

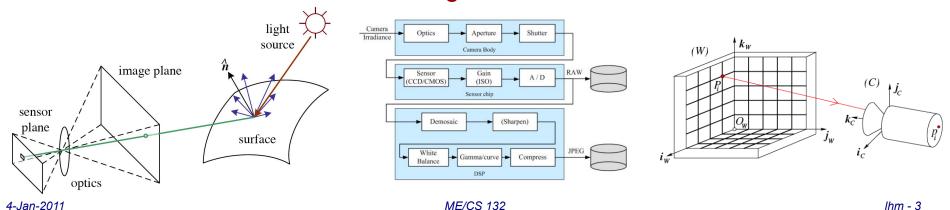
Announcements

- First homework grading is done
- Second homework is due next Tuesday
- Third homework will be due Feb 8; combines material on outlier detection and egomotion
- (Next quarter)

4-Jan-2011 ME/CS 132 Ihm - 2

Recap and Where We're Going: 1st Module (Done)

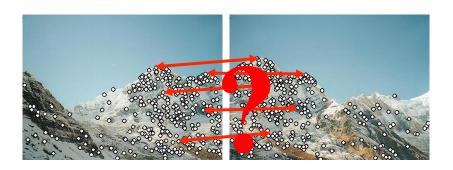
- Image formation, cameras, and camera calibration
 - Illumination and radiometry
 - Sources of light sunlight, thermal emission, night sky glow
 - Propagation of light reflection from surfaces, attenuation in media
 - Cameras
 - Basic optics
 - Camera architectures
 - Image detectors materials, architectures, performance, for various regions of the EM spectrum
 - Geometric camera modeling and calibration



Recap and Where We're Going: 2nd Module (Midway Through)

- Visual motion estimation and 3-D perception
 - Low-level image processing
 - Feature detection, matching, and outlier detection
 - Pose estimation (egomotion) and visual odometry
 - Dense range imaging with stereo vision
 - Other range sensors, range data analysis, introduction to robots

1-week mini-project on visual localization using a stereo camera head to match landmark points



rotation R
translation T
lander position 1

V

Ilander position 2

Ilandmarks on surface of Mars

Recap and Where We're Going: 3rd Module

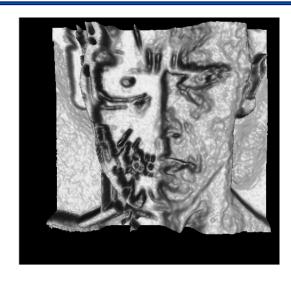
- State estimation, localization, and mapping
 - Introduction to estimation
 - Linear Kalman filter
 - Extended Kalman filter
 - Particle filters and the UKF
 - Simultaneous localization and mapping
- 1-week mini-project on stereo-based SLAM for localization and occupancy grid mapping with ladar

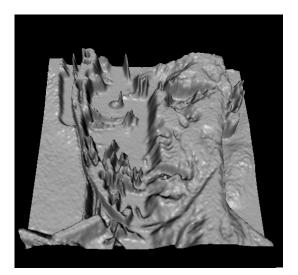
This Lecture

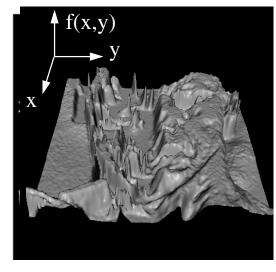
- Point operators
- Neighborhood operators
- Edge detection
- Image pyramids
- Geometric image transformations
- Reading material:
 - Today: Szeliski ch. 3 and sections 4.2-4.3
 - Next Tuesday: Szeliski ch. 11

Images as Functions









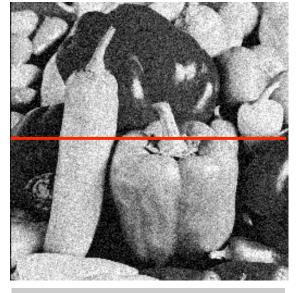
Interpret image either as:

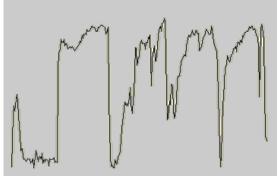
- Continuous image f(x,y)
- Discrete array f[x,y]

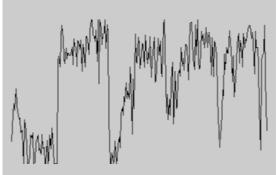
Images are affected by:

- Noise
- Nonlinear distortions of intensity and geometry

Image Noise







$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}} \quad \text{Gaussian i.i.d. (} \\ \eta(x,y) \sim \mathcal{N}(\mu,\sigma)$$

Gaussian i.i.d. ("white") noise:

Image Distortions



Point Operators

 Output pixel = function of one input pixel in one or more images

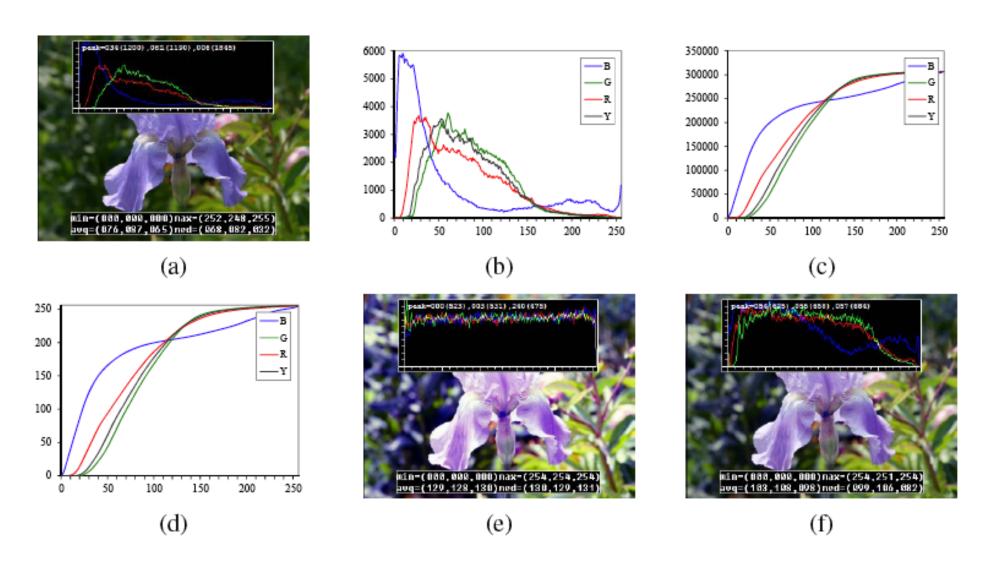
$$g(x) = h(f(x)) \text{ or } g(x) = h(f_0(x), \dots, f_n(x))$$

 $g(i, j) = h(f(i, j))$

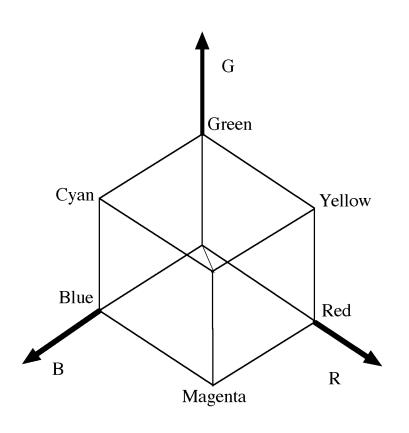
- Examples
 - Monadic linear: bias and gain adjustment, g(x) = a f(x) + b
 - Monadic nonlinear: gamma correction, $g(x) = [f(x)]^{1/\gamma}$
 - Dyadic linear: image blending, $g(x) = (1 \alpha) f_0(x) + \alpha f_1(x)$

