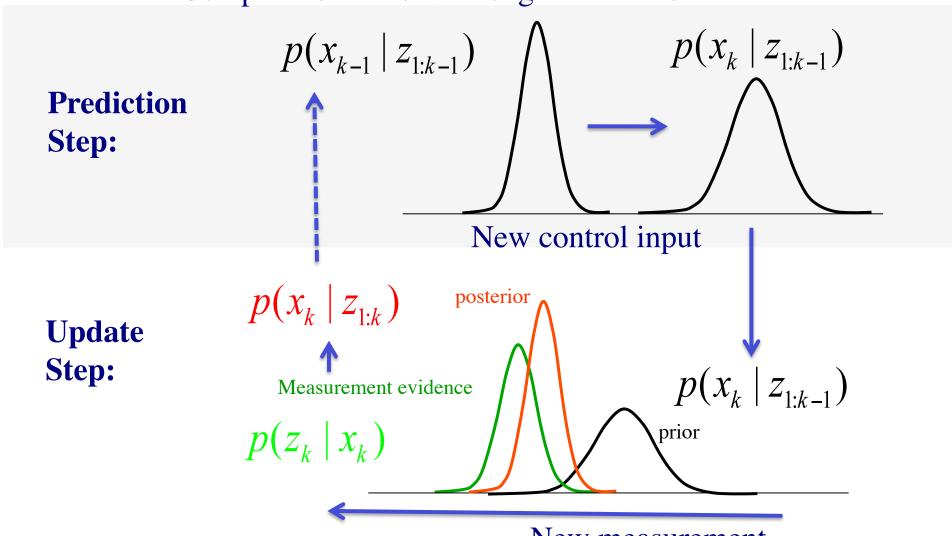


State Estimation & Localization Overview

- (1/6) Introduction
- (2/6) Linear Kalman Filter
- (3/6) TODAY: Extended Kalman Filter & Unscented KF
 - Review of Recursive Updating
 - Finish KF Proof
 - Non-Linear Systems
 - The EKF
 - The UKF
- (4/6) Particle Filters
- (5/6) Simultaneous Localization and Mapping (SLAM)
- (6/6) Issues in SLAM

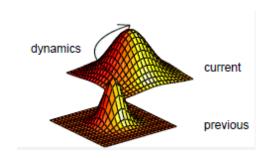
Bayesian Recursion

Computation is done through a recursion:



REVIEW: Optimal Bayesian Estimator:

Initialization: $p(x_0)$



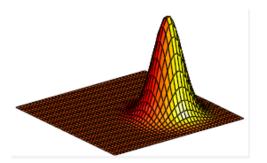
Prediction:

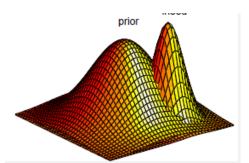
$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

$$k = k + 1$$

Update:

$$p(x_k | z_{1:k}) \propto p(z_k | x_k) p(x_k | z_{1:k-1})$$





ME/CS 132 Ihm - 4

REVIEW KF: State Space Systems

Linear State Space Model (Gauss-Markov System)

Transition Function

$$x_k = A_k x_{k-1} + B_k u_k + q_k$$

$$z_k = C_k x_k + r_k$$

Measurement Model

Process Noise

$$q_k \sim N(0,Q)$$

$$r_k \sim N(0,R)$$

Measurement Noise

In probabilistic terms the model is

$$p(x_k \mid x_{k-1}) = N(A_k x_{k-1} + B_k u_k, Q)$$
$$p(z_k \mid x_k) = N(C_k x_k, R)$$

REVIEW: Kalman Filter: Prediction Step

prediction step:

$$p(x_{k} | z_{1:k-1}) = \int p(x_{k} | x_{k-1}) p(x_{k-1} | z_{1:k-1}) dx_{k-1}$$

$$N(A_{k}x_{k-1} + B_{k}u_{k}, Q_{k}) N(\mu_{k-1}, \Sigma_{k-1})$$

Posterior is just another Gaussian! (Proof: will show later)

• • • •

$$p(x \mid z_{1:k-1}) = N\left(A_k \mu_{k-1} + B_k u_k, A_k \Sigma_{k-1} A_k^T + Q_k\right)$$

REVIEW: Kalman Filter: Update Step

update step:

$$p(x_k \mid z_{1:k}) = \frac{1}{\eta} p(z_k \mid x_k) p(x_k \mid z_{1:k-1})$$

$$N(C_k x_k, R) \qquad N(\overline{\mu}_k, \overline{\Sigma}_k)$$

The product of two Gaussians -> is another Gaussian

$$p(x_k \mid z_{1:k}) = N(\mu_k, \Sigma_k)$$
 (Proof: will show later)

$$\begin{cases} \mu_k = \overline{\mu}_k + K_k (z_k - C_k \overline{\mu}_k) \\ \Sigma_k = (I - K_k C_k) \overline{\Sigma}_k \end{cases} \text{ with } K_k = \overline{\Sigma}_k C_k^T (C_k \overline{\Sigma}_k C_k^T + Q_k)^{-1}$$

