


Overview

e Suppose a camera undergoes motion
X

e Some questions to consider:
— What sort of constraints are imposed on the imagery?
— Can you recover camera motion from imagery alone?

— Can you say anything about the world based on a imagery from a
moving camera?

— What happens if the camera is not calibrated?
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Motion Constraint

« Observe that X, X, and x, are coplanar, where x; and X,
are in normalized coordinates. This leads to the key
observation that:

0 -t, t,
T _
X, T RX =0 T=lt, 0 -t
-t, t, O

« Why?
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Essential Matrix

Consider: E=TR

E is called the essential matrix. It encodes the epipolar
geometry of calibrated pair of cameras.

Properties:

— Rank 2

— Non-zero singular values are equal
— Encodes only extrinsics

Note that in the projective plane, we can think of |, = Ex; or
l, = X,"E as projective lines. This gives us a mapping from
any point in image 1 to a line (the epipolar line) in image 2
and vice versa.

Each epipolar line contains the epipole, which is the image
of the other camera projection center.
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Epipolar Geometry

e Epipolar lined1, (>

XgExl =0

- Epipoles €1 ©2

Inage
orrespondences

E=TR

AN
‘1 e Crom e, Son s nd
€2 02
l1 ~ E1x5 l;-rxi = l> ~ Exq
Fei =0 lle= exEl =0

25-Jan-2011

aia- 5



25-Jan-2011

Epipolar Geometry (Uncalibrated Case)

If the camera is uncalibrated, we do not have normalized
coordinates. Suppose K is the (unknown) calibration
matrix. It still follows that

(K_lpz)T E(K_l p)=0

pgK‘TEK‘lp1 =0

ngpl =0

Still have epipolar constraint

Properties of F matrix
— Rank 2
— Encodes intrinsics and extrinsics
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Properties of the Fundamental Matrix

x'LFx'y =0
« Epipolar linesi1, {2

€1,€e2

 Epipoles

From Ma, Soatto, Kosecka and
02 Sastry: Invitation to 3D vision

1 ~ F1x, Ixl = o ~ Fx/
Fep = fe; = elF =0
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Solving for Essential / Fundamental Matrix

e 8 Point Algorithm (Longuett-Higgins)
— Requires at least 8 points (recall that E and F have 9 elements up
to scale) in non-degenerate configuration.

— Let ;.
£ of, f f,

F=|f, f, f. =

f? fs fg 1;9

— Each point correspondence gives us one equation of the form

Py Py fr+ Py Poy fot PryPos fat+ Pry Py st PryPoy fs+ Py Pos fo+ P Poxf7+ P, Psy fo+ PP, fo =0

— Stack these to get a linear system of the form
Af =0

— Right singular vector of A corresponding to smallest singular value
IS best solution in linear least squares sense
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Recall How this was done for Calibration

* Rewrite the last set of equations as linear system in m;

X1 v 41 0 0 0 0 - XXy =XYoo =X4 =X )My

O 0 O O X, Y Z 1 -yX -yX -yX -y |m,
X2 Y2 ZZ l O O O O - X2X2 - X2Y2 - XZZZ - X2 rr]_|_3
0O 0 0 0 X, X, X, 1 -yv,X, -V.Y, -Y¥.Z, -V,

Azmzﬂle =

X, Y Z 1 0 0 0 0 —-xX, —-xY —-xZ —Xx | m,

0 0 0O O Xn Yn Zn 1 - yan o ann o ynZn — Yo Ay

 For 6 non-coplanar points, matrix A has rank 11, hence 1-
dimensional kernel. Let A = UDVT be SVD. It follows that

m is column of V corresponding to smallest singular value
in D.
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Solving for Essential / Fundamental Matrix

— Recall that F has rank 2, while E has rank 2 and equal non-zero
singular values
— LetF=USVT

— For fundamental matrix, set smallest singular value to 0. For
essential matrix, also set non-zero singular values equal. Let S’ be
the updated matrix of singular values.