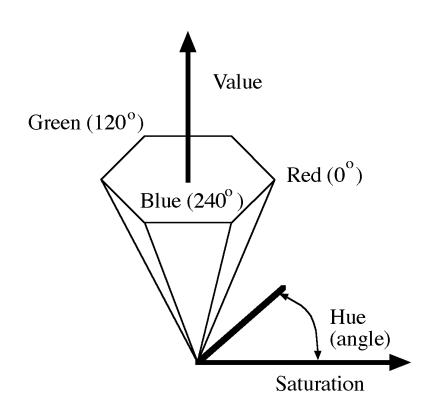
4-Jan-2011 ME/CS 132 Ihm - 10

Point Operators: Histogram Equalization



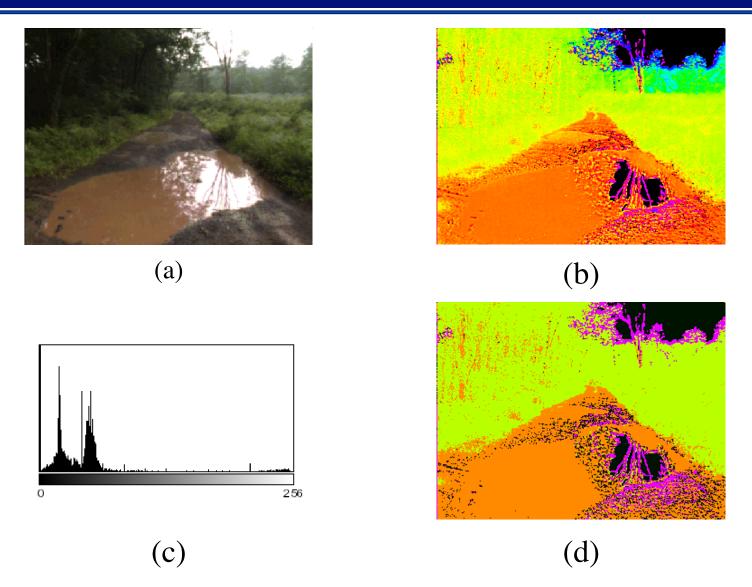
Point Operators: Color Space Conversion (e.g. RGB to HSV)





$$HSV(i, j) = f(RGB(i, j))$$

Application of Color Space Conversion: Simple Segmentation



Neighborhood Operators (or Window Operators, or Local Operators)

 Slide one small window of numbers over the image and compute some function, replacing the central pixel in the image with the output of the function.

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

* 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

100 114

f(x,y)

h(x,y)

g(x,y)

Linear Filters

$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

 h() is called the *filter*, or *kernel*, or *mask*; entries in h() are the filter coefficients. Abbreviated notation:

$$g=f\otimes h$$
 Correlation

Can also be written:

$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l) = \sum_{k,l} f(k,l)h(i-k,j-l)$$

$$g = f * h$$

Convolution

Some Basic Properties of Convolution

Commutative:

$$f * g = g * f$$

Associative:

$$f * (g * h) = (f * g) * h$$

Distributes over addition:

$$f * (g + h) = f * g + f * h$$

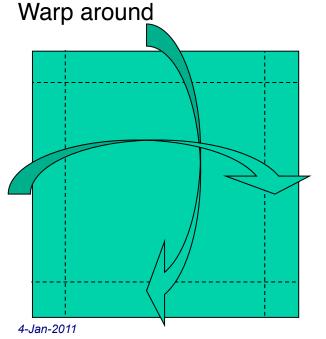
Differentiation:

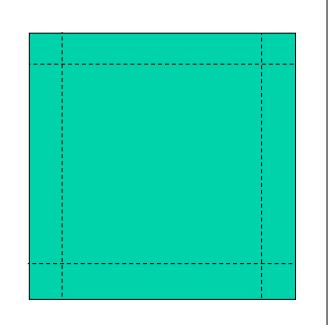
$$(f * g)' = f' * g = f * g'$$

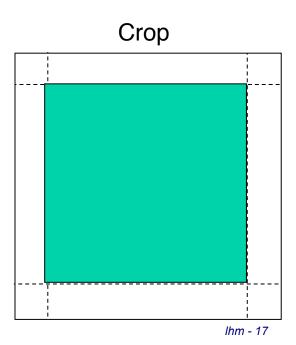
Shift invariant

Neighborhood Operators: Border Effects

- When applying convolution with a
 KxK kernel, the result is undefined
 for pixels closer than K pixels to
 the border of the image
- Options:

