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Introduction

For many tasks, a mobile robot must know where it is relative to
its environment.

?



Introduction

Dead reckoning is insufficient since uncertainty grows very quickly.



Observations

Sensor measurements can help determine both the robots position
and information about the environment that it is moving through.

x 
v 

x 
fi 

 Features and Landmarks 

Global Reference Frame 

Mobile Vehicle 

Vehicle-Feature Relative 

Observation Absolute

GPS

Compass

Vehicle Relative

Laser Rangefinder

Camera

Odometry



Observations

Sensors aren’t perfect

Noisy measurements

Spurious measurements

Solution:

Probabilistic Estimation

p( xv︸︷︷︸
Vehicle Pose

, M︸︷︷︸
Map

| Zk︸︷︷︸
Observations

)

Estimate the robot pose and the map given the set of noisy
observations.



Map Types

Many different representations can be used to estimate the
structure of the environment that a robot is moving through.

Map Types

Topological

Metric

Grid-Based
Pose-Based
Feature-Based
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Topological Maps

Map describes distinct places (nodes) and the connections
between them (edges).

Useful for high level path planning.

Useless for obstacle avoidance.



Map Types

Grid-Based

World is discretized into a grid of cells.

Each cell maintains an estimate of its contents.

Discretization must be sufficiently fine.

Memory intensive.



Map Types

Pose-Based

Estimator maintains the estimate of all past robot poses.

Sensor scan is anchored to each pose.

Efficient if p < n.



Map Types

Feature-Based

Estimator maintains the estimate of map features.

Features can be parameterized as points, lines, planes, etc.

Efficient if n < p.



Simple Example

To explain the concepts of localization and mapping we’ll use a
simple example.
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Simple Example

The robot moves in 2D.

x

y ϑ 

Robot Pose

xv =

 x
y
θ





Simple Example

The world is a set of points.

x

y

Map Representation

A point feature can be described
by its 2d coordinates

xfi =

[
xi
yi

]
The map M is the concatenation
of all of the feature parameters

M =


xf1

xf2

. . .
xfn





Simple Example

Range and bearing to point features from the robot is measured.

Observations

z =

[
r
θ

]



Probabilistic Localization

Determine

The vehicle pose xv

Given

Map of features M

Observations Zk

Observations likelihood model p(Zk |M,xv )



Probabilistic Localization

p(xv |M,Zk) =
p(Zk |M,xv )p(M,xv )

p(M,Zk)

=
p(Zk |M,xv )p(xv |M)p(M)

p(M,Zk)

=
p(Zk |M,xv )p(xv |M)p(M)∫∞

−∞ p(Zk |M,xv )p(xv |M)p(M)dxv

but with a perfect map everything is independent of M

p(xv |M,Zk) =
p(Zk |xv )p(xv )∫∞

−∞ p(Zk |xv )p(xv )dxv

=
p(Zk |xv )p(xv )

C (Zk)



Probabilistic Localization

Extended Kalman Filter

1 Predict State

2 Make Observations

3 Update State



Probabilistic Localization
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Global Frame 

function f is the motion model

F is Jacobian of the motion
model

u is the control inputs

Q is noise on the control inputs

Motion Model Prediction

Predict new robot pose from odometry.

x̂(k|k − 1) = f (x̂(k − 1|k − 1),u)

Noisy motion model increases the uncertainty.

P(k |k − 1) = FxP(k − 1|k − 1)F>x + FuQF
>
u



Probabilistic Localization

Observation Model

Predict range and bearing observations given the predicted robot
pose and the known feature position.

z(k |k − 1) = h(x̂(k |k − 1))︸ ︷︷ ︸
Observation Model

=

[ √
(xi − xv (k))2 + (yi − yv (k))2

atan2
(
yi−yv (k)
xi−xv (k)

)
− θv

]

Hx =

[
xi−xv (k)

r
yi−yv (k)

r 0
yi−yv (k)

r2
− xi−xv (k)

r2
−1

]