REVIEW: Putting it all together: KF

Prior estimate

$$p(x_{k-1} \mid z_{1:k-1}) = N(\mu_{k-1}, \Sigma_{k-1})$$

Prediction step

$$\overline{\mu}_k = A_k \mu_{k-1} + B_k u_k$$

$$\overline{\Sigma}_k = A_k \Sigma_{k-1} A_k^T + Q_k$$

Predicted estimate

$$p(x_k \mid z_{1:k-1}) = N(\overline{\mu}_k, \overline{\Sigma}_k)$$

Update Step

$$K_{k} = \overline{\Sigma}_{k} C_{k}^{T} (C_{k} \overline{\Sigma}_{k} C_{k}^{T} + R_{k})^{-1}$$

$$\mu_{k} = \overline{\mu}_{k} + K_{k} (z_{k} - C_{k} \overline{\mu}_{k})$$

$$\Sigma_{k} = (I - K_{k} C_{k}) \overline{\Sigma}_{k}$$

Posterior estimate

$$p(x_k \mid z_{1:k}) = N(\mu_k, \Sigma_k)$$

The EKF

- We will now look at the "Extended Kalman Filter"
- You should read "Probabilistic Robotics" SS 3.3
- The concept and derivations follows from the KF we just looked at.

4-Jan-2011 ME/CS 132 Ihm - 9

Non-linear Systems:

Linear State Space Model

Transition Function

$$x_k = A_k x_{k-1} + B_k u_k + q_k$$

$$z_k = C_k x_k + r_k$$

Measurement Model

Process Noise

$$q_k \sim N(0,Q)$$

$$r_k \sim N(0,R)$$

Measurement Noise

Non-Linear State Space Model

Transition Function

$$x_k = g(x_{k-1}, u_k) + q_k$$

$$z_k = h(x_k) + r_k$$

Measurement Model

Process Noise

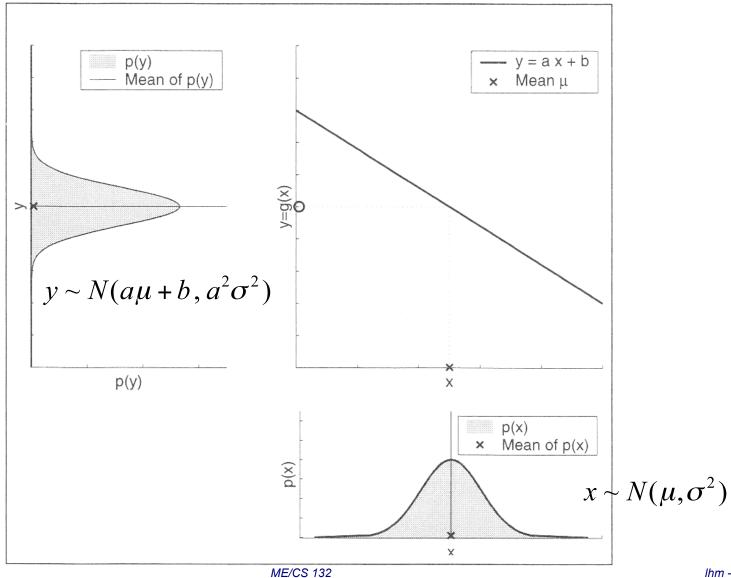
$$q_k \sim N(0,Q)$$

$$r_k \sim N(0,R)$$

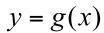
Measurement Noise

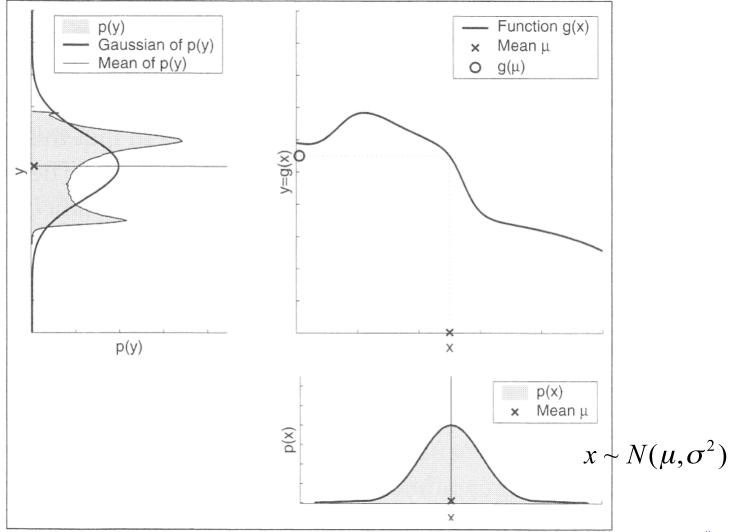
Linear Function

$$y = g(x)$$
$$= ax + b$$

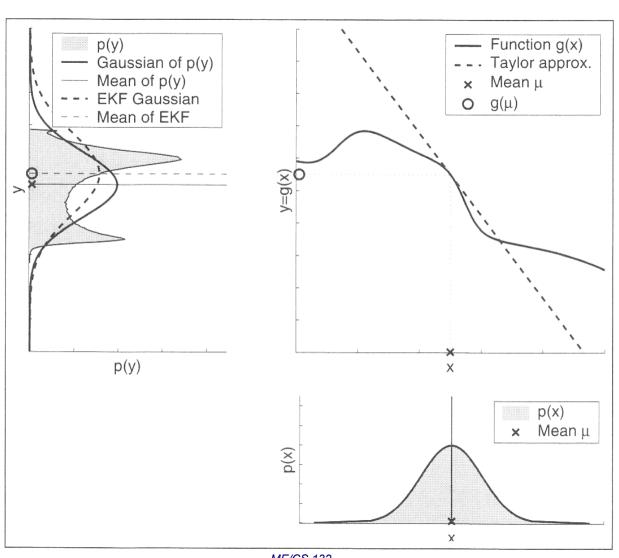


Non-Linear Function





Linearization of Function



Linearization

 Relax the linear requirement of a Kalman Filter, by approximating the Propagation & Measurement functions with linear functions.