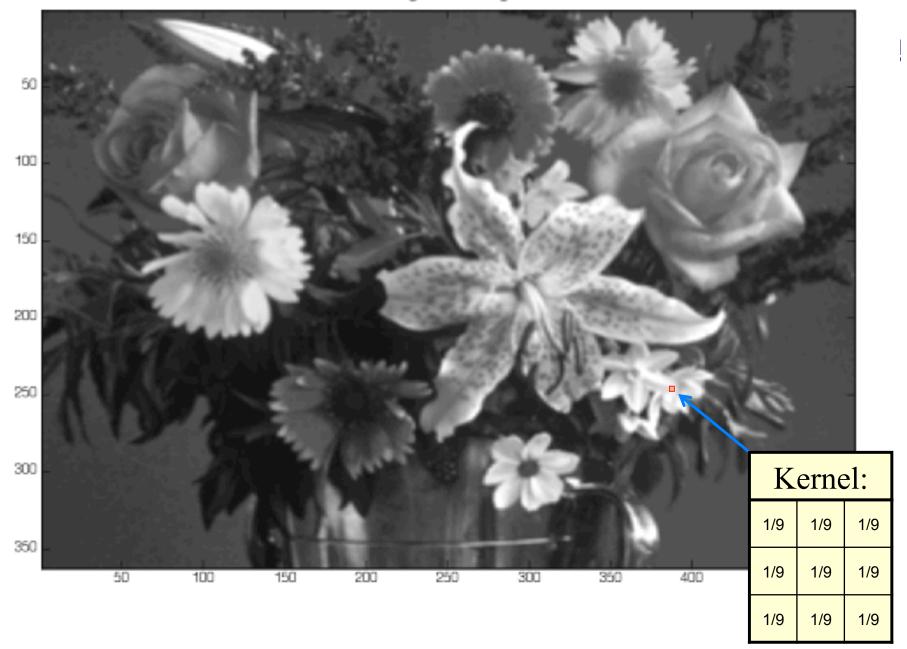




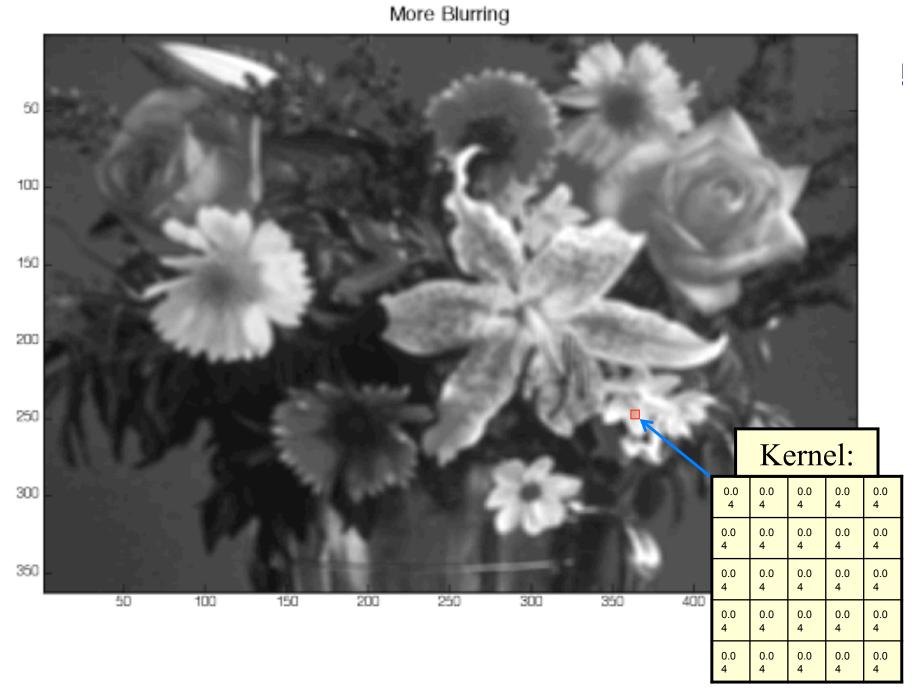


THE

Slight Blurring

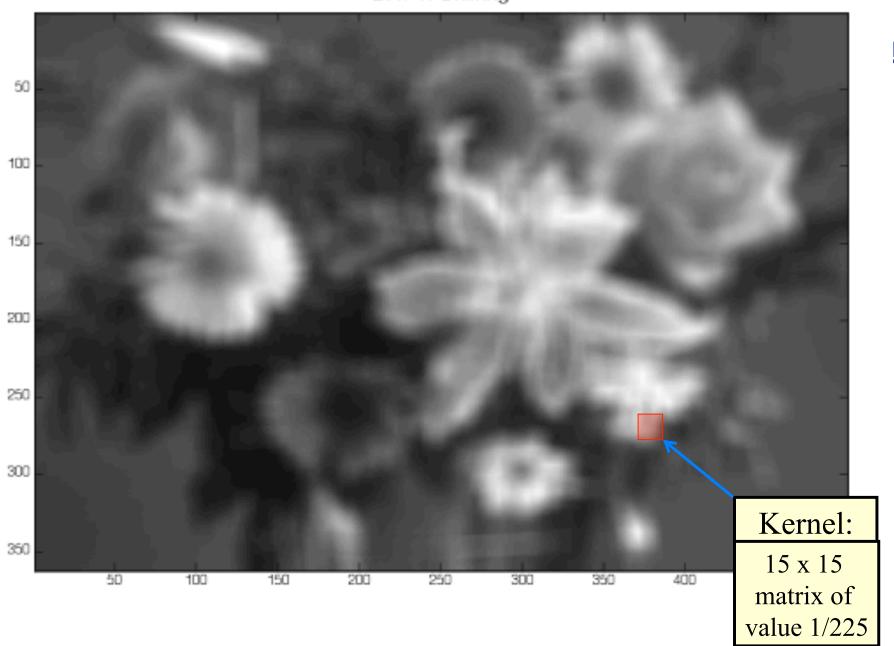


THE



Lots of Blurring

THE

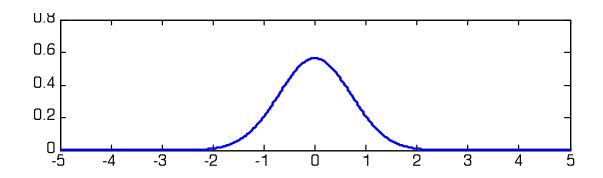


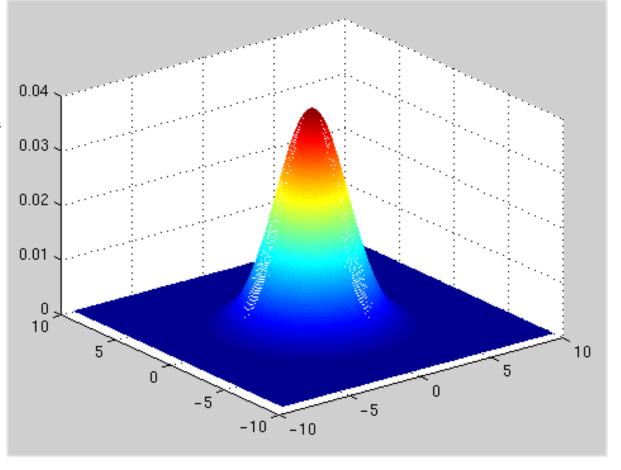
$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}} \int_0^{\pi}$$

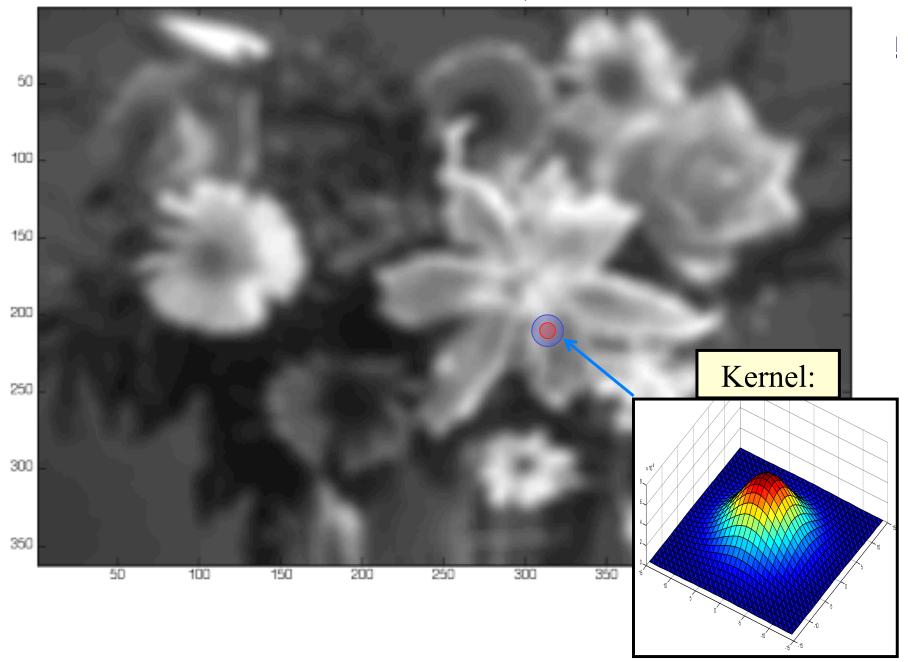
Slight abuse of notations: We ignore the normalization constant such that

$$\int g(x)dx = 1$$





Gaussian Blurring, $\sigma = 5$



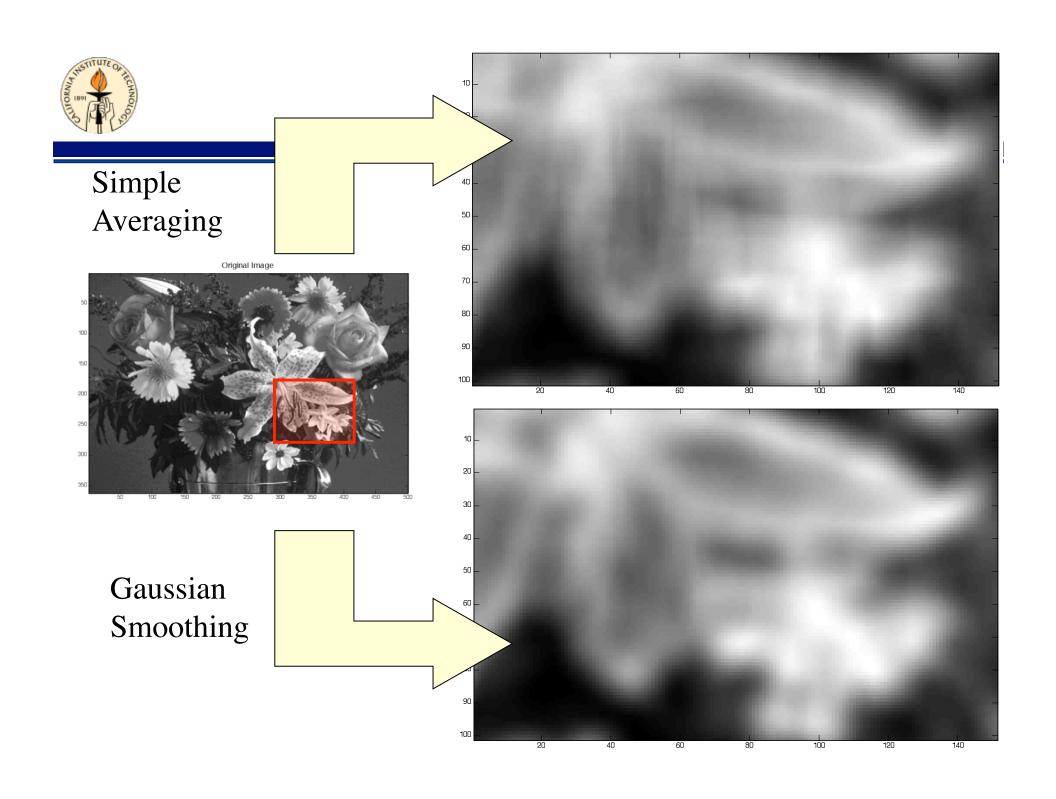
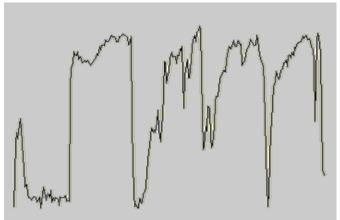
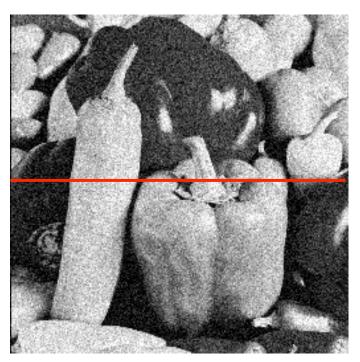
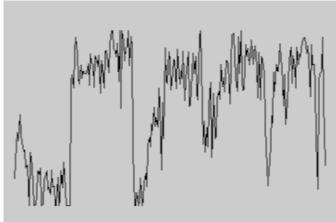