R =

[
σ2r 0
0 σ2θ

]
Assumed Sensor Noise



Probabilistic Localization

EKF Update

x̂(k |k)︸ ︷︷ ︸
new state estimate

= x̂(k|k − 1) + Wν(k)︸ ︷︷ ︸
prediction and correction

P(k |k)︸ ︷︷ ︸
new covariance estimate

= P(k |k − 1)− WSW>︸ ︷︷ ︸
update decreases uncertainty

where
innovation︷︸︸︷
ν(k) =

measurement︷︸︸︷
z(k) −

predicted measurement︷ ︸︸ ︷
z(k |k − 1)

W = P(k |k − 1)H>x S
−1︸ ︷︷ ︸

Kalman Gain

S = HxP(k|k − 1)H>x + R︸ ︷︷ ︸
Innovation Covariance



Probabilistic Localization
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Probabilistic Mapping

Determine

Map of features M

Given

The vehicle pose xv

Observations Zk

Observations likelihood model p(Zk |M,xv )



Probabilistic Mapping

p(M|xv ,Z
k) =

p(Zk |M,xv )p(M,xv )

p(xv ,Z
k)

=
p(Zk |M,xv )p(M|xv )p(xv )

p(xv ,Z
k)

=
p(Zk |M,xv )p(M|xv )p(xv )∫∞

−∞ p(Zk |M,xv )p(M|xv )p(xv )dM

but we have perfect localization so everything is independent of xv

p(M|xv ,Z
k) =

p(Zk |M)p(M)∫∞
−∞ p(Zk |M)p(M)dM

=
p(Zk |M)p(M)

C (Zk)



Probabilistic Mapping

Since all map features are stationary the prediction step leaves the
estimate unchanged.

Prediction Model

x̂(k + 1|k)map = x̂(k |k)map



Probabilistic Mapping

A predicted range and bearing observation only depends on the
predicted state for the feature being observed. The robot pose is
known with certainty.

Observation Model

z(k) =

[
r
θ

]

Hx =

[
. . . 0 . . .︸ ︷︷ ︸ Hxfi︸︷︷︸ . . . 0 . . .︸ ︷︷ ︸

other features observed feature other features

]



Probabilistic Mapping

As new features are observed they must be added to the state
using thier initial measurement.

Adding New Features to the State

x̂(k |k)∗ =

[
x̂(k|k)
x̂fnew

]

x̂fnew = g(xv (k |k), z(k |k))

=

[
xv + rcos(θ + θv )
yv + rsin(θ + θv )

]



Probabilistic Mapping

The covariance for the new feature must also be calculated.

Adding New Features to the State

P(k|k)∗ = Y

[
P(k |k) 0

0 R

]
Y>

Y =

[
In×n 0n×2
Gx Gz

]
but Gx = 0 since the state only contains features.

P(k |k)∗ =

[
P(k |k) 0

0 GzRG
>
z

]



Probabilistic Mapping



Probabilistic Mapping



Probabilistic Mapping



Probabilistic Mapping



Probabilistic Mapping



Probabilistic Mapping



Probabilistic Mapping



Probabilistic Mapping

Mapping Video



Probabilistic Mapping

Covariance Matrix

The covariance matrix is block diagonal.

P =


Pf1 0 . . . 0

0 Pf2 0
...

. . .
...

0 0 . . . Pfn


Each feature estimate is independent.



Localization and Mapping

Localization

Localization with a known map is easy.

Small state to estimate (only the robot pose).

Mapping

Mapping from known poses is easy.

Many small states to estimate independently (each map
feature).

Simultaneous Localization and Mapping

Chicken and egg problem:

a map is needed to localize the robot.

a pose estimate is needed to build a map.
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Localization and Mapping

Localization
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EKF SLAM

Simultaneous Localization and Mapping

Noisy observations of uncertain map features are made from
an uncertain vehicle position.

Vehicle pose and map must be estimated jointly.

