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Overview
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• Suppose a camera undergoes motion

• Some questions to consider:
– What sort of constraints are imposed on the imagery?

– Can you recover camera motion from imagery alone?

– Can you say anything about the world based on a imagery from a 
moving camera?

– What happens if the camera is not calibrated?
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Motion Constraint
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• Observe that X, x1 and x2 are coplanar, where x1 and x2
are in normalized coordinates. This leads to the key 
observation that:

• Why?
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Essential Matrix
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• Consider: 
E is called the essential matrix. It encodes the epipolar 
geometry of calibrated pair of cameras. 

• Properties:
– Rank 2

– Non-zero singular values are equal 

– Encodes only extrinsics

• Note that in the projective plane, we can think of l2 = Ex1 or 
l1 = x2

TE as projective lines. This gives us a mapping from 
any point in image 1 to a line (the epipolar line) in image 2 
and vice versa. 

• Each epipolar line contains the epipole, which is the image 
of the other camera projection center.

RTE ×=



Epipolar Geometry

Image
correspondences

• Epipolar lines

• Epipoles 
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RTE ×=

From Ma, Soatto, Kosecka and 
Sastry: Invitation to 3D vision



Epipolar Geometry (Uncalibrated Case)

25-Jan-2011 aia- 6ME/CS 132

• If the camera is uncalibrated, we do not have normalized 
coordinates. Suppose K is the (unknown) calibration 
matrix. It still follows that

• Still have epipolar constraint
• Properties of F matrix

– Rank 2

– Encodes intrinsics and extrinsics
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Properties of the Fundamental Matrix

Image
correspondences

• Epipolar lines
• Epipoles 

From Ma, Soatto, Kosecka and 
Sastry: Invitation to 3D vision

25-Jan-2011 ME/CS 132 aia- 7



Solving for Essential / Fundamental Matrix
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• 8 Point Algorithm (Longuett-Higgins) 
– Requires at least 8 points (recall that E and F have 9 elements up 

to scale) in non-degenerate configuration. 

– Let 

– Each point correspondence gives us one equation of the form

– Stack these to get a linear system of the form

– Right singular vector of A corresponding to smallest singular value 
is best solution in linear least squares sense
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Recall How this was done for Calibration
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• Rewrite the last set of equations as linear system in mij

• For 6 non-coplanar points, matrix A has rank 11, hence 1-
dimensional kernel. Let A = UDVT be SVD. It follows that
m is column of V corresponding to smallest singular value 
in D. 
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Solving for Essential / Fundamental Matrix
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– Recall that F has rank 2, while E has rank 2 and equal non-zero 
singular values

– Let F = USVT

– For fundamental matrix, set smallest singular value to 0. For 
essential matrix, also set non-zero singular values equal. Let S’ be 
the updated matrix of singular values.

– F’ = US’VT is a good linear estimate of the fundamental 
(respectively essential) matrix

• How do we recover motion parameters? 
– From F, we can find the epipole as the smallest right singular 

vector

– From E, we can find the translation vector as the smallest right 
singular vector

– Why?



Decomposing the Essential Matrix
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• Algebraically straightforward but messy. (BKP Horn)
• Bottom line:

• Where Cof(E) is the matrix of cofactors given by

• How many solutions do you get? 
– Positive depth constraint
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Decomposing the Essential Matrix
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• Linear solution is a good starting point, but in practice, 
non-linear least squares is always used. 

• Consider epipolar constraint directly

• How do you parameterize R?
– Euler angles

– Unit quaternion

– Skew symmetric matrix. Consider vector Ω with angle of rotation 
given by θ=||Ω|| and axis of rotation given by ω= Ω\||Ω||. 
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Recovering Scene Structure
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• Given a calibrated camera undergoing motion (or two 
calibrated cameras) we have shown:
– Epipolar constraint

– Decomposing into relative motion

• Now triangulate point correspondences to recover 3D up 
to scale
– Scale can be constrained with one piece of metric information (e.g. 

baseline, some object in the world)

• What about uncalibrated?
– Cannot recover full metric reconstruction, but perspective or affine 

reconstruction is possible.

– Self-calibration from motion is a possibility



Scene Structure in Uncalibrated Case
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– fd

Projective

Affine

Metric

Upgrade requires 
additional knowledge: 
(motion, scene structure, 
calibration)



Example of Motion Recovery from Epipolar
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• Motion recovered directly from epipolar geometry
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• An alternative to decomposing the essential matrix is to 
bypass it entirely.

• Directly parameterize point triangulation based on motion 
estimate

• Drive parameter search by reprojection error.
– For current motion estimate, find 3D points by triangulation

– Reproject points into the image and compute error

– Use some optimization technique to adjust motion estimate to 
reduce error

– Typical: Levenberg-Marquardt algorithm

• In general case (many frames), called bundle adjustment
– Drawbacks: potentially slow, potentially poorly conditioned, 

potentially lots of outliers.
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Reconstruction from Bundle Adjustment

Scene Dense Scene 
Reconstruction using 
Vision Based Motion 
Estimation

• Imagery from a single camerais used to estimate the motion of the aircraft

• The estimated motion allows triangulation of scene points using dense stereo 
matching techniques

Reconstructed trajectory (blue) and tracked scene 
points (red)
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Outlier Rejection Using Fundamental Matrix

25-Jan-2011 aia- 18ME/CS 132

• Use RANSAC with epipolar constraint. 
– Requires only point correspondences and the assumption of 

perspective projection

– Does not require calibration or prior motion knowledge.

