
1 Optimization on linear spaces

1.1 Unconstrained optimization

Definition 1. A normed linear space is a vector space X with a real-valued
norm ‖x‖ which satisfies:

1. ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖
3. ‖αx‖ = |α| · ‖x‖

Example 1. The set C[a, b] consisting of all real-valued, continuous functions
on the interval [a, b] ∈ R with ‖x‖ = max |x(t)|.
Example 2. The set D[a, b] consisting of all real-valued, continuously dif-
ferentiable functions on the real interval with ‖x‖ = max |x(t)| + max |ẋ(t)|.
Example 3. The set lp consisting of real-valued sequences {x1, x2, . . . } with
norm

‖x‖p =

( ∞∑
i=1

|xi|p
) 1

p

Example 4. The set Lp[a, b] consisting of real-valued functions on the inter-
val [a, b] ∈ R with norm

‖x‖p =

(∫ b

a

|x(t)|p dt

) 1
p

and where we identify functions that disagree only on a set of measure zero.

Example 5. Let X and Y be linear spaces with norms ‖ · ‖X and ‖ · ‖Y ,
respectively. Let B(X,Y ) be the set of bounded linear operators taking X
to Y with norm

‖A‖ = sup
‖x‖X

‖Ax‖Y .

Definition 2. Let X and Y be normed linear spaces and T : D⊂◦X → Y .
The mapping T is Frechet differentiable at x ∈ D if for every h ∈ X there
exists δT (x; h) ∈ Y which is linear and continuous in h and satisfies

lim
‖h‖→0

‖T (x + h) − T (x) − δT (x; h)‖
‖h‖ = 0
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Proposition 1. If δT exists, it is unique.

It will be convenient to introduce some additional notation for Frechet
derivatives. For T : X → Y it follows from the definition that δT (x; h) =
Axh for some bounded, linear operator Ax : X → Y . Let B(X,Y ) be the
normed linear space of bounded linear operators from X to Y and define
T ′ : X → B(X,Y ) as

T ′(x)h = δT (x; h).

We call the mapping T ′ the Frechet derivative of the mapping T .

Definition 3. Let f : Ω → R be a real-valued function on Ω ⊂ X. A point
x0 ∈ Ω is a local minimum of f on Ω if there exists a neighborhood N ⊂ X
containing x0 such that f(x0) ≤ f(x) for all x ∈ Ω ∩ N . The point x0 is
called a strict local minimum if f(x0) < f(x) for all x ∈ Ω ∩ N , x 	= x0.

A similar definition holds for maxima. A point is called an extremum if
it is either a maximum or a minimum.

Theorem 2. Let f : X → R be Frechet differentiable on x. Then f has an
extremum at x0 inX only if δf(x0; h) = 0 for all h ∈ X

Proof. If f has an extremum at x0 then f(x0 + αh) : R → R achieves an
extrema at α = 0. By ordinary calculus

d

dα
f(x0 + αh)

∣∣∣∣
α=0

= δf(x0; h) = 0

A point x0 where δf(x0; h) = 0 for all h ∈ X (or, equivalently, f ′(x0) = 0)
is called a stationary point of f . Hence a necessary condition for f to achieve
a local extremum at x0 is that x0 be a stationary point of f .

Remark 1. In the finite dimensional case, we can rewire the Frechet derivative
using the gradient and so if x0 is an extrema then ∇f = 0. Note that the
gradient of a function is only defined relative to a metric and so we are
implicitly using additional structure in asking that the gradient be zero at
an extrema. This can be avoided by requiring df = 0, where df is a one-form
and hence doesn’t require the notion of a metric.
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Example 6 (Euler-Lagrange equations). Let X = D[t1, t2] and consider
the problem of finding a function x(·) defined on [t1, t2] that minimizes the
cost index

J(x) =

∫ t2

t1

L(x, ẋ, t)dt.

We further assume that the endpoints of the function x(·) fixed.
Let h represent a vector in D[t1, t2] that vanishes at the end points. Define

δJ(x; h) =
d

dα

∫ t2

t1

L(x + αh, ẋ + αḣ, t) dt

∣∣∣∣
α=0

=

∫ t2

t1

∂L

∂x
(x, ẋ, t)h(t) dt +

∫ t2

t1

∂L

∂ẋ
(x, ẋ, t)ḣ(t) dt

(1)

Claim 3. δJ is the Frechet derivative of J : X → R.

