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I. Overview: Model Predictive Control
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• Solve optimization from x(t0), implement      until new state update x(t0+δ) is received

• Repetitive trajectory optimization: gives state feedback control law

• Good performance, where on-line computation is feasible ……Stability 
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I. Overview: Stability of MPC

0
0 ( )

0

( ) min ( ( ), ( )) ( ( ))
T

T u
J x q x u d V x Tτ τ τ

⋅
= +∫Given:

with terminal constraint set      and stabilizing controller ()fκ ⋅fX

Stability Approach:  Employ           as a Lyapunov function
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Results to Date:  

• terminal constraint set only (dual-
mode control)

• CLF as terminal cost (absence of 
constraints)

Open Issues:  

• robustness, disturbance rejection

• receding horizon trajectory tracking

• proofs for SE(2,3) with constraints
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II. A Multi-vehicle Formation (MVF) Problem
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II. Extension of MPC to MVF

Theorem based on definition of stability of invariant sets and 
Lasalle’s theorem provide extension of MPC stability result to 
MVF’s where we want stability to a set M.

Idea: Lyapunov type function V that is (locally) positive 
everywhere except on an invariant set AND the desired 
formation is this (smallest) invariant set where d/dt V = 0.

(collision problem not addressed)

Here come the movies…
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III. Multi-Vehicle Optimization-Based Control

Assume we have real-time, finite horizon optimal control as a primitive

Cooperation depends on how we model “rest of the world”

Reconfigurable based on condition, mission, environment
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Local MPC
• Assume neighbors follow 

straight lines

Global MPC

III. Simulation Example: Formation Flight

Task:
Maintain equal 
spacing of vehicles 
around circle
Follow desired 
trajectory for 
center of mass

Parameters:
Horizon: 2 sec
Update: 0.5 sec
High damping
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III. Wilson Vehicle on SE(2)
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Equations of motion, input 
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( )
( )
( )

cos

sin
S P

S P

S P

mx x F F

my y F F

J F F r

η θ

η θ

θ ψθ

= − + +

= − + +

= − + −

0 , 6S PF F N≤ ≤

3 3
2( ) | ( , ) 1,  ( , ) ( , ) ,  

                   ( , ) ( , ),  0,  , 1,2, 3,  .

{
}

i i ji i j

i j ii

e

j

r f

i

x x X x y x y x y

x y x y x

x

y j

M

i j i

= = − ∈ = − =

≠ = = = ≠



W. B. Dunbar, Caltech 9

III. One Wilson Vehicle Formation Simulations

• The Blue moves 
according to a  
nontrivial formation 
reference

• The Green is 
tracking a circle with 
center that moves 
according to Blue 
reference by MPC: 
(T,δ) = (8.0,1.0)

• Initial coefficients 
are set to 1.0 for first 
optimization (warm-
start afterwards)
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III. One Wilson Vehicle Formation, cont’d

• The Blue moves 
according to the 
same formation 
reference

• The Green initial 
coefficients are 
evenly spaced over 
(-0.5,1.0). 

•Punch line: 
With only integrated 
costs, MPC stability 
not insured!
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III. Three Wilson Formation Simulations

• Formation M, 
Black moves as
form reference on 
straight line with 
constant velocity

• Global MPC with 
(T,δ) = (5.0,1.0)

• Only integrated 
cost there is no 
guarantee of 
stability
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III. Three Wilson Formation Simulations

• Same formation 
M - black moves as
reference on 
straight line with 
constant velocity

• Global MPC with 
(T,δ) = (5.0,1.0)

• Add terminal 
cost (scheduled 
quadratic TC for 
corresponding 
LQR linearization) Stability Recovered!
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IV. Real-time MPC of ducted fan

MPC problem
• LQR of planar model around hover with quadratic (Riccati) terminal cost
• Ramp input of 16 meters in horizontal, Step input of 1m in altitude

Timing set-up – update asap
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IV. Trajectory Generation for ducted fan

Adaptation to new constraints – terrain avoidance
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Multi-Vehicle Wireless Testbed for Integrated Control, 
Communications and Computation

Testbed features
Distributed computation on individual vehicles + command 
and control console
Point to point, ad-hoc networking (bluetooth) + local area 
networking (802.11)
Cooperative control in dynamic, uncertain, and adversarial 
environments
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IV. Experimental Extensions

Optimization-Based Control
• Real-time model predictive 

control for online control 
customization: theory and 
software

• Online implementation on 
Caltech Ducted Fan

Software Environments
• Logical programming 

environments for embedded 
control systems design

Multi-Vehicle Testbed
• Implementation on multi-

vehicle, wireless testbed using 
Open Control Platform

• Bluetooth-based point to point 
communications with ad-hoc 
networking

Cooperative Control
• Linked cost functions
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