• Error term:

• Note: Scale of error is dependent on scale of F and image 
scale
– Normalize F -> straightforward

– Normalize points -> Haralick
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Point Normalization
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• Suppose you have a set of point {pi} that are distributed in 
the image plane with some bias. It would be preferable to 
have points {qi} that are centered at the origin and are 
normalized. 

• IF there was a linear transformation L with the property 
that

we could write 
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Point Normalization
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• Define

• Where P is the 3 x n whose columns consist of {pi} and P+

is the Moore-Penrose pseudoinverse. 

• Now just work with {qi} = {Lpi}
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Homography Example Revisited
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Homography based outlier rejectionF-matrix based outlier rejection



• Recall that a homography relates a plane in space to the 
two images. 

• Equation of a plane:

• X = s1x1 in left camera frame
• X = s2x2 in right camera frame
• A little algebra shows:

• Decomposition of H into (R,T) is more messy algebra. 
(Longuett-Higgins)

Homography Revisited
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• Suppose you have a calibrated camera with known 3D to 
2D point correspondences. How do you recover the 
camera extrinsics?

• Same technique used for calibration (DLT)
– This is not very robust -> ignores the scene geometry and uses an 

algebraic constraint

– Could try RANSAC type approach, but that only handles outliers, 
not noise

– Try to incorporate scene geometry.

• Typical pseudo-linear approaches write projection 
equations in terms of 3D knowledge (Quan, etc.)

• Leasts squares optimization works (Can be made very 
efficient, e.g. Lu, Hager and Mjolsness)

Pose Estimation
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Bundle Adjustment on Small Body

• Catalog generation
– Initial orbits used to build catalog of 

landmarks with associated descriptors
– Bundle adjustment techniques + partial 

state information (attitude from star tracker, 
distance from altimeter, etc.) used to find 
3D positions of landmarks in frame of small 
body

Test imagery

Blue points = all 3D points recovered

Red points = 3D points 
recovered/refined in current image

Green points = reconstructed camera 
positions

3D Reconstruction and Trajectory 
Recovery
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Pose Estimation on Small Body

• Localization
– Landmarks are identified during later orbits and matched to catalog
– Bearing angles of landmarks from imagery and 3D coordinates from 

catalog are supplied to onboard estimator 
– Robust vision based solution of 6 DoF pose (position and attitude)  from 

matched landmarks used as sanity check on estimator

Landmark Detection 
and vision based 
localization

– Synthetic imagery of small 
body (~500 m radius) from 2 
km orbit with known trajectory

– Vision based localization error 
~10 m. Estimator will do even 
better.

Left pane: Imagery with detected landmarks shown. Red = rejected as outlier. Green = accepted

Right pane: Recovered position overlayed on ground truth trajectory. Vision based position errors shown 
for each frame.
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• Suppose you have two sets of 3D points {Pi} and {Qi} 
related by 

• How do you find (R,T)? 
• Problem is referred to as exterior orientation (BKP Horn)

– Subtract mean from {Pi} and {Qi}

– Solve orthogonal Procrustes problem to find R

– Find T in terms of means of {Pi} and {Qi}

Mathematical Digression
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• Let

• View {P’i} and {Q’i} as column vectors and stack them into 
3 x n matrices P’ and Q’.

Mathematical Digression
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• Given a calibrated stereo pair, you can measure vehicle 
ego-motion

• Triangulation from Stereo gives coordinates of world 
points in camera reference frame.

Visual Odometry using Stereo
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Rigidly attached



• Given a calibrated stereo pair, you can measure vehicle 
ego-motion

• Get solution for 3D points at timestep 0 and timestep 1. 
• Solving for Euclidean motion between points equivalent to 

solving for (e.g. left) camera motion. 

Visual Odometry using Stereo

25-Jan-2011 aia- 29ME/CS 132

t = 0

t = 1



Visual Odometry in Practice
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Status

Used extensively on 
MER

256x256 imagery 
processed in ~ 3 
minutes on RAD6000 
MER flight processor

Baselined for MSL; 
needs to run faster 
(eg. 2-6x). Approach: 
either RAD750 or 
Mobility Avionics 
Module
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Visual Odometry for Slip Estimation and Control

“Open loop” driving using
wheel odometry

Closed loop driving using
visual odometry 
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Visual Odometry on Mars
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• ..\..\..\..\tmp\homog\paolo\index.html



Homework
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• Read Szeliski 7.2.

• Problems (due 2/8/11):
1. Implement the 8-point algorithm. 
2. For the included dataset from Mars Hill, plot the expression                     over 

all point pairs. Can you easily pick out the outliers?
3. Extra credit: Implement RANSAC using the epipolar constraint instead of 

homographies. Show that the former has more inliers on the Mars Hill 
dataset than the latter.
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