We can linearize a function via a Taylor Expansion

4-Jan-2011 ME/CS 132 Ihm - 14

Taylor Expansion

$$x_k = g(x_{k-1}, u_k) + q_k$$
$$z_k = h(x_k) + r_k$$

For a Gaussian prior, $x_{k-1} \sim N(\mu_{k-1}, \Sigma_{k-1})$ we will linearize about the most likely value μ_{k-1}

$$g(x_{k-1}, u_k) \approx g(\mu_{k-1}, u_k) + G_k(x_{k-1} - \mu_{k-1})$$

$$G_k \triangleq \frac{\partial}{\partial x_{k-1}} \bigg|_{\mu_{k-1}} g(x_{k-1}, u_k)$$

Taylor Expansion

$$x_k = g(x_{k-1}, u_k) + q_k$$
$$z_k = h(x_k) + r_k$$

For a Gaussian predicted state, $\bar{x}_k \sim N(\bar{\mu}_k, \Sigma_k)$ we will linearize about the most likely value $\bar{\mu}_k$

$$h(x_k) \approx h(\overline{\mu}_k) + H_k(x_k - \overline{\mu}_k)$$

$$H_k \triangleq \frac{\partial}{\partial x_{k-1}} \bigg|_{\bar{\mu}_k} h(x_k)$$

prediction step:

$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

$$N(g(\mu_{k-1}, u_k) - G_k(x_{k-1} - \mu_{k-1}), Q_k) N(\mu_{k-1}, \Sigma_{k-1})$$

Based on our knowledge of how to derive a Kalman filter, the answer is:

$$p(x \mid z_{1:k-1}) = N\left(g(x_{k-1}, u_k), G_k \Sigma_{k-1} G_k^T + Q_k\right)$$

• • • •

(verify above Gaussian multiplication gives a quadratic form in $X = x_k, x_{k-1}$, and can use marginal properties of joint Gaussian distribution)

update step:

$$p(x_k \mid z_{1:k}) = \frac{1}{\eta} p(z_k \mid x_k) p(x_k \mid z_{1:k-1})$$

$$N\left(h(\overline{\mu}_k) - H_k(x_k - \overline{\mu}_k), R\right) \qquad N\left(\overline{\mu}_k, \overline{\Sigma}_k\right)$$

The product of two Gaussians -> is another Gaussian

$$p(x_k | z_{1:k}) = N(\mu_k, \Sigma_k)$$
 (Proof: analogous to KF!-
look at quadratic forms)
$$u_k = \overline{\mu}_k + K_k(z_k - h(\overline{\mu}_k))$$

$$\overline{\Sigma}_k H^T(H, \overline{\Sigma}_k H^T) + K_k(\overline{\Sigma}_k H^T) + K_k($$

$$\begin{cases} \mu_k = \overline{\mu}_k + K_k (z_k - h(\overline{\mu}_k)) \\ \Sigma_k = (I - K_k H_k) \overline{\Sigma}_k \end{cases} \text{ with } K_k = \overline{\Sigma}_k H_k^T (H_k \overline{\Sigma}_k H_k^T + Q_k)^{-1}$$

Putting it all together: EKF

Prior estimate

$$p(x_{k-1} \mid z_{1:k-1}) = N(\mu_{k-1}, \Sigma_{k-1})$$

Prediction step

$$\overline{\mu}_k = g(\mu_{k-1}, u_k)$$

$$\overline{\Sigma}_k = G_k \Sigma_{k-1} G_k^T + Q_k$$

Predicted estimate

$$p(x_k \mid z_{1:k-1}) = N(\overline{\mu}_k, \overline{\Sigma}_k)$$

Update Step

$$K_{k} = \overline{\Sigma}_{k} H_{k}^{T} (H_{k} \overline{\Sigma}_{k} H_{k}^{T} + R_{k})^{-1}$$

$$\mu_{k} = \overline{\mu}_{k} + K_{k} (z_{k} - h(\overline{\mu}_{k}))$$

$$\Sigma_{k} = (I - K_{k} H_{k}) \overline{\Sigma}_{k}$$

Posterior estimate

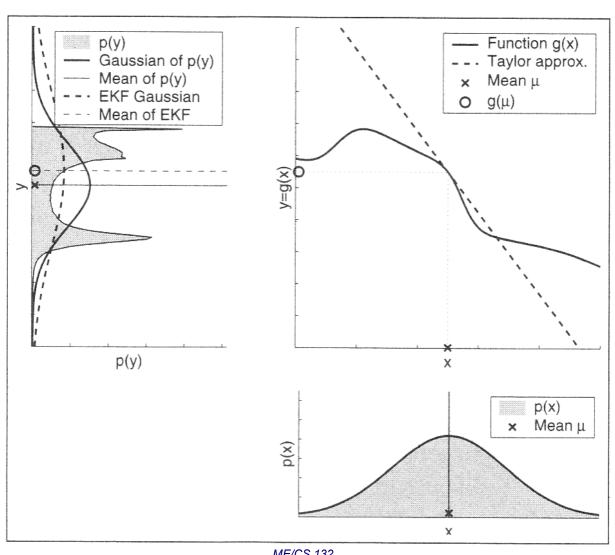
$$p(x_k \mid z_{1:k}) = N(\mu_k, \Sigma_k)$$