We can now compute the necessary condition given by δJ(x; h) = 0.
Integrating equation (1) by parts, we obtain:

0 =

∫ t2

t1

∂L

∂x
(x, ẋ, t)h(t) dt +

∂L

∂ẋ
(x, ẋ, t)h(t)

∣∣∣∣t2
t1

−
∫ t2

t1

∂L

∂ẋ
(x, ẋ, t)h(t) dt

=

∫ t2

t1

[
∂L

∂x
(x, ẋ, t) − ∂L

∂ẋ
(x, ẋ, t)

]
h(t) dt.

If this equation is to hold for all admissible h ∈ X then it most follow that

∂L

∂x
(x, ẋ, t) − ∂L

∂ẋ
(x, ẋ, t) = 0.

These equations are known as the Euler-Lagrange equations.

Theorem 4. Let f : X → R be twice Frechet differentiable on x and let
x0 ∈ X be a local extrema. Then x0 is a local maximum if

f ′′(x0)(h, h) < 0 for all h ∈ X.

Remark 2. This gives a sufficient condition for an extrema to be a local
maxima. For a function f(x) defined on R

n, the matrix of derivatives f ′′ is
called the Hessian.
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1.2 Optimization with equality constraints

We now consider the problem of minimizing a functional f : X → R subject
to a finite number of equality constraints, gi(x) = 0, i = 1, . . . ,m where each
gi : X → R is a Frechet differentiable function.

Definition 4. Let gi : X → R, i = 1, . . . m be a Frechet differentiable
function. A point x0 ∈ X satisfying gi(x0) = 0, i = 1, . . . ,m is a regular
point if g′

1(x0), . . . , g
′
m(x0) are linearly independent.

Theorem 5. If x0 is an extremum of f : X → R subject to gi(x0) = 0,
i = 1, . . . , m and if x0 is a regular point of the gi, then

δf(x0; h) = 0 for all h such that δgi(x0; h) = 0, i = 1, . . . ,m.

Proof. [Finite dimensional case] Choose coordinates x = (ξ, η) ∈ R
n−m ×R

m

such that [∂gi

∂ηi
] is full rank. By the implicit function theorem, gi(ξ, η), i =

1, . . . ,m gives ηi = φi(ξ) locally. Infinitesimally, we have

[
∂g
∂ξ

∂g
∂η

] [
I
∂φ
∂ξ

]
= 0 (2)

(by differentiating g(ξ, η) = 0). Now, if x0 = (ξ0, η0) is an extremum on
g(ξ, η) = 0 then f̃(ξ) = f(ξ, φ(ξ)) has an extremum at x0. Thus

0 =
∂f̃

∂ξ
=

∂f

∂ξ
+

∂f

∂η

∂φ

∂ξ

=
[

∂f
∂ξ

∂f
∂η

] [
I
∂φ
∂ξ

]
.

(3)

Equations (2) and (3) imply that

δf(x0; h) = 0 for all h such that δgi(x0; h) = 0, i = 1, . . . ,m.

For the infinite dimensional proof, one needs a version of the implicit func-
tion theorem on normed linear spaces plus an approximation result whichs
shows that locally ker g′ approximates the constraints (see Luenberger). Note
that Luenberger only proves the implicit function theorem for Banach spaces.
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Example 7 (Local version in finite dimensions).
Let (x, y) represent a point in the linear space and write the function to be
minimized as real-valued function f(x, y) and the constraints as a vector-
valued equation g(x, y) = 0. We assume that x and y have been chosen such
that ∂g

∂x
is full rank. Then a necessary condition for x0 to be an extremum is

that
∂f

∂y
−

(
∂g

∂y

)T (
∂g

∂x

)−T
∂f

∂x
= 0.

Remark 3 (Euler-Lagrange equations, revisited). In the derivation of the
Euler-Lagrange equations in Example 6, we restricted the end points of the
function to be fixed. This gives a constrained optimization problem by im-
posing the constraints:

g1(x) = x(t1) − x0 = 0 g2(x) = x(t2) − xf = 0

Using Theorem 5, we see that in fact choosing functions h which vanish at
the endpoints is precisely choosing the set of h such that δg(x; h) = 0.