Image Noise

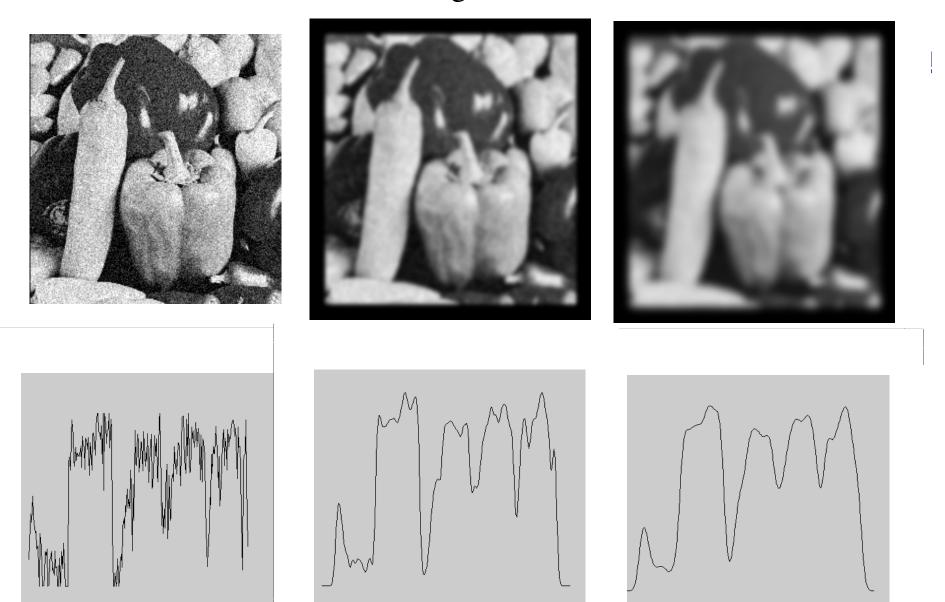






$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}} \quad \text{Gaussian i.i.d. ("white") noise:} \\ \eta(x,y) \sim \mathcal{N}(\mu,\sigma)$$

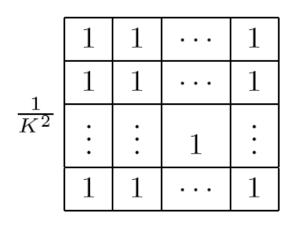
Gaussian Smoothing to Remove Noise



No smoothing

 $\sigma = 4$

Computational Issues for Filters: Separability and Moving Averages



	1	2	1
$\frac{1}{16}$	2	4	2
	1	2	1

	1	4	6	4	1
$\frac{1}{256}$	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

$$\frac{1}{K}$$
 1 1 \cdots 1

$$\frac{1}{4}$$
 1 2 1

$$\frac{1}{16}$$
 1 4 6 4 1

- When a KxK filter is equivalent to a Kx1 and a 1xK filter
- Reduces number of multiplies from K² to 2K
- For box filter, moving average makes cost independent of K

Some Other (Nonlinear) Neighborhood Operators: Median Filter

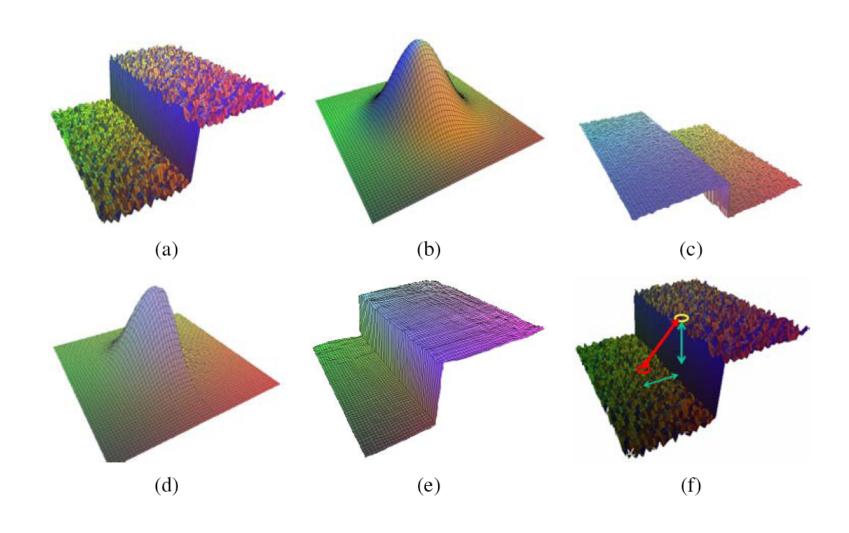
- Replace center pixel of KxK window with the mean value of all pixels in the window
- Good for removing large noise spikes without blurring image

Original image

Gaussian filtered

Median filtered

Some Other (Nonlinear) Neighborhood Operators: Bilateral Filter for Edge-Preserving Smoothing



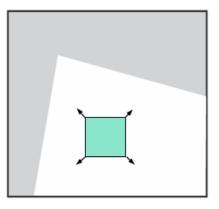
Some Other (Nonlinear) Neighborhood Operators: Bilateral Filter for Edge-Preserving Smoothing

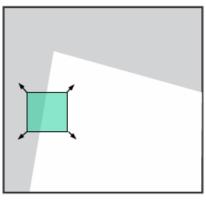
Original image

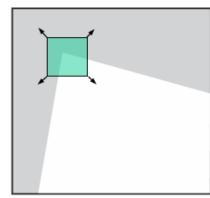
15x15 box filter

15x15 bilateral filter

Other Useful Neighborhood Operators: Feature Detectors (Recall Earlier Lecture)





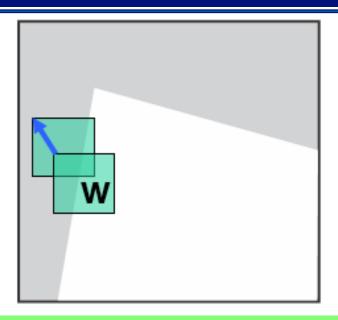


"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

$$H = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix}$$

(Implementation note: moving averages)

Other Useful Neighborhood Operators: Image Matching (Recall Earlier Lecture)



$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

- Sum squared difference (SSD) vs. sum absolute difference (SAD)
- Normalization: why? Many approaches.