— F'=US'V'T is a good linear estimate of the fundamental
(respectively essential) matrix

« How do we recover motion parameters?
— From F, we can find the epipole as the smallest right singular
vector
— From E, we can find the translation vector as the smallest right
singular vector
— Why?
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Decomposing the Essential Matrix

Algebraically straightforward but messy. (BKP Horn)
Bottom line:

TT' = %Trace(EET)I ~EE'
T'TR=Cof(E)" - T.E

Where Cof(E) is the matrix of cofactors given by

E=(e & &)
Cof(E)=(e,xe, exe exe)

How many solutions do you get?
— Positive depth constraint
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Decomposing the Essential Matrix

e Linear solution is a good starting point, but in practice,
non-linear least squares is always used.

o Consider epipolar constraint directly

(RT)=argmin argmin > [|x,T.Rx, |f

(RT)eSOR)=R3

 How do you parameterize R?
— Euler angles

— Unit quaternion

— Skew symmetric matrix. Consider vector Q with angle of rotation
given by 6=||Q]| and axis of rotation given by w= Q\[|Q]].

R=exp@.) =1 +sin@)w, + (1-cosP))w’
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Recovering Scene Structure

e Given a calibrated camera undergoing motion (or two
calibrated cameras) we have shown:
— Epipolar constraint
— Decomposing into relative motion

 Now triangulate point correspondences to recover 3D up

to scale

— Scale can be constrained with one piece of metric information (e.g.
baseline, some object in the world)

 \What about uncalibrated?

— Cannot recover full metric reconstruction, but perspective or affine
reconstruction is possible.

— Self-calibration from motion is a possibility
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Metric

Upgrade requires L T
additional kn OWIedge:
(motion, scene structure, { k,, J |
calibration) ] ]

4
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Example of Motion Recovery from Epipolar

* Motion recovered directly from epipolar geometry

(RT)= argmin > |IX,T.Rx,|F

(RT)e0RB)=R3
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Other Considerations for Motion Estimation

* An alternative to decomposing the essential matrix is to
bypass it entirely.

e Directly parameterize point triangulation based on motion
estimate

e Drive parameter search by reprojection error.
— For current motion estimate, find 3D points by triangulation
— Reproject points into the image and compute error

— Use some optimization technigque to adjust motion estimate to
reduce error

— Typical: Levenberg-Marquardt algorithm

* |n general case (many frames), called bundle adjustment

— Drawbacks: potentially slow, potentially poorly conditioned,
potentially lots of outliers.
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Reconstruction from Bundle Adjustment

 Imagery from aingle camerss used to estimate the motion of the aircraft

» The estimated motion allows triangulation of scpomts using dense stereo
matching techniques

Reconstructed trajectorpl(ie) and tracked scene
points (ed)

Dense Scene
Reconstruction using
Vision Based Motion
Estimation
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Outlier Rejection Using Fundamental Matrix

 Use RANSAC with epipolar constraint.

— Requires only point correspondences and the assumption of
perspective projection
— Does not require calibration or prior motion knowledge.

e Error term:

& = p;Fpl
 Note: Scale of error iIs dependent on scale of F and image
scale

— Normalize F -> straightforward
— Normalize points -> Haralick
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Point Normalization

e Suppose you have a set of point {p;} that are distributed In
the image plane with some bias. It would be preferable to

have points {q;} that are centered at the origin and are
normalized.

* |F there was a linear transformation L with the property
that

Lpi =(

we could write

£=0, L FL g, =0, F'y
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Point Normalization

e Define
5_ p-mear{p})
std.dev({ p,})
L = PP

 Where P is the 3 x n whose columns consist of {p;} and P*
IS the Moore-Penrose pseudoinverse.