Theorem 6. If x0 is an extremum of f : X → R subject to gi(x) = 0,
i = 1, . . . , m then there exist scalars λi ∈ R such that

h(x) = f(x) +
n∑

i=1

λigi(x)

has a stationary point at x0.

Proof. Homework exercise

Example 8. Let x(t) ∈ R be a curve on the interval [−1, 1] which is zero
at its endpoints. We wish to maximize the integral of x, subject to the
constraint that the “length” of the curve in the t-x plan is l [PICTURE]:

max

∫ 1

−1

x(t) dt subject to

∫ 1

−1

√
ẋ + 1 dt = l.

Using Theorem 6, we seek to maximize, for some fixed λ to be determined

J(x) =

∫ 1

−1

(
x + λ

√
ẋ2 + 1

)
dt.
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Applying the Euler-Lagrange equations,

d

dt

∂J

∂ẋ
− ∂J

∂x
= λ

d

dt

ẋ√
ẋ2 + 1

− 1 = 0,

and hence
ẋ√

ẋ2 + 1
=

t

λ
+ c.

This gives us a differential equation which the optimal solution must satisfy,
in addition to the boundary and length constraints. It can be shown that in
this case the answer is given by

(x − x1)
2 + (t − t1)

2 = r2

where the constants x1, t1, and r are chosen to satisfy the end conditions and
length constraint.

Corollary 6.1. If x0 is an extremum of f subject to constraints gi then

f ′ + λig
′
i = 0.

This corollary roughly corresponds to the geometric picture that the
derivative of the cost function be aligned with the “normal” to the constraint
surface. [PICTURE]

Theorem 7. If x0 is an extremum of f subject to g(x) = 0 where g : X → Y
then there exists a λ0 ∈ Y ∗ such that (x0, λ0) is a stationary point for H :
X × Y ∗ → R given by

H(x, λ) = f(x) + 〈λ, g(x)〉.
Note that in this version we do not require that Y be finite dimensional.

This relies on the infinite dimensional version of Theorem 6 (see Luenberger,
Section 9.3).

Proof. A stationary point of H satisfies

δH =

[
δxH
δλH

]
=

[
δf(x) + λδg(x)

g(x)

]

Remark 4. Note that in the case where X and Y are finite dimensional, the
conditions for a stationary point give n + m equations in n + m unknowns.

Example 9. Rework example from Luenberger.
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1.3 Minimum norm problems on Hilbert spaces

Definition 5. A pre-Hilbert space is a linear vector space X together with
an inner product mapping X ×XtoR and satisfying the following properties:

1. 〈x, y〉 = 〈y, x〉
2. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
3. 〈λx, y〉 = λ〈x, y〉
4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

Proposition 8. The inner product on a pre-Hilbert space satisfies the fol-
lowing properties:

1. ‖x‖ =
√〈x, x〉 is a norm

2. |〈x, y〉| ≤ ‖x‖ ‖y‖, with equality if and only if x = λy or y = 0.

3. 〈x, y〉 = 0 for all y ∈ X =⇒ x = 0.

4. ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 (parallelogram law).

5. 〈x, y〉 is continuous in x and y

Example 10. The set L2[a, b] consisting of real-valued functions on the in-
terval [a, b] ∈ R with inner product

〈x, y〉 =

(∫ b

a

x(t)y(t) dt

) 1
2

and where we identify functions that disagree only on a set of measure zero.

Example 11. The space of real-valued polynomial functions on [a, b] with

inner product 〈x, y〉 =
∫ b

a
x(s)y(s) ds.

Definition 6. In a pre-Hilbert space X, two vectors x, y ∈ X are orthogonal
(written x ⊥ y) if 〈x, y〉 = 0. A vector x is orthogonal to a set S (written
x ⊥ S) if x ⊥ s for each s ∈ S.

Proposition 9. If x ⊥ y then ‖x + y‖2 = ‖x‖2 + ‖y‖2.
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Theorem 10. Let X be a pre-Hilbert space, M a subspace of X, and x ∈ X a
given vector. If there exists a vector m0 ∈ M such that ‖x−m0‖ ≤ ‖x−m‖ for
all m ∈ M then m0 is unique. Furthermore, m0 ∈ M is a unique minimizing
vector in M if and only if (x − m0) ⊥ M .

Proof.