Other Useful Neighborhood Operators

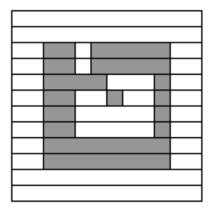
Morphology

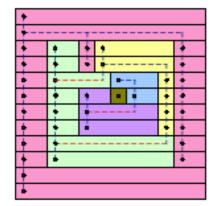
 Distance transform

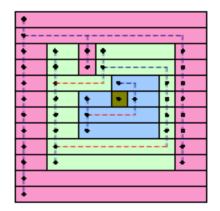
0	0	٥	0	1	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

0	0	0	0	1	0	0
0	0	1	1	1	0	0
0	1	2	2	2	1	0
0	1	2	2	1	1	0
0	1	2	1	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

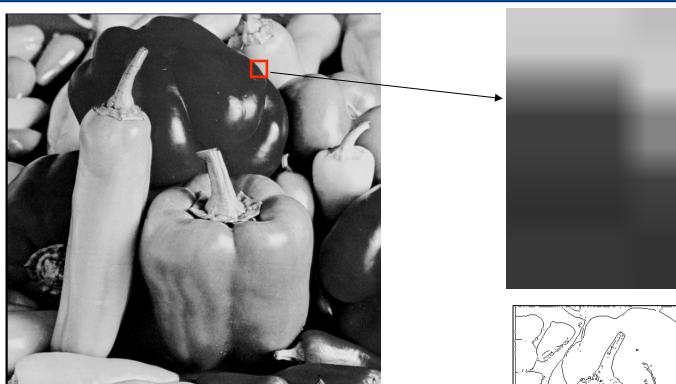
Connected components







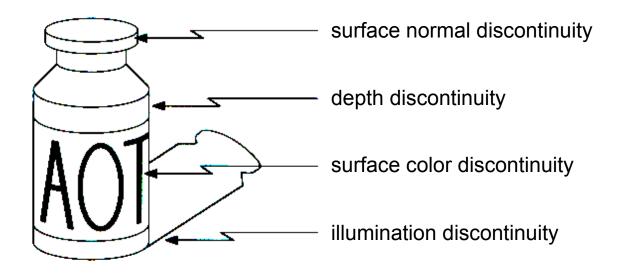
Edge Detection: What is an Edge?



 Local maxima of rate of change of intensity

4-Jan-2011 ME/CS 132

Origin of Edges



- Many factors
- Sometimes care which factor applies; sometimes can determine that

4-Jan-2011 ME/CS 132 Ihm - 35

Image Derivatives: 1-D Case

- We want to compute, at each pixel (x,y) the derivatives:
- In the discrete case we could take the difference between the left and right pixels:

$$\frac{\partial I}{\partial x} \approx I(i+1,j) - I(i-1,j)$$

Convolution of the image by

$$\partial_x = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

Problem: Increases noise

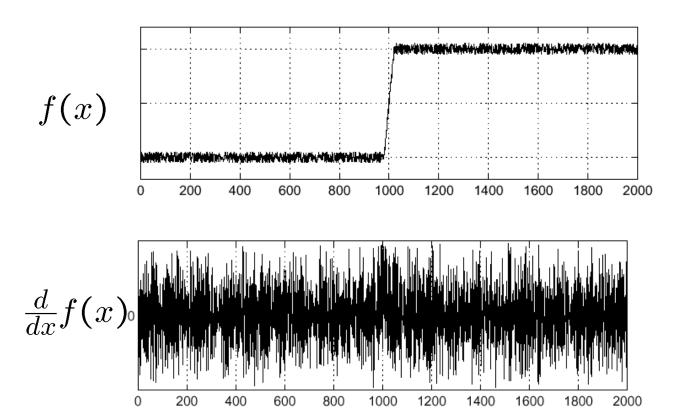
$$I(i+1,j) - I(i-1,j) = \hat{I}(i+1,j) - \hat{I}(i-1,j) + n_{+} + n_{-}$$

Difference between Actual image values

True difference (derivative)

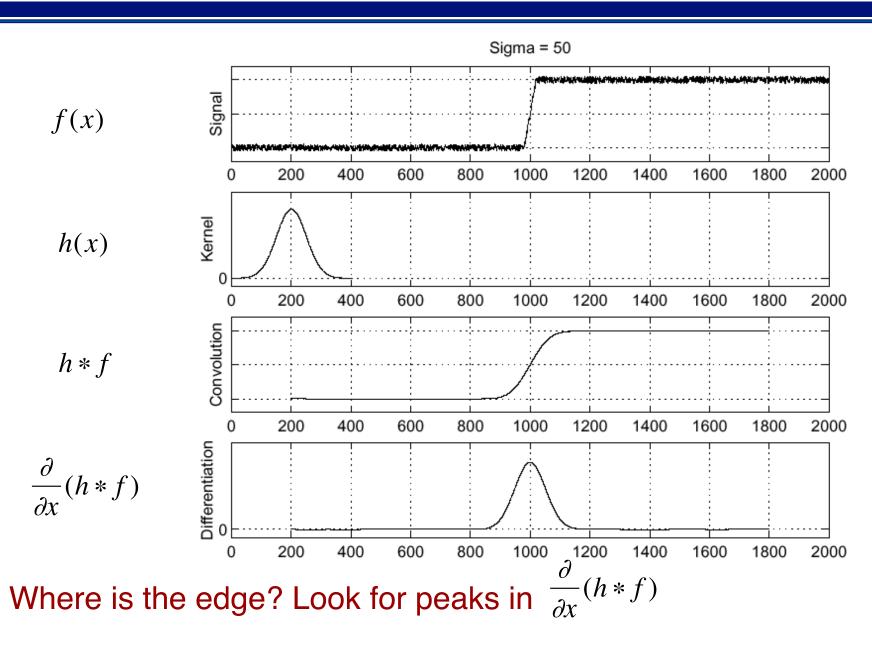
Twice the amount of noise as in the original image

Edges in 1-D: Effects of Noise

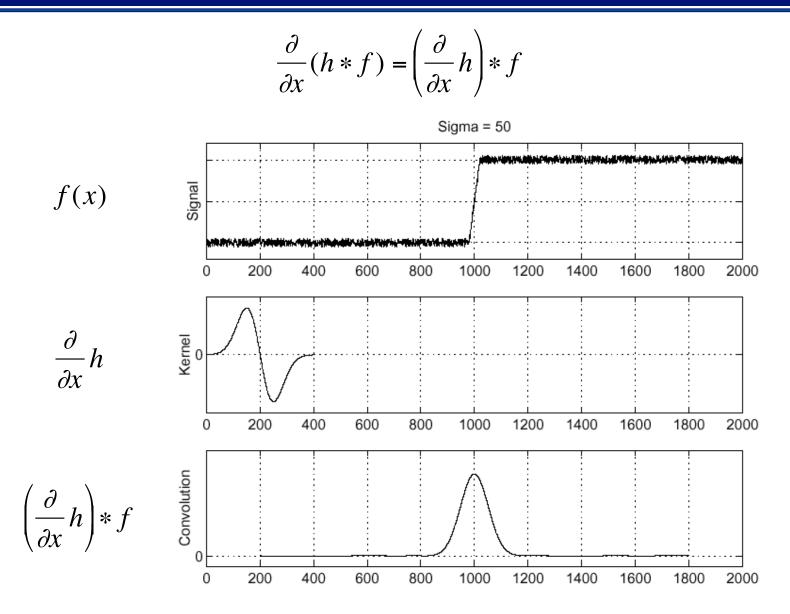


Where is the edge?