* Now just work with {g;} = {Lp;}
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Homography Example Revisited

Homoirdzse daratieputjectiejection
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Homography Revisited

* Recall that a homography relates a plane in space to the

two images.
e Equation of a plane:
n'X =D

o X =5;X; In left camera frame
o X =S,X, In right camera frame
o A little algebra shows:

1
$,%, = (R+ D n')sx H=(R+ I:)Tn )

 Decomposition of H into (R,T) is more messy algebra.
(Longuett-Higgins)
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Pose Estimation

e Suppose you have a calibrated camera with known 3D to
2D point correspondences. How do you recover the
camera extrinsics?

e Same technique used for calibration (DLT)

— This is not very robust -> ignores the scene geometry and uses an
algebraic constraint

— Could try RANSAC type approach, but that only handles outliers,
not noise

— Try to incorporate scene geometry.

e Typical pseudo-linear approaches write projection
equations in terms of 3D knowledge (Quan, etc.)

e |easts squares optimization works (Can be made very
efficient, e.g. Lu, Hager and Mjolsness)
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Catalog generation

— Initial orbits used to build catalog of
landmarks with associated descriptors

— Bundle adjustment techniques + partial
state information (attitude from star tracker,
distance from altimeter, etc.) used to find
3D positions of landmarks in frame of small

body

3D Reconstruction and Trajectory
Recovery
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0.9

0.8

Test imagery

Blue points = all 3D points recovered

Green points = reconstructed camera
positions
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Localization
— Bearing angles of landmarks from imagery and 3D coordinates from

fg;iﬁui{ D{;.
rn{/' Pose Estimation on Small Body
1
— Landmarks are identified during later orbits and matched to catalog
catalog are supplied to onboard estimator
— Robust vision based solution of 6 DoF pose (position and attitude) from
matched landmarks used as sanity check on estimator
Landmark Detection
and vision based

localization
— Synthetic imagery of small
body (=500 m radius) from 2
km orbit with known trajectory
— Vision based localization error
~10 m. Estimator will do even

error = (347 m, 2.66 m, -6.74 m)

400
200
1]
-200
=400

better.
Left pane: Imagery with detected landmarks shdwat = rejected as outli€dreen = accepted
Right pane: Recovered position overlayed on ground trytctoay. Vision based position errors shown
aia- 25
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Mathematical Digression

* Suppose you have two sets of 3D points {P;} and {Q;}
related by

Qi = RR"'T

« How do you find (R,T)?
 Problem is referred to as exterior orientation (BKP Horn)
— Subtract mean from {P;} and {Q;}

— Solve orthogonal Procrustes problem to find R
— Find T in terms of means of {P;} and {Q;}
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Mathematical Digression

P=mear({R}) Q=mear({Q})
Pli — R _I—D Qli :Qi _6

 View {P’;} and {Q’} as column vectors and stack them into
3 x n matrices P’ and Q’.

R=Q'PT=USV"
R=UV"
T=Q-RP
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Visual Odometry using Stereo

e Given a calibrated stereo pair, you can measure vehicle
ego-motion

o OL “““ & :::::;:3"": ................................ & \‘fbﬁ ®
o — 3 .
o Rigidly attached ?

e Triangulation from Stereo gives coordinates of world
points in camera reference frame.
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Visual Odometry using Stereo

e Given a calibrated stereo pair, you can measure vehicle
ego-motion

e Get solution for 3D points at timestep 0 and timestep 1.

« Solving for Euclidean motion between points equivalent to
solving for (e.g. left) camera motion.
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Visual Odometry in Practice

Status

Used extensively on
MER

256x256 imagery
processed in ~ 3
minutes on RAD6000
MER flight processor

o

Baselined for MSL;

g needs to run faster
%‘2 (eg. 2-6x). Approach:
either RAD750 or
4

Mobility Avionics
Module

o
o
S}
&
8
3y
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“Open loop™ driving using Closed loop driving using
wheel odometry visual odometry
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Visual Odometry on Mars

Vil Oibemtry Resiilti o Bavio plav el
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Homework

e Read Szeliski 7.2.

 Problems (due 2/8/11):

1. Implementthe 8-point algorithm.

2. For the included dataset from Mars Hill, plot the expression & = pg Fp, over
all point pairs. Can you easily pick out the outliers?

3. Extra credit: Implement RANSAC using the epipolar constraint instead of
homographies. Show that the former has more inliers on the Mars Hill
dataset than the latter.
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