EKF notes

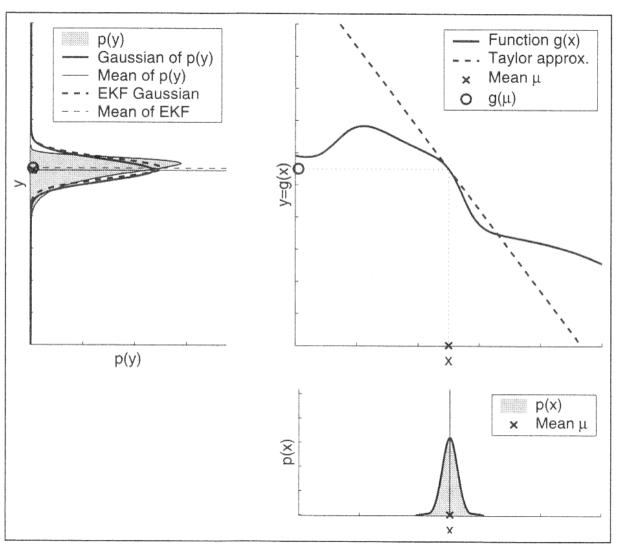
- The EKF is efficient as it uses only a Gaussian distribution for state representation.
- Very widely used Almost all robotics problems are nonlinear.
- The degree to which a EKF will work depends on how well the system linearize: depends on both the system uncertainty and the governing equations.

4-Jan-2011 ME/CS 132 Ihm - 20

Linearization of Function (BAD)



Linearization of Function (GOOD)



EKF Tracking Example (J. Ma Thesis)

Can you estimate the 6DOF pose of the object in the scene?

EKF Tracking Example (J. Ma Thesis)

Match SIFT features from model to current image

model features (database)

$$\mathbf{b}_j = [b_x, b_y, b_z, d_j]$$

Feature location (in object frame)

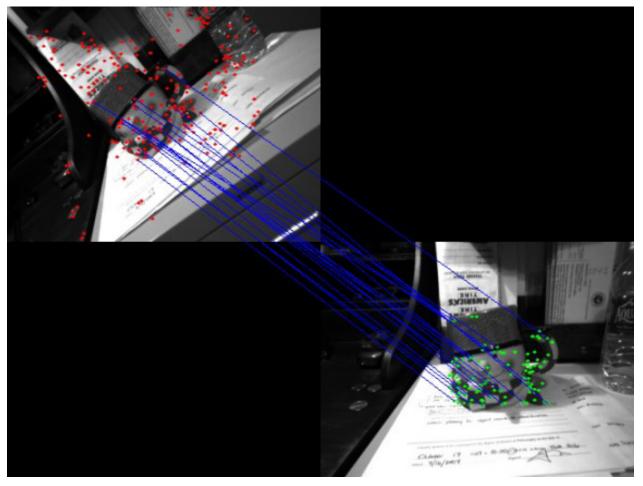
SIFT descriptor

current image features

$$\overline{d}_j$$
 Observed descriptor

EKF Tracking Example (J. Ma Thesis)

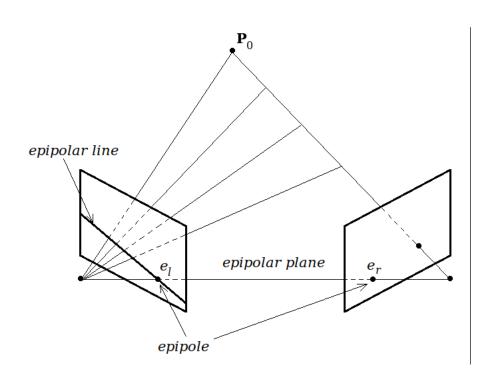
• We will assume perfect matching between observed features and the model features Best-Bin-First Search Method

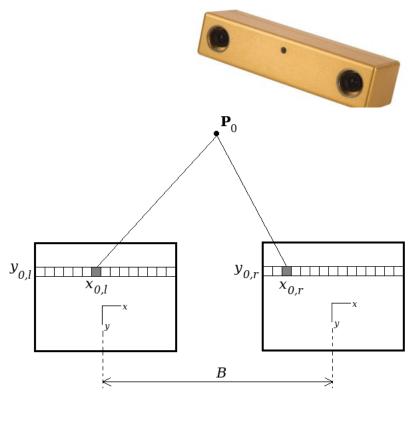


4-Jan-2011 ME/CS 132 Ihm - 25

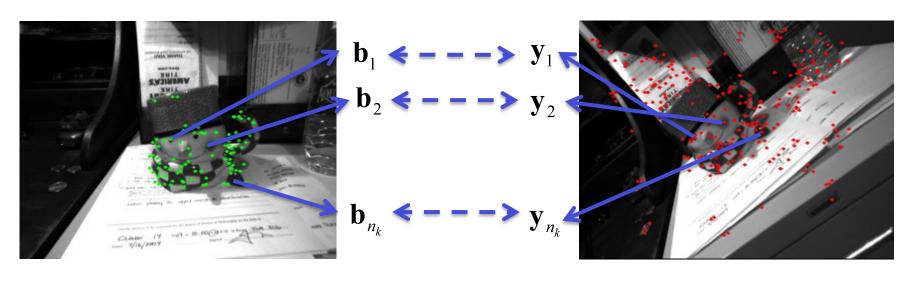
Key Idea- can measure "3D location" of points