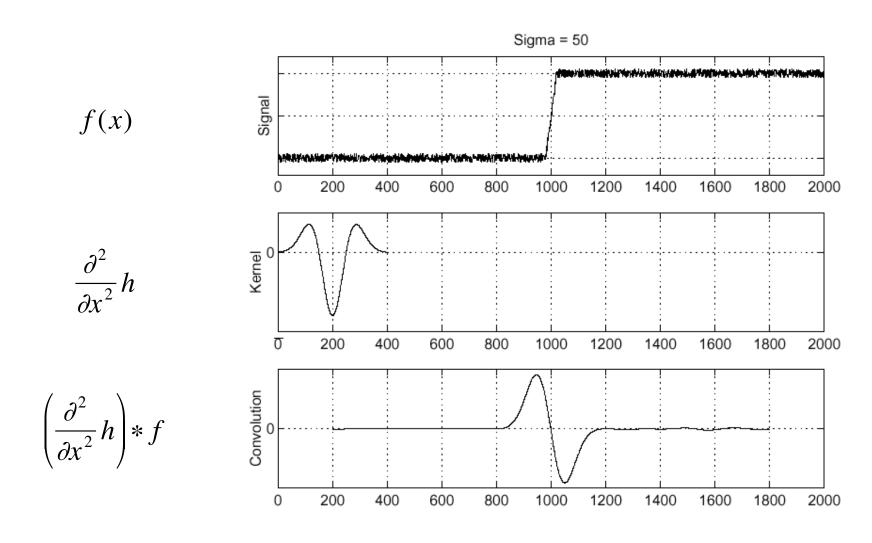
Solution: Smooth First



Derivative Property of Convolution: Saves One Step

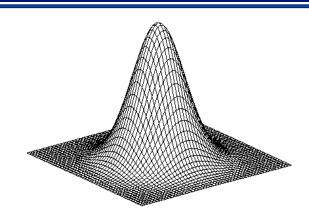


Laplacian of Gaussian



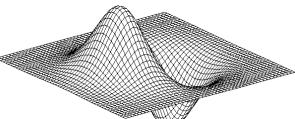
Where is the edge? Zero crossing of bottom graph

2-D Edge Detection Filters



Gaussian

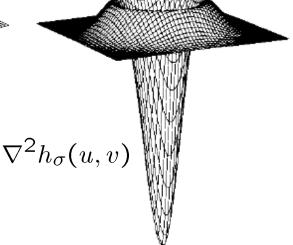
Gaussian derivative of Gaussian
$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x} h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$$



derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Laplacian of Gaussian

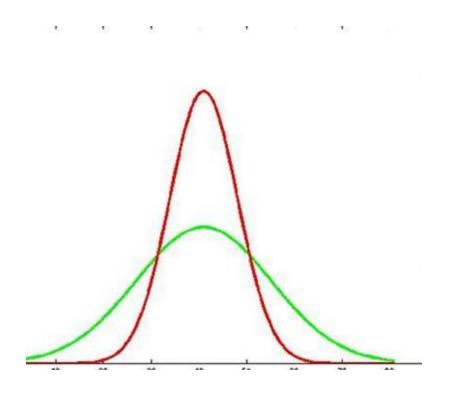


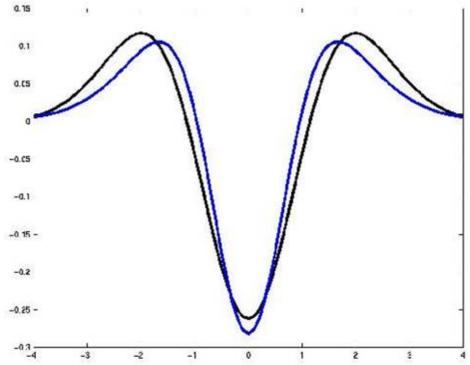
 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

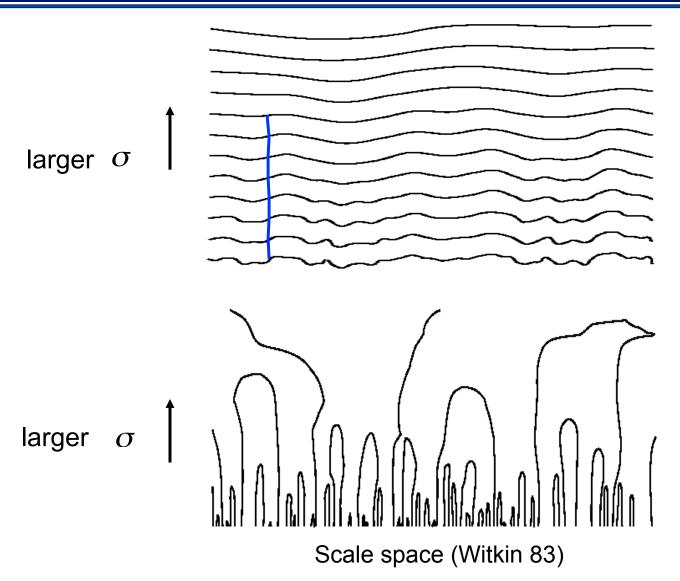
DOG Approximation to LOG

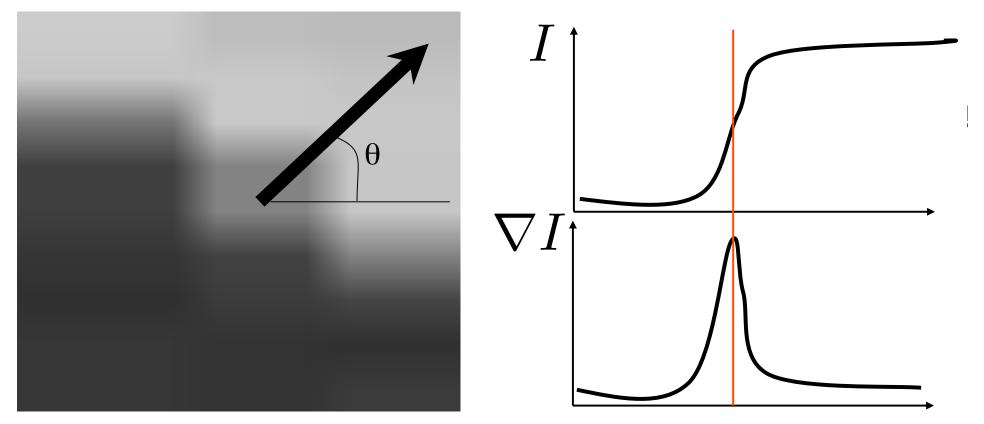
$$\nabla^2 G_{\sigma} \approx G_{\sigma_1} - G_{\sigma_2}$$





The Effect of Scale on Edge Detection





Edge pixels are at local maxima of gradient magnitude Gradient computed by convolution with Gaussian derivatives Gradient direction is always perpendicular to edge direction

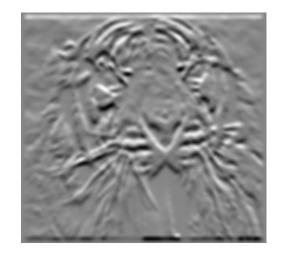
$$\frac{\partial I}{\partial x} = G_{\sigma}^{x} * I \qquad \qquad \frac{\partial I}{\partial y} = G_{\sigma}^{y} * I$$
$$|\nabla I| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^{2} + \left(\frac{\partial I}{\partial y}\right)^{2}} \quad \theta = atan2\left(\frac{\partial I}{\partial y}, \frac{\partial I}{\partial x}\right)$$

Applying the Gradient Magnitude Operator

I

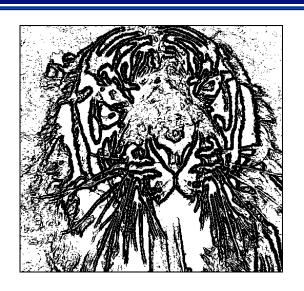
$$\left|\nabla I\right| = \sqrt{\frac{\partial I}{\partial x}^2 + \frac{\partial I}{\partial y}^2}$$

