendations, con't (from draft report)

- 4. Maintain support for theory and interaction with mathematics, broadly interpreted
 - Dynamical systems, graph theory, combinatorics, complexity theory, queuing theory, etc
 - Strength of field relies on its close contact with rigorous mathematics; increasingly important in the future.
- 5. Invest in new approaches to education and outreach for the dissemination of basic ideas to nontraditional audiences.
 - For Control to realize its potential, we must do a better job of educating those outside Control on the principles of feedback and its use as a tool for altering the dynamics of systems and managing uncertainty.

Panel Timeline

Next steps

- Jul '01: updated draft available
 - Post to web, distribute to m-list
- Aug '01: finish missing sections, collect feedback
 - Biology and medicine
 - Materials and processing
 - Environment, finance, etc
 - Education
- Sep '01: issue final draft
- Oct '01: release report, send to SIAM
- Nov '01: distribute report to Congress, funding agencies, program managers

http://www.cds.caltech.edu/~murray/cdspanel

Lecture #1 Overview of Feedback Control

Goals

- Provide engineering context for "active control technology", through examples
- Survey some of the standard approaches and tools for feedback control
- Describe some of the future directions for the field

Lecture Outline

- 1. What is Control?
- 2. Basic Concepts in Feedback Control
- 3. Application Examples
 - Automotive Control
 - Flight Control
- 4. Future Directions

Reference: Report of the Panel On Future Directions in Control, Dynamics and Systems, 2001

http://www.cds.caltech.edu/ ~murray/cdspanel

Controls Primer Fall 2001

Objectives

- Provide familiarity of the basic concepts in feedback control
- Survey tools in Lyapunov and optimization-based control

Proposed Schedule

4 Sep 11 Sep 18 Sep 25 Sep	Overview of feedback control Introduction to state space control and feedback Lyapunov stability and control Lyapunov, continued	Richard Raff Lars Lars	Tue 10 am PDT
2 Oct 9 Oct 16 Oct 12 Oct	Optimal control theory Optimal, continued Model predictive control MPC, continued	Reza Reza Bill Bill	TBD

http://www.cds.caltech.edu/~murray/courses/primer-fa01