The entire state becomes correlated making it more expensive
to compute.



EKF SLAM

Since localization and mapping is being performed simultaneously,
the state contains both the vehicle pose estimate and the map
estimate.

SLAM State

x̂ =


x̂v

x̂f1
...
x̂fn


P =

[
Pvv Pvm
P>vm Pmm

]



EKF SLAM

Motion model affects the robot pose estimate but not the
stationary map.

Motion Model Prediction
x̂v (k + 1)
x̂f1(k + 1)

...
x̂fn(k + 1)

 =


x̂v (k)⊕ u(k)

x̂f1(k)
...

x̂fn(k)


P(k |k − 1) = FxP(k − 1|k − 1)F>x + FuQF

>
u

Fx =

[
J1(xv ,u) 0

0 I2n×2n

]
Fu =

[
J2(xv ,u) 0

0 02n×2n

]



EKF SLAM

A predicted observation depends on the both robot pose estimate
and the estimated state for the feature being observed.

Observation Model Jacobian

Hx =

[
Hxv︸︷︷︸ . . . 0 . . . Hxfi︸︷︷︸ . . . 0

vehicle observed feature

]



EKF SLAM

The initial state for a new feature depends on the both robot pose
estimate and the observation.

New Feature Jacobian

Y =

[
In×n 0n×2
Gx Gz

]
Y =

[
In×n 0n×2[

Gxv . . . 0 . . .
]

Gz

]



EKF SLAM
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EKF SLAM



EKF SLAM

EKF SLAM Video



EKF SLAM



EKF SLAM



EKF SLAM

EKF SLAM

Quadratic in number of landmarks O(n2).

Convergence results for the linear case.

Can diverge if nonlinearities are large!

Has been applied successfully in large-scale environments.

Approximations reduce the computational complexity.



Other Approaches to SLAM

Pose-Based

Estimate full robot trajectory (rather than current pose).

Used when sensor scans are very dense.
Takes advantage of sparsity.
Vision-based bundle adjustment.
Laser scan matching.



Other Approaches to SLAM

Rao-Blackwellized Particle Filtering (FastSLAM)

Estimate robot trajectory using a particle filter.

Estimate map features independently (one map for each
particle).



FastSLAM

Why not use an ordinary particle filter?

Localization: state space < xv >

SLAM: state space < xv ,Map >

For feature based maps = < xf1 , xf2 , . . . , xfn >
For grid based maps = < xc11, xc12, . . . , xc1n, xc21, . . . , xcnm >

Problem: The number of particles needed to represent a posterior
grows exponentially with the dimension of the state space!



FastSLAM

Rao-Blackwellized Factorization

p(xv1:k , xf1:n |z1:k , u1:k)

= p(xv1:k |z1:k , u1:k) · p(xf1:n |xv1:k , z1:k)

= p(xv1:k |z1:k , u1:k)︸ ︷︷ ︸
Robot path posterior
(localization problem)

·
n∏

i=1

p(xfi |xv1:k , z1:k)︸ ︷︷ ︸
Conditionally independent

landmark positions

Each particle represents a different hypothesis for the entire
robot trajectory.

Conditioned on the trajectory, the map features are
independent.
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FastSLAM
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FastSLAM



FastSLAM

Motion Prediction



FastSLAM

Observation Update



FastSLAM

Observation Update



FastSLAM

FastSLAM Video



FastSLAM

FastSLAM

Can handle non-linear motion models well.

Can handle complex maps efficiently since features are
estimated independently.

Efficient map storage is necessary since one map is required
per particle.

A large number of particles is required for large environments.



Conclusion

Map types

Topological

Metric

Estimation

Localization from a known map is easy.

Mapping from known robot poses is easy.

Simultaneous localization and mapping (SLAM) requires a
joint estimate taking into account correlations.

Unresolved issues (next lecture)

Which feature does an observation correspond to?

How to recognise when the robot has gone around a loop?

How to handle multi-robot mapping?
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