Necessity. By contradiction. Let m ∈ M be a vector which is not orthogonal
and assume WLOG that ‖m‖ = 1 and 〈x−m0,m〉 = δ. Let m1 = m0 + δm.
Then

‖x − m1‖2 = ‖(x − m0) − δm‖2

= ‖x − m0‖2 − 2〈x − m0, δm〉 + δ2

= ‖x − m0‖2 − δ2 < ‖x − m0‖2,

which is a contradition.

Sufficiency. Let m0 be such that (x − m0) ⊥ M and let m ∈ M . Then

‖x − m‖2 = ‖x − m0 + m0 − m‖2 = ‖x − m0‖2 + ‖m0 − m‖2

and m0 is minimizing.

Uniqueness. Suppose m0 and m′
0 are both minimizing. Then (m0−m′

0) ⊥ M
=⇒ m0 − m′

0 = 0.

Definition 7. A pre-Hilbert space H is complete if every Cauchy sequence
in H converges to a point in H. A Hilbert space is a pre-Hilbert space which
is complete.

Theorem 11 (Projection theorem). Let M be a closed subspace of a
Hilbert space H. Given any x ∈ H, there eixsts a unique m0 ∈ M such that
‖x − m0‖ ≤ ‖x − m‖ for all m ∈ M . Furthermore, m0 ∈ M is a unique
minimizing vector in M if and only if (x − m0) ⊥ M .

Proof. (Sketch) The only thing that has to be proven is the existence of the
minimizer. Roughly, since M is a closed subsapce of a Hilbert space, M is
a Hilbert space. Now construct a Cauchy sequence mi such that ‖mi − x‖
converges to δ = inf ‖x − m‖. Therefore, mi approaches m0 ∈ M and by
continuity of the norm, ‖x − m‖ = δ. For more details, see Luenbuerger.

8



Example 12. Consider the (trivial) problem of finding a point on a line
through the origin which is closed to a given point in R

2 [PICTURE]. For
this problem, X = R

2,

M = {(m, am) : m ∈ R} x = (x1, x2) ∈ R

and we wish to minimize ‖x − m‖. Applying the projection theorem[
x1 − m1

x2 − m2

]
·
[

m
am

]
= (x1 − m1)m + a(x2 − m2)m.

Using the fact taht m2 = am1 on M , we can solve to obtain

m0 =
1

1 + a2

[
x1 + ax2

a(x1 + ax2)

]

Example 13. To see why we need the structure of a Hilbert space for this
theorem, let X = R

2, ‖x‖ = max |xi|, and M = {(λ, 0) : λ ∈ R}. If we seek
to find the mininum on M from the point (2, 1) we see that this point is not
unique.

Theorem 12. Let X be a normed linear space, x ∈ X be a given point, and
let d ∈ R denote the distance from x to a subspace M . Then

d = inf
m∈M

‖x − m‖ = max
‖x∗‖≤1

x∗∈M⊥

〈x, x∗〉

and if the infemum is achieved for some m0 ∈ M then 〈x∗, x−m0〉 = 0 (i.e.,
X∗ and x − m0 are aligned).
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2 Optimal Control of Discrete Time Systems

2.1 Discrete-time, finite-horizon problems

Consider a discete time, nonlinear control system of the form

xk+1 = f(xk, uk, k)

xk ∈ R
n

uk ∈ R
m

k = 0, . . . , N − 1

with initial condition x0 = xd
0 and (desired) final condition xN = xd

N . We
assume that f is smooth in each of its arguments. If f is independent of k,
we say that the system is time invariant.

We consider a general cost function of the form

J(x, u) =
N−1∑
k=0

L(xk, uk, k)

where L is a smooth function, possibly depending on time k. The optimal
control problem is to find a control u∗

k and associated state x∗
k that steer the

system from xd
0 to xd

N and minimize J(x, u).

Example 14 (Minimum fuel problems). To minimize the size of the
input, choose

Jmf (x, u) =
N−1∑
k=0

‖uk‖.

Weighted norms and time-varying weights can also be used.

Example 15 (Minimum energy problems).

Jme(x, u) =
N−1∑
k=0

xT
k Qkxk + uT

k Rkuk

where Qk > 0 and Rk > 0. Typically Qk and Rk are constant, leading to a
time-invariant cost function.