 Using stereo cameras, the 3D location of SIFT features can be measured (in CAMERA FRAME)





Measurement Model



$$\mathbf{b}_{j} = [b_{x}, b_{y}, b_{z}]$$

$$\mathbf{y}_{j} = [y_{x}, y_{y}, y_{z}]$$

End up with a set of observed feature locations and corresponding to model features

Measurement Model

Measurement is just "object features" rotated and translated into camera frame $\mathbf{b}_i =$

$$D_k = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_{n_k} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_k + R_k \mathbf{b}_1 \\ \mathbf{x}_k + R_k \mathbf{b}_2 \\ \vdots \\ \mathbf{x}_k + R_k \mathbf{b}_{n_k} \end{bmatrix} + r_k$$

$$D_k = h(X_k) + r_k$$

$$\mathbf{y}_j = [y_x, y_y, y_z]$$

$$X_k = [\mathbf{x}_k, \boldsymbol{\Theta}_k]$$

$$\Theta_{j} = [\alpha, \beta, \gamma]$$

$$\mathbf{X}_k = [x_k, y_k, z_k]$$

$$R(\alpha,\beta,\gamma) = R_z(\alpha) R_y(\beta) R_x(\gamma) = \begin{cases} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \end{cases}$$

Linearization of Measurement Equation

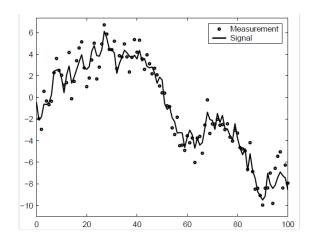
$$\frac{\partial h_i}{\partial X_k} = \frac{\partial}{\partial X_k} \left[\mathbf{x}_k + R_k(\alpha, \beta, \gamma) \mathbf{b}_i \right] \qquad \frac{\partial \mathbf{h}_i}{\partial \mathbf{X}_k} = \begin{bmatrix} 1 & 0 & 0 & \frac{\partial h_1^i}{\partial \alpha} & \frac{\partial h_1^i}{\partial \beta} & \frac{\partial h_1^i}{\partial \gamma} \\ 0 & 1 & 0 & \frac{\partial h_2^i}{\partial \alpha} & \frac{\partial h_2^i}{\partial \beta} & \frac{\partial h_2^i}{\partial \gamma} \\ 0 & 0 & 1 & \frac{\partial h_3^i}{\partial \alpha} & \frac{\partial h_3^i}{\partial \beta} & \frac{\partial h_3^i}{\partial \gamma} \end{bmatrix}$$

$$\begin{split} \frac{\partial h_1^i}{\partial \alpha} &= -s\alpha e\beta \cdot b_x^{J(i)} + \left(-s\alpha s\beta s\gamma - e\alpha e\gamma \right) \cdot b_y^{J(i)} + \left(-s\alpha s\beta e\gamma + e\alpha s\gamma \right) \cdot b_z^{J(i)} \,, \\ \frac{\partial h_1^i}{\partial \beta} &= -e\alpha s\beta \cdot b_x^{J(i)} + e\alpha e\beta s\gamma \cdot b_y^{J(i)} + e\alpha e\beta e\gamma \cdot b_z^{J(i)} \,, \\ \frac{\partial h_1^i}{\partial \gamma} &= \left(e\alpha s\beta e\gamma + s\alpha s\gamma \right) \cdot b_y^{J(i)} + \left(-e\alpha s\beta s\gamma + s\alpha e\gamma \right) \cdot b_z^{J(i)} \,, \\ \frac{\partial h_2^i}{\partial \alpha} &= e\alpha e\beta \cdot b_x^{J(i)} + \left(e\alpha s\beta s\gamma - s\alpha e\gamma \right) \cdot b_y^{J(i)} + \left(e\alpha s\beta e\gamma + s\alpha s\gamma \right) \cdot b_z^{J(i)} \,, \\ \frac{\partial h_2^i}{\partial \beta} &= -s\alpha s\beta \cdot b_x^{J(i)} + s\alpha e\beta s\gamma \cdot b_y^{J(i)} + s\alpha e\beta e\gamma \cdot b_z^{J(i)} \,, \\ \frac{\partial h_2^i}{\partial \gamma} &= \left(s\alpha s\beta e\gamma - e\alpha s\gamma \right) \cdot b_y^{J(i)} + \left(-s\alpha s\beta s\gamma - e\alpha e\gamma \right) \cdot b_z^{J(i)} \,, \\ \frac{\partial h_3^i}{\partial \alpha} &= 0 \,, \\ \frac{\partial h_3^i}{\partial \beta} &= -e\beta \cdot b_x^{J(i)} - s\beta s\gamma \cdot b_y^{J(i)} - s\beta e\gamma \cdot b_z^{J(i)} \,, \\ \frac{\partial h_3^i}{\partial \gamma} &= e\beta e\gamma \cdot b_y^{J(i)} - e\beta \cdot s\gamma \cdot b_z^{J(i)} \,. \end{split}$$

