

Model Predictive Control :

Extension to coordinated multi-vehicle formations & Real-time implementation

William Dunbar

Control and Dynamical Systems Candidacy Defense Exam- December 18, 2001

Outline

- I. Overview of MPC
- II. Multi-vehicle Formations and Extension of MPC
- **III. Multi-vehicle MPC Simulations**
- IV. Experimental Results (Caltech dfan) Trajectory Generation & MPC
- V. Conclusions and Future Directions

I. Overview: Model Predictive Control

- Solve optimization from $x(t_0)$, implement u^* until new state update $x(t_0+\delta)$ is received
- <u>Repetitive trajectory optimization:</u> gives state feedback control law
- Good performance, where on-line computation is *feasible* Stability \rightarrow

I. Overview: Stability of MPC

<u>Given</u>: $J_T^0(x_0) = \min_{u(\cdot)} \int_0^T q(x(\tau), u(\tau)) d\tau + V(x(T))$ with terminal constraint set X_f and stabilizing controller $\kappa_f(\cdot)$

<u>Stability Approach</u>: Employ $J_T^0(\cdot)$ as a *Lyapunov function* with requirements on $V(\cdot)$, X_f , $\kappa_f(\cdot)$ such that

$$\left[\dot{J}_{\scriptscriptstyle T}^{\scriptscriptstyle 0} + L \right] (x_{\scriptscriptstyle 0}^{\scriptscriptstyle }, \kappa_{\scriptscriptstyle T}^{\scriptscriptstyle }(x_{\scriptscriptstyle 0}^{\scriptscriptstyle })) \leq 0, \qquad \forall x_{\scriptscriptstyle 0}^{\scriptscriptstyle } \in X_{\scriptscriptstyle T}^{\scriptscriptstyle }$$

<u>Results to Date</u>:

- terminal constraint set only (dualmode control)
- CLF as terminal cost (absence of constraints)

Open Issues:

- robustness, disturbance rejection
- receding horizon trajectory tracking
- proofs for SE(2,3) with constraints

II. A Multi-vehicle Formation (MVF) Problem

<u>Given</u>: an invariant set M and a formation reference x_{ref} , a k-vehicle formation is defined as

$$F(M,k,x_{ref}) = \left\{ \vec{x} \in X^k \mid (\vec{x} - \vec{x}_{ref}) \in M \right\}$$

An example invariant set *M* is

$$\begin{split} M &= \Big\{ \vec{x} \in X^k \mid \left\| z_i \right\| = \rho_i, \ \left\| z_i - z_p \right\| = d_{ip}, \\ z_i \neq z_j, \ \dot{z}_i = 0, \ \forall i, j = 1, \dots, k, \\ i \neq j \text{ and some } p \in \{1, \dots, k\} \Big\}. \end{split}$$

W. B. Dunbar, Caltech

II. Extension of MPC to MVF

Theorem based on definition of stability of invariant sets and Lasalle's theorem provide extension of MPC stability result to MVF's where we want stability to a set *M*.

Idea: Lyapunov type function V that is (locally) positive everywhere except on an invariant set AND the desired formation is this (smallest) invariant set where d/dt V = 0. (collision problem not addressed)

Here come the movies...

III. Multi-Vehicle Optimization-Based Control

Assume we have real-time, finite horizon optimal control as a primitive

$$u_{[t,t+\Delta T]} = \arg\min\int_{t}^{t+T} L(x,u)dt + V(x(t+T))$$
$$x_{0} = x(t) \quad x_{f} = x_{d}(t+T)$$
$$\dot{x} = f(x,u) \quad g(x,u) \le 0$$

Choose f, g, L to represent the *coupling* between the various subsystems

Cooperation depends on how we model "rest of the world"

Reconfigurable based on condition, mission, environment

III. Simulation Example: Formation Flight Global MPC Local MPC • Assume neighbors follow straight lines

- Maintain equal spacing of vehicles around circle
- Follow desired trajectory for center of mass

Parameters:

- Horizon: 2 sec
- Update: 0.5 sec
- High damping

III. Wilson Vehicle on SE(2)

Equations of motion, input constraints and formation set:

$$egin{aligned} & m\ddot{x}=-\eta\dot{x}+ig(F_{_S}+F_{_P}ig)\cos heta\ & m\ddot{y}=-\eta\dot{y}+ig(F_{_S}+F_{_P}ig)\sin heta\ & J\ddot{ heta}=-\psi\dot{ heta}+ig(F_{_S}-F_{_P}ig)r \end{aligned}$$

$$0 \leq F_{_S}, F_{_P} \leq 6N$$

$$M = \left\{ \hat{x} = (\vec{x} - \vec{x}_{ref}) \in X^3 \mid \left\| (\hat{x}_i, \hat{y}_i) \right\| = 1, \ \left\| (\hat{x}_i, \hat{y}_i) - (\hat{x}_j, \hat{y}_j) \right\| = \sqrt[3]{2}, \\ (\hat{x}_i, \hat{y}_i) \neq (\hat{x}_j, \hat{y}_j), \ \hat{x}_i = \hat{y}_i = 0, \ i, j = 1, 2, 3, \ i \neq j \right\}.$$

III. One Wilson Vehicle Formation Simulations

• The Blue moves according to a *nontrivial* formation reference

• The Green is tracking a circle with center that moves according to Blue reference by MPC: $(T,\delta) = (8.0,1.0)$

• Initial coefficients are set to 1.0 for first optimization (warmstart afterwards)

III. One Wilson Vehicle Formation, cont'd

• The Blue moves according to the same formation reference

• The Green initial coefficients are evenly spaced over (-0.5,1.0).

•<u>Punch line:</u> With only integrated costs, MPC stability not insured!

• Formation *M*, Black moves as form reference on straight line with constant velocity

• Global MPC with $(T,\delta) = (5.0,1.0)$

• Only integrated cost → there is no guarantee of stability

• Same formation *M* - black moves as reference on straight line with constant velocity

• Global MPC with $(T,\delta) = (5.0,1.0)$

• Add terminal cost (scheduled quadratic TC for corresponding LQR linearization)

• Formation *M*, Black moves as form reference on straight line with constant velocity

• Global MPC with $(T,\delta) = (5.0,1.0)$

• Only integrated cost → there is no guarantee of stability

• Same formation *M* - black moves as reference on straight line with constant velocity

• Global MPC with $(T,\delta) = (5.0,1.0)$

• Add terminal cost (scheduled quadratic TC for corresponding LQR linearization)

IV. Real-time MPC of ducted fan

MPC problem

- LQR of planar model around hover with quadratic (Riccati) terminal cost
- Ramp input of 16 meters in horizontal, Step input of 1m in altitude

IV. Trajectory Generation for ducted fan

Adaptation to new constraints – terrain avoidance

Multi-Vehicle Wireless Testbed for Integrated Control, Communications and Computation

Testbed features

- Distributed computation on individual vehicles + command and control console
- Point to point, ad-hoc networking (bluetooth) + local area networking (802.11)
- Cooperative control in dynamic, uncertain, and adversarial environments

IV. Experimental Extensions

Optimization-Based Control

- Real-time model predictive control for online control customization: theory and software
- Online implementation on Caltech Ducted Fan

Cooperative Control • Linked cost functions

Software Environments

• Logical programming environments for embedded control systems design

Multi-Vehicle Testbed

- Implementation on multivehicle, wireless testbed using Open Control Platform
- Bluetooth-based point to point communications with ad-hoc networking