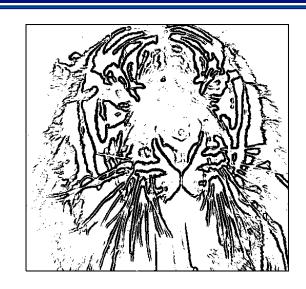
 $\frac{\partial I}{\partial x}$



$$\frac{\partial I}{\partial y}$$

Different Thresholds Applied to the Gradient Magnitude

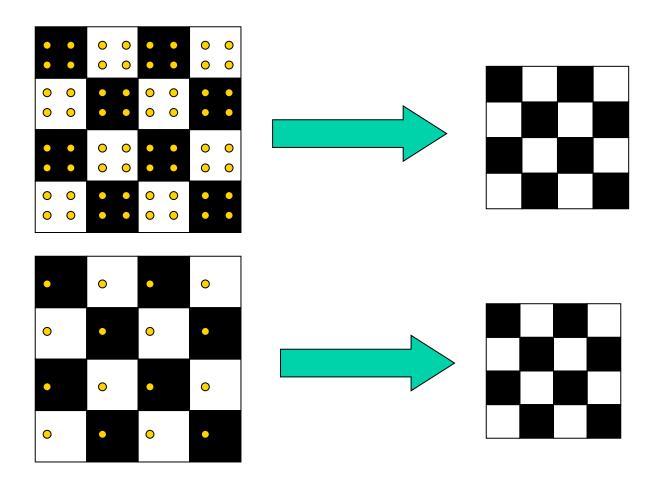




Additional steps:

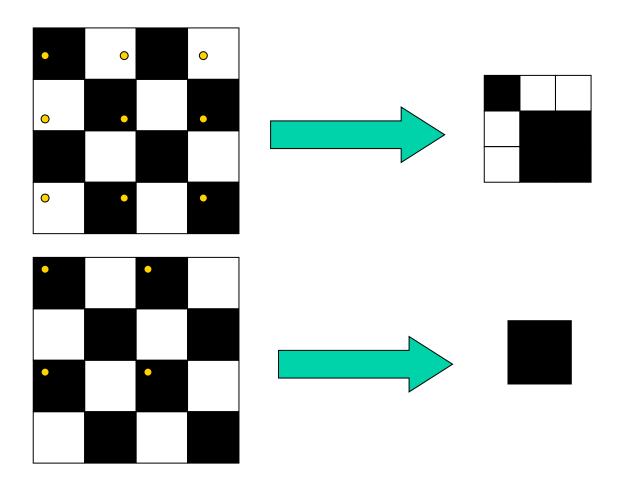
- Thresholding with hysteresis
- Thinning (non-maximum suppression)
- Linking

Sampling an Image



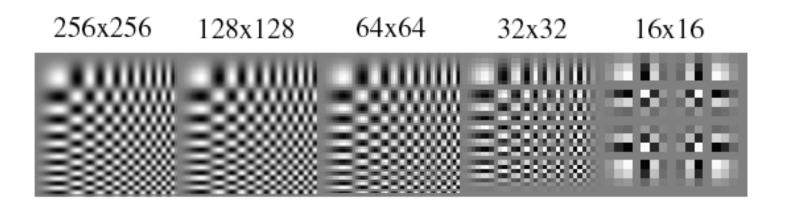
Examples of GOOD sampling

Undersampling and Aliasing



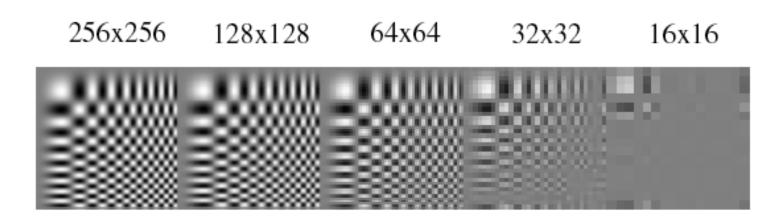
Examples of BAD sampling -> Aliasing

Downsampling and Aliasing



Sample every other pixel to go left to right

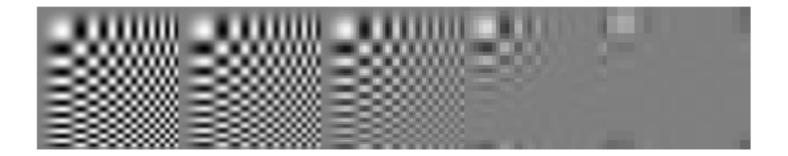
Downsampling with Smoothing (Gaussian, 1 Sigma)



Sample every other pixel to go left to right

Downsampling with Smoothing (Gaussian, 1.4 Sigma)

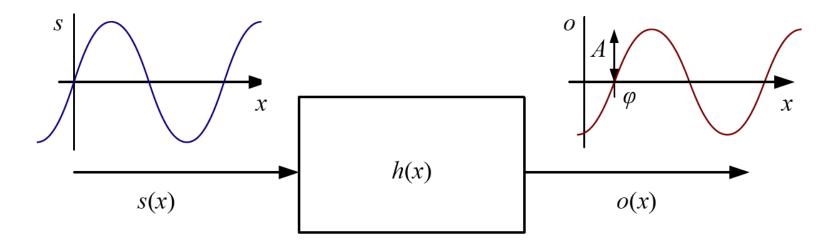
256x256 128x128 64x64 32x32 16x16



Sample every other pixel to go left to right

Intuitive Introduction to Fourier Transforms



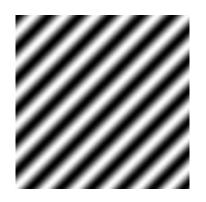


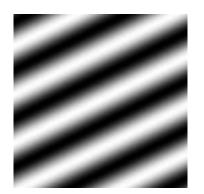
Intuition for Two Dimensions

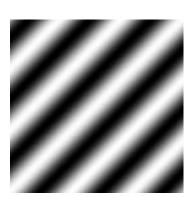
"dot"



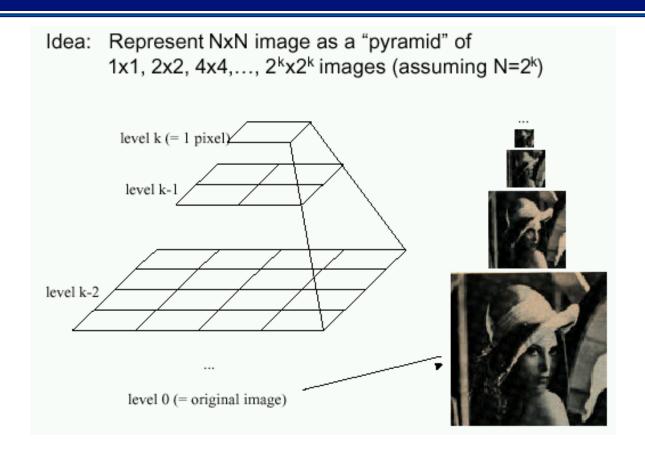
A measure of
image content at
this frequency and
orientation







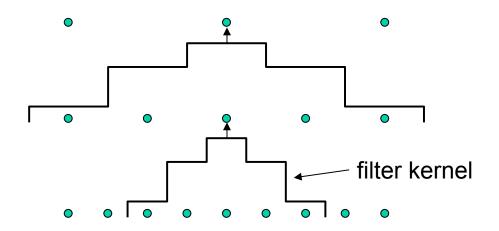
Multiresolution Image Representations



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

Gaussian Pyramids have all sorts of applications in computer vision

Gaussian Pyramid Construction



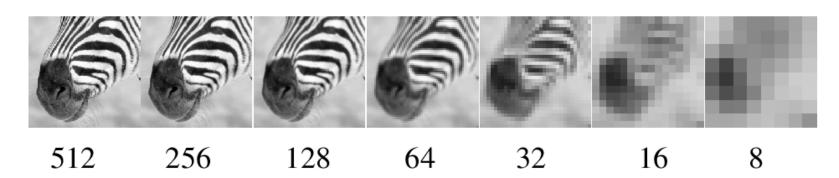
Repeat

- Filter
- Subsample

Until minimum resolution reached

can specify desired number of levels (e.g., 3-level pyramid)