Motion Model

Motion model (prediction) is just a random walk —it is already linear

$$X_k = X_{k-1} + q_k$$

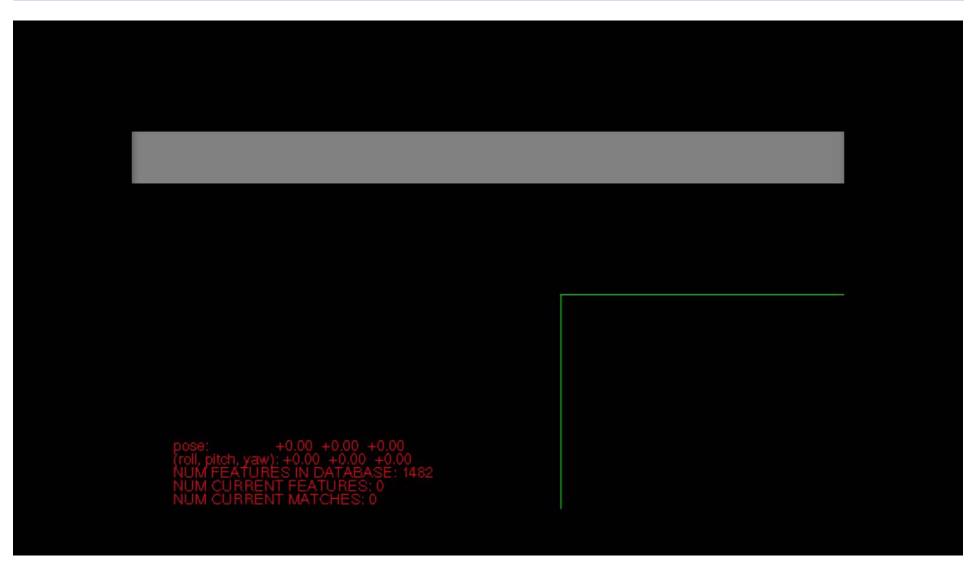


$$X_k = [\mathbf{x}_k, \mathbf{\Theta}_k]$$

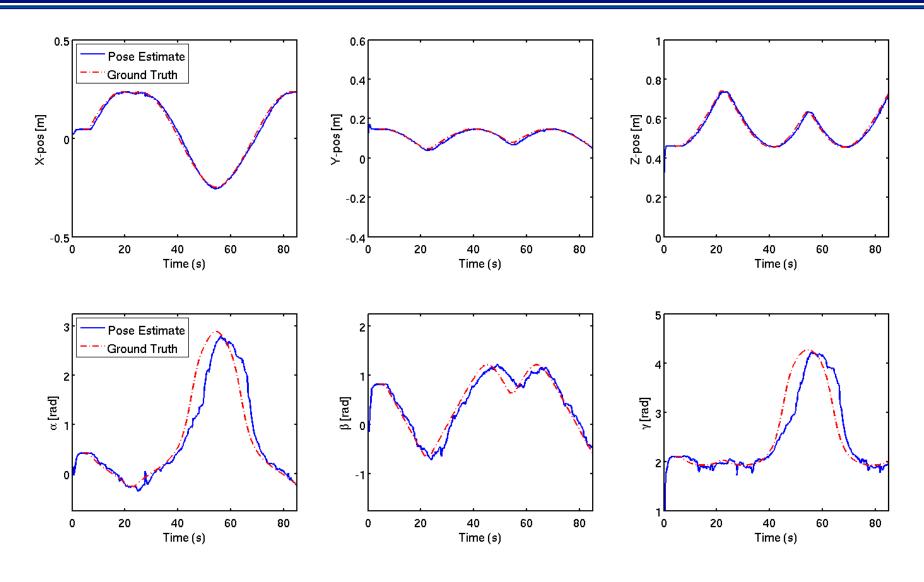
$$\Theta_j = [\alpha, \beta, \gamma]$$

$$\mathbf{x}_k = [x_k, y_k, z_k]$$

EKF Results



EKF Example



Further EKF Examples:

- Brian will show you a EKF for mapping and localization
- Uses a similar concept of linearizing the rotation matrix associated with both the propagation and update equations.

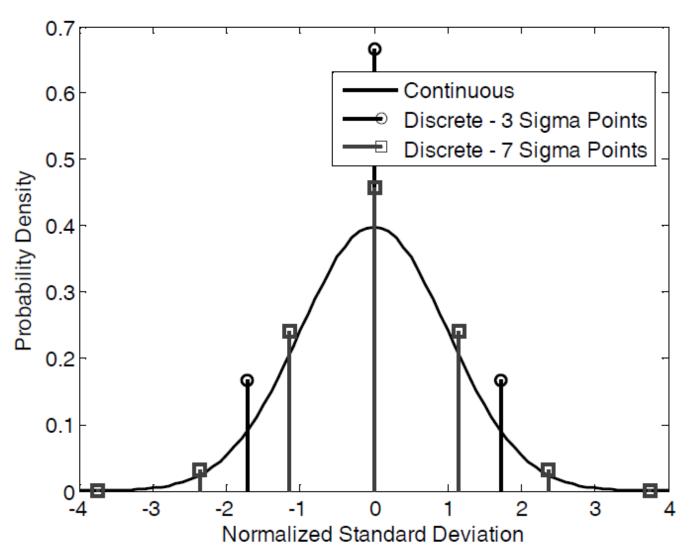
4-Jan-2011 ME/CS 132 Ihm - 33

THE UKF

- Another way to linearize a system is through the Unscented Transform.
- This creates the Unscented Kalman Filter (or Sigma Point Kalman Filter)
- Read SS 3.4 in "Probabilistic Robotics"
- Is also highly efficient (not quite as good as the EKF)
- If you don't like derivatives (or you problem does not enable efficient representations of them) it is also derivative free!