An important variation of this problem, to be studied in Section 2.3, is
to remove the endpoint constraint and instead add the desired endpoint to
the cost function. This leads to a cost function of the form

J̃me(x, u) = xT
NSxN +

N−1∑
k=0

xT
k Qkxk + uT

k Rkuk
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and xN free.

Example 16 (Minimum time problems). For many problems, we wish
to get to the endpoint as quickly as possible, and hence we choose

Jmt(x, u) =
N−1∑
k=0

1 = N.

This problem is ill-posed unless we also constrain the inputs to be bounded,
typically by requiring |uk,i| < Mi for all i, k. We shall defer solution of this
problem until Section ??.

The discrete-time, finite horizon problem is a finite-dimensional optimiza-
tion problem on the space

X = R
n×N︸ ︷︷ ︸

states

×R
m×N︸ ︷︷ ︸

inputs

with constraints
g0(x, u) = x0 − xd

0 = 0

gk+1(x, u) = xk+1 − f(xk, uk) = 0

gN(x, u) = xN − xd
N = 0.

A necessary condition for (x∗, u∗) ∈ X to be a solution is that

(a) δJ(x; η) = 0 for all η such that δg(x; η) = 0; or

(b) There exist a lambda∗ ∈ R
N+1 such that J ′(x, u, λ) = J(x, u)+

∑
λT

k+1gk

has a stationary point at (x∗, u∗, λ∗).

Taking the differential of J ′, we have

dJ ′ =
N−1∑
k=0

(
∂L

∂xk

dxk +
∂L

∂uk

duk) +
N−1∑
k=0

(λT
k+1

∂gk

∂xk

dxk + λT
k+1

∂gk

∂uk

duk) + gk,idλk+1,i,

which we can rewrite as
N−1∑
k=0

(
∂L

∂xk

+ λT
k+1

∂gk

∂xk

)
dxk = 0

λT
NdxN = 0

N−1∑
k=0

(
∂L

∂uk

+ λT
k+1

∂gk

∂uk

)
duk = 0

xk+1 − f(xk, uk, k) = 0
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The boundary conditions require that dx0 and dxN are both identically zero
(this is encoded in the first two equations). We are left with a two point
boundary value problem (PDE) which we must solve.

To convert the solution to a more useful form, we define the Hamiltonian
function as

H(xk, uk, λk, k) := L(xk, uk, k) + λT
k+1f(xk, uk, k)

and the cost function becomes

J ′(x, u, λ) = H(x0, u0, 0) +
N−1∑
k=1

(H(xk, uk) − λT
k xk)

(after a shift of indices). The condition that dJ ′ = 0 can now be written as

xk+1 =
∂H

∂λk+1

= f(xk, uk, k) (4)

λk =
∂H

∂xk

=
∂L

∂xk

+ λT
k+1

∂f

∂xk

(5)

0 =
∂H

∂uk

=
∂L

∂uk

+ λT
k+1

∂f

∂uk

(6)

Equations (4) and (5) describe the evolution of the state x and costate λ.
Equation (5) is also called the adjoint system. Equation (6) is called the
stationarity condition and can be solved (under some regularity assumptions)
for uk.

2.2 Linear Quadratic Regulator: fixed final state

Consider now the special case of a linear discrete time system

xk+1 = Akxk + Bkuk

(note that we are not assuming that the system is time invariant). We
consider a cost function of the form

J(x, u) =
N−1∑
k=0

xT
k Qkxk + uT

k Rkuk.
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Applying the general conditions, we obtain

xk+1 = Akxk + Bkuk

λk = Qkxk + AT
k λk+1

0 = Rkuk + BT
k λk+1.

Solving the last equation for uk,

uk = R−1
k BT

k λk+1

we get a solution for the optimal input sequence and optimal state sequence
in terms of the costate sequence. Combining equations, the system has the
form [

xk+1

λk

]
=

[
A −BR−1BT

Q AT

] [
xk

λk+1

]
Note that this equation evolves backwards and forwards in time and that it
is still a two point boundary value problem: x0 and xN are given.

In the case when A is nonsingular (e.g., A is hyperbolic), we can write

xk = A−1xk+1 + A−1BR−1BT λk+1

and the system becomes[
xk

λk

]
=

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

] [
xk+1

λk+1

]

which evolves purely backwards in time. Again, x0 and xN are given, turning
this into a two point boundary value problem.

2.3 Linear Quadratic Regulator: free final state
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