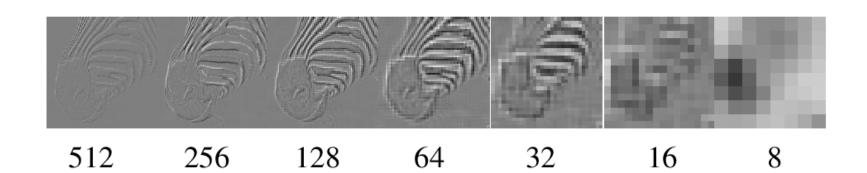
The whole pyramid is only 4/3 the size of the original image

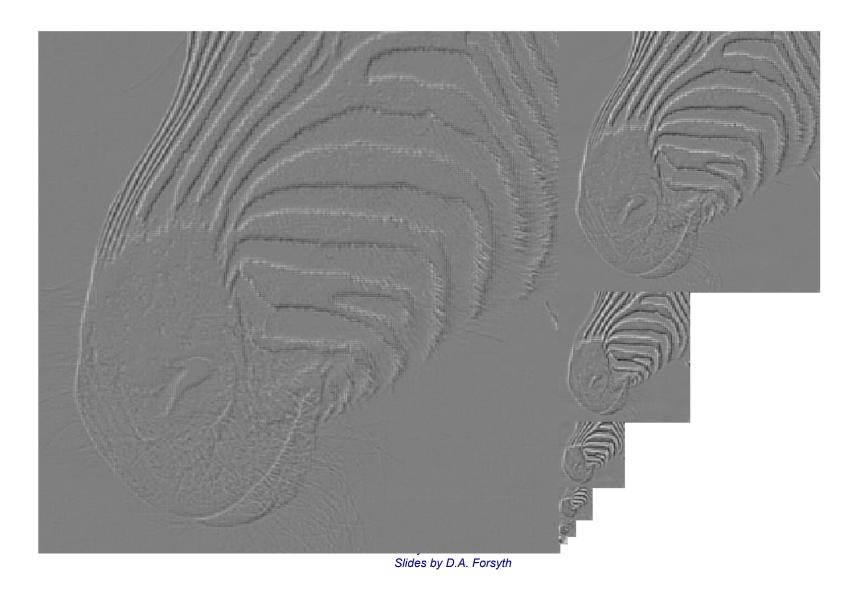


Slides by D.A. Forsyth

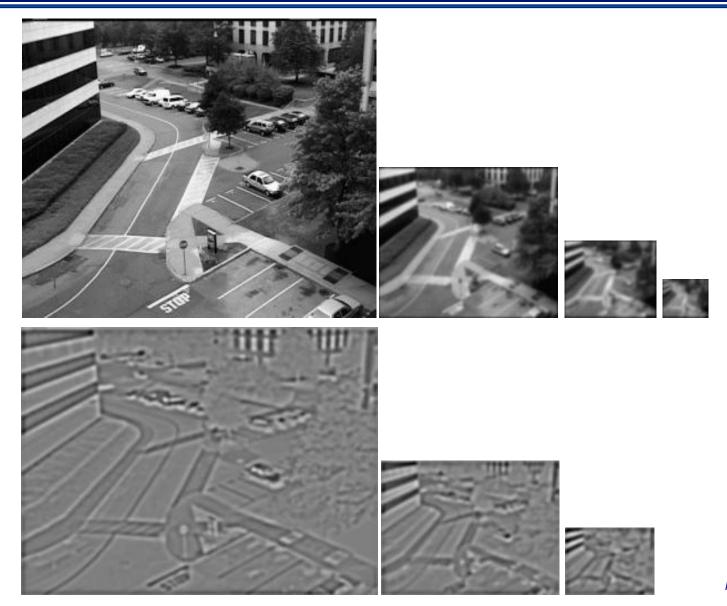
Laplacian Pyramid Construction

- Given input I
- Construct Gaussian pyramid I^G₁,...,I^G_n
- Take the difference between consecutive levels:
- $I^{L}_{k} = I^{G}_{k} I^{G}_{k-1}$
- Image I_k^L is an approximation of the Laplacian at scale number k
 - Laplacian is a band-pass filter: Both high frequencies (edges and noise) and low frequencies (slow variations of intensity across the image)

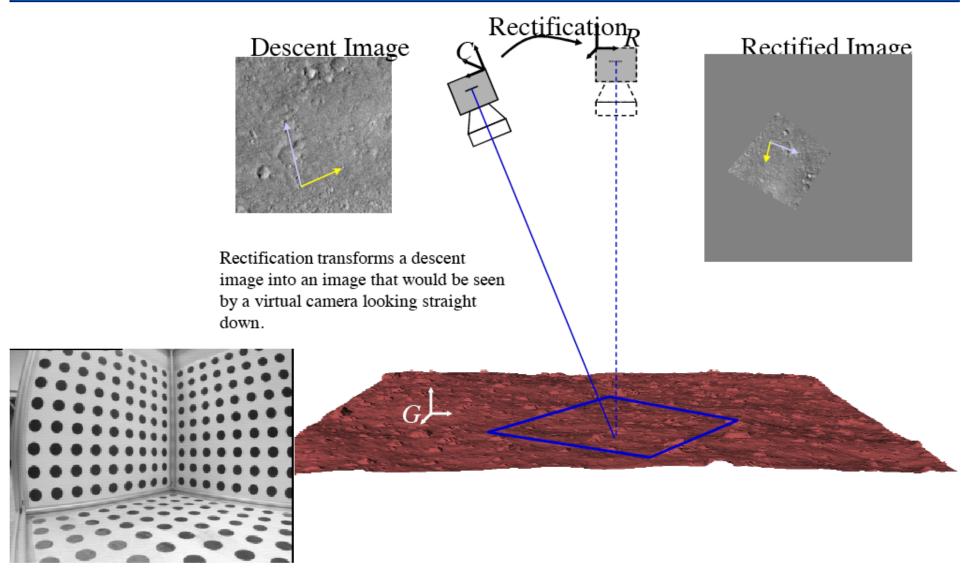




Another Example



Geometric Image Transformations (e.g. Barrel Distortion Correction, Rectification)



4-Jan-2011 ME/CS 132 Ihm - 60

Geometric Image Transformations (e.g. Barrel Distortion Correction, Rectification)

procedure inverseWarp(f, h, out g):

For every pixel x' in g(x')

- 1. Compute the source location $x = \hat{h}(x')$
- 2. Resample f(x) at location x and copy to g(x')

Algorithm 3.2 Inverse warping algorithm for creating an image g(x') from an image f(x) using the parametric transform x' = h(x).

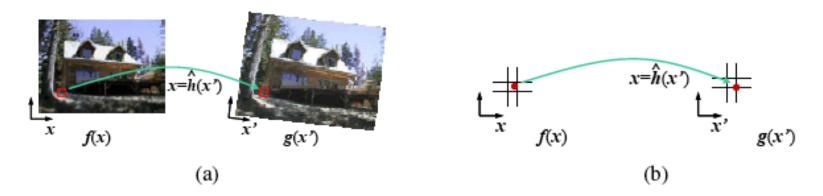


Figure 3.47 Inverse warping algorithm: (a) a pixel g(x') is sampled from its corresponding location $x = \hat{h}(x')$ in image f(x); (b) detail of the source and destination pixel locations.