4-Jan-2011 ME/CS 132 Ihm - 34

Sigma Points



Sigma Points

Intuition (Julier & Uhlmann, 2004):

It is easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear function.

For a 'n' dim Gaussian:

Sigma points
$$\chi^{0} = \mu$$
 $\psi^{0} = \frac{\lambda}{n+\lambda}$ $\chi^{i} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$ Weights $\psi^{i} = \frac{1}{2(n+\lambda)}$ $\chi^{i+n} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i}$ $\psi^{i+n} = \psi^{i}$

$$(\sqrt{A})_i$$
 ith column of matrix square root

λ User defined constant

$$\mu = \sum_{i=0}^{2n} w^i \chi^i$$

$$\Sigma = \sum_{i=0}^{2n} w^i (\chi^i - \mu)(\chi^i - \mu)^T$$

Sigma Points

Intuition (Julier & Uhlmann, 2004):

It is easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear function.

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

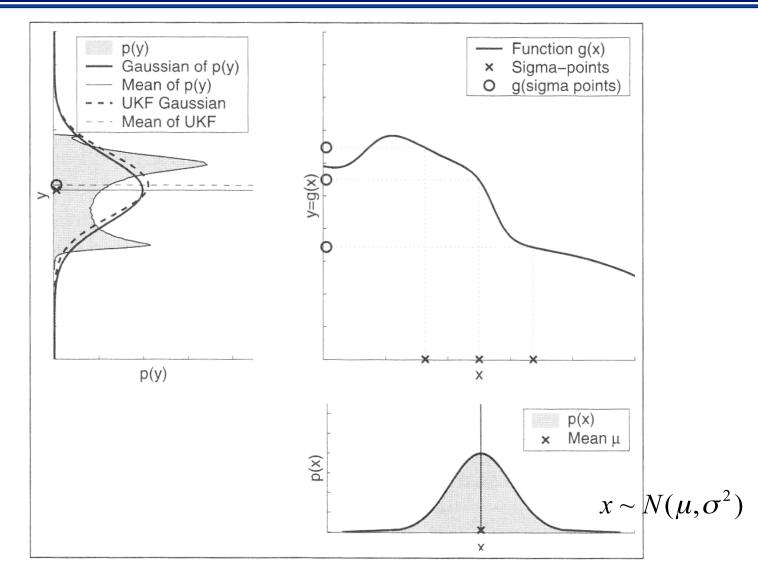
Recover mean and covariance

$$\mu' = \sum_{i=0}^{2n} w^i \psi^i$$

$$\Sigma' = \sum_{i=0}^{2n} w^{i} (\psi^{i} - \mu') (\psi^{i} - \mu')^{T}$$

Unscented Transform

$$y = g(x)$$



Prediction:

$$> N(\mu_{k-1}, \Sigma_{k-1})$$

$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

$$\chi_{t-1} = \begin{bmatrix} \mu_{t-1} & \mu_{t-1} + \gamma \sqrt{\Sigma_{t-1}} & \mu_{t-1} - \gamma \sqrt{\Sigma_{t-1}} \end{bmatrix}$$

$$\gamma = \sqrt{n + \lambda}$$

$$\chi_k^* = g(\chi_{k-1}, u_k)$$

Generate & propagate sigma points

$$\overline{\mu}_k = \sum_{i=0}^{2n} w^i \chi_{i,k}^*$$

Replace integral with Summation

$$\overline{\Sigma}_k = \sum_{i=0}^{2n} w^i \left(\chi_{i,k}^* - \overline{\mu}_k \right) \left(\chi_{i,k}^* - \overline{\mu}_k \right)^T$$

$$p(x_k \mid z_{1:k}) = \frac{1}{\eta} p(z_k \mid x_k) p(x_k \mid z_{1:k-1})$$

$$N(\overline{\mu}_k, \overline{\Sigma}_k)$$

$$\overline{\chi}_{k} = \left[\overline{\mu}_{k} \quad \overline{\mu}_{k} + \gamma \sqrt{\overline{\Sigma}_{k}} \quad \overline{\mu}_{k} - \gamma \sqrt{\overline{\Sigma}_{k}} \right] \qquad \gamma = \sqrt{n + \lambda}$$

$$\overline{\mathbf{Z}}_k = h(\chi_{k-1})$$

 $\overline{Z}_k = h(\chi_{k-1})$ Generate & propagate sigma points

$$\hat{z}_k = \sum_{i=0}^{2n} w^i \ \overline{Z}_{i,k}$$

$$S_k = \sum_{i=0}^{2n} w^i \left(\overline{Z}_{i,k} - \hat{z}_k \right) \left(\overline{Z}_{i,k} - \hat{z}_k \right)^T$$
 Pred. measurement covariance

$$\hat{z}_k = \sum_{i=0}^{2n} w^i \ \overline{Z}_{i,k}$$

Predicted measurement mean

$$S_k = \sum_{i=0}^{2n} w^i \left(\overline{Z}_{i,k} - \hat{z}_k \right) \left(\overline{Z}_{i,k} - \hat{z}_k \right)^T$$
 Pred. measurement covariance

$$\Sigma_k^{x,z} = \sum_{i=0}^{2n} w^i \left(\overline{\chi}_{i,k} - \overline{\mu}_t \right) \left(\overline{Z}_{i,k} - \hat{z}_k \right)^T$$

Cross-covariance

$$K_k = \sum_{k=0}^{x,z} S_k^{-1}$$

Kalman gain

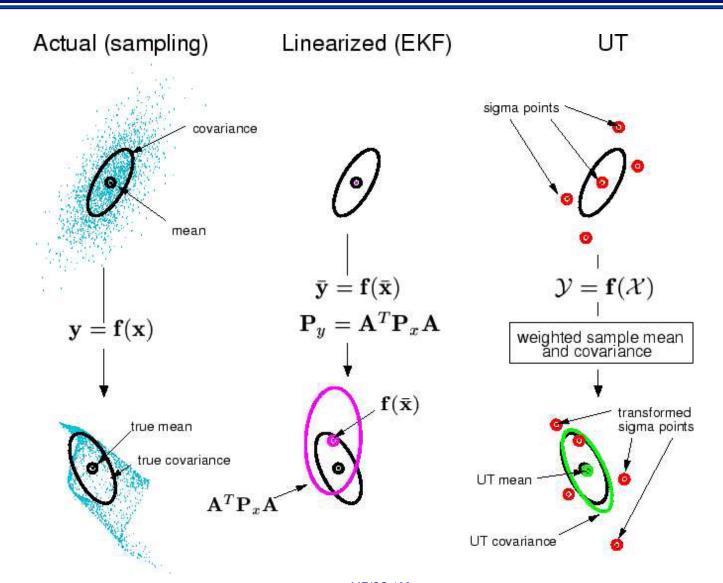
$$\mu_k = \overline{\mu}_k + K_k (z_k - \hat{z}_k)$$

Updated mean

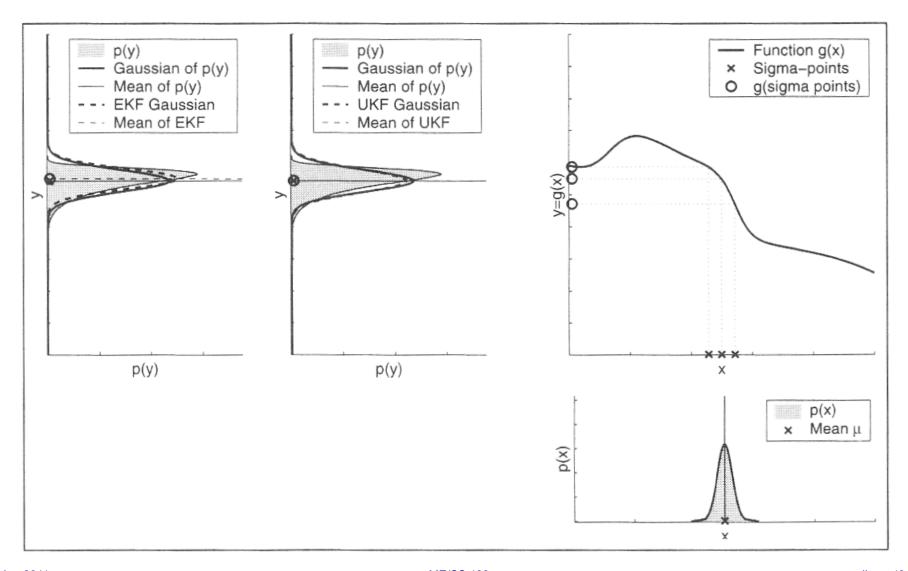
$$\Sigma_{t} = \overline{\Sigma}_{t} - K_{t} S_{t} K_{t}^{T}$$

Updated covariance

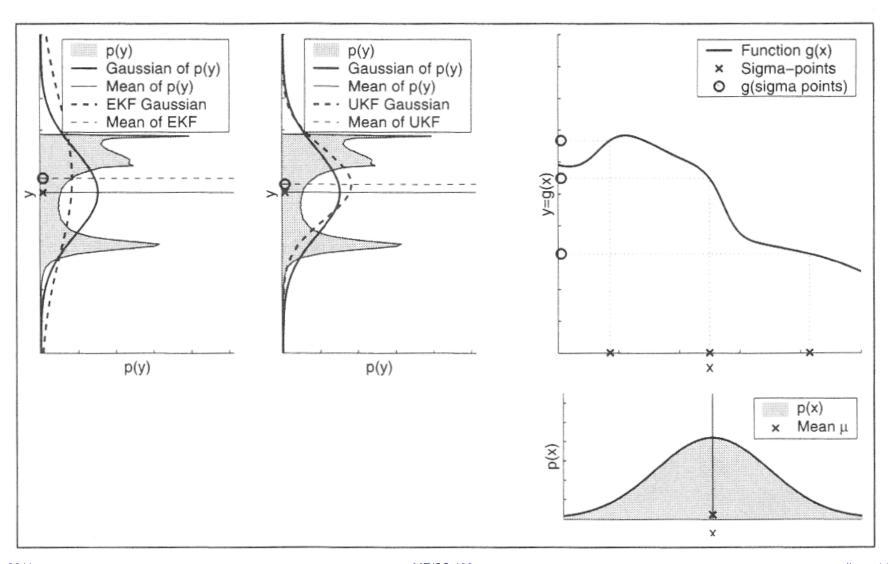
EKF, UT



Linearization vs. UT (1)



Linearization vs. UT (2)



Why use a UKF

- Use a UKF when
 - g &h are non-linear
 - A EKF is not performing well or you cannot derive it.
- Use a KF if linear
- Use a EKF if you can (faster although not by much)
- Use a Particle Filter (Thursday) when the Gaussian assumption breaks down.

4-Jan-2011 ME/CS 132 Ihm - 45