
CALIFORNIA INSTITUTE OF TECHNOLOGY

ME/CS 132a, Winter 2011

Lab #2 Due: Mar 10th, 2011

Part I

Data Association for SLAM

1 Introduction

For this part, you will experiment with a simulation of an EKF SLAM system and investigate
approaches to robust data association. The scenario is a mobile robot with wheel odometry and a
laser range-finder sensor which is driven around a square corridor. There are point features around
the corridor whose positions relative to the robot can be observed by the sensor. The features are
mapped and their locations estimated along with that of the robot within an Extended Kalman
Filter (EKF).

2 Starting the Simulation

The main program of the SLAM simulation is the text file slam.m. This is a program in the Matlab
M-file format. Other files in the tools/ directory contain functions called by the main program.

In the main Matlab window, type slam to start the simulation. This starts the main function
defined in slam.m. A window marked ‘Figure 1’ will pop up with a view of the simulation scenario:
a set of red points represent the ground-truth locations of landmark features which the robot is
able to observe as it moves around a square, corridor-like trajectory. The simulation will be paused
and pressing Enter will then take it through the Action Sequence below, pausing again after each
action. At any time when the program is paused you can hit Control-C to come out (then type
slam to start again).

3 Displays & Output

Alongside the main Matlab window, various displays will pop up which have the following roles:

Figure 1 Ground Truth Shows the ground-truth layout of features
Figure 2 SLAM Map Shows the latest estimated robot and feature positions with uncer-

tainty ellipses (in blue) on top of the ground truth positions (in red)
Figure 3 Observations Shows the latest sensor measurements and uncertainties in these (in

green) in the robots coordinate frame
Figure 6 Compatibility Shows how feature measurements are checked for matching using dif-

ferent methods
Figure 7 Matching Shows the assignments by different methods of which observations

match which features

1

The simulation also outputs data association information at each timestep in text form. To
help explain the output, an example is given below. Seven observations are made and the data
association algorithm attempts to determine if these observations correspond to landmarks in the
map or are of a previously unobserved landmark. In this example, the algorithm correctly matched
the observations of the landmarks with IDs 14, 6, 8, and 18. It also correctly recognized that the
fifth observation was of a new landmark (indicated by 0 and then given the ID 2 when it is added
to the map). The observation of landmark 15 was incorrectly associated with landmark 16 (a false
positive). The observation of landmark 17 was incorrectly thought to be a new landmark (a false
negative).

--
Step: 9
GROUND TRUTH: 14 15 6 17 0 8 18
MY HYPOTHESIS: 14 16 6 0 0 8 18
Correct (1/0)? 1 0 1 0 1 1 1

NEW: 2
Hypothesis not in agreement with ground truth
True positives: 4
True negatives: 1
False positives: 1
False negatives: 1
--

After the simulation is complete, the statistics for the data association performance over the
entire run is displayed as well as a graph of the error and uncertainty of the vehicle state estimate.

4 Action Sequence

Each time you hit Enter, the simulation will carry out the next action of the following sequence
(note that at the very start of the simulation, there are extra Get observations and Update steps
before the robot moves for the first time to stock the map with some initial features):

1 Robot moves The robots motion is estimated with odometry and displayed in Fig-
ure 2.

2 Get observations The sensor gets a set of measurements and the results are displayed
in Figure 3.

3, 4, 5 Compatibility The robot checks which measurements match up to mapped features
(Figure 6). Trying different methods is the goal of this practical.

6 Matching Using one of these methods (as selected in the program) a match set
is decided on and these are displayed in Figure 7.

7 Update The robot and feature positions are updated, and any new features
are added to the map (Figure 2).

After all of these actions, one full step is complete and the program cycles back to action 1.

2

5 Simulation Parameters

The file slam.m contains various parameter settings which can be adjusted to produce different
behavior.

• configuration.step by step: when set to 1 the program will pause after every movement
step allowing you to analyze each data association solution in detail; set it to zero and the
program will run continuously right to the end. You will see the robot come right round the
square corridor and close the loop at the end. Observe how the uncertainty in the positions
of new features (and in the position of the robot) increases as the robot moves around the
loop, but then shrinks back down once the robot manages to re-observe early features and
close the loop. This is classic SLAM behavior.

• configuration.people: set to 1 and rogue measurements will be reported by the sensor,
corresponding to the effect of people walking in front of the robot.

• configuration.odometry: set to 0 and odometry will not be available, so the data association
algorithm will have to work with large motion error and uncertainty.

5.1 Measurement Uncertainty

It is possible to change the parameters of the sensor to simulate a range-finder which is more or
less accurate, or has a different range. You can try increasing the measurement standard deviations
and see how the feature ellipses change.

• sensor.srho: the standard deviation of range measurements from the sensor.

• sensor.stita: the standard deviation of angular measurements.

• sensor.range: the depth range of the sensor.

• sensor.minangle, sensor.maxangle: the angular range of the sensor.

6 Assignment

Initially, the simulator has a perfect data association algorithm provided by the Ground Truth.
Set configuration.step by step to 0 and let the simulation continue to the end where the loop
is closed. You can see that the quality of the estimate is good since the estimated position of
the landmarks and vehicle is close to the ground truth. Also, the uncertainty in the estimate is
good since error typically falls within the 3 sigma uncertainty bounds. In the real world, ground
truth is not available so a data association algorithm must be used to determine which landmarks
an observation corresponds to. You will use this simulation to investigate three different data
association algorithms.

1. [5 points] Try the Nearest Neighbor (NN) data association algorithm by changing the appro-
priate line in data association.m. Comment on the quality of the estimate produced. Set
configuration.step by step to 1 (true) to look at the data association process for a step
in detail. Why does Nearest Neighbor sometimes fail?

3

2. [10 points] You will now implement a data association algorithm called SINGLES which avoids
using ambiguous observations. The file SINGLES.m has been provided to get you started.
Be sure change data association.m to use SINGLES rather than NN. Your algorithm should
associate an observation with a landmark if:

• no other observation is individually compatible with that landmark

• and no other landmark is individually compatible with that observation.

SINGLES should be able to cope better by rejecting the ambiguous observations resulting from
the pairs of nearby landmarks in this environment.

3. [5 points] Now include moving people in the simulation by setting configuration.people to
1 and try the NN and SINGLES algorithms. Why do they fail?

4. [5 points] Try using the Joint Compatibility Branch and Bound Algorithm (JCBB) imple-
mented for you in JCBB.m. Why can this algorithm cope with people better?

5. [10 points] Try each algorithm without odometry by setting configuration.odometry to 0.
This results in a larger motion uncertainty. How do the different algorithms perform?

6. [10 points] Moving people are initially added to the map as a new landmark. In later
timesteps, observations of these spurious landmarks are rejected by JCBB. In slam.m, mod-
ify the commented-out code starting from Line 107 to include a map maintenance procedure.
The procedure should eliminate all features seen only once and more than two steps ago. This
will remove most of those spurious landmarks from the map and so reduce the update time
and the chance of future data association to these spurious landmarks.

Part II

EKF Localization

1 Introduction

In this lab you will produce a navigation system for a mobile robot. This system will build on the
work done in the previous lab. You will use the system you made then to make observations of
visual landmarks which will be used to determine the position of the robot as it moves through a
known map. The localization algorithm you should use is the Extended Kalman Filter which has
been discussed in class.

For this lab you will be provided with a dataset which includes:

• Sensor measurements from a robot as it moves through the environment:

– Timestamps

– Motor control inputs

– Images from the stereo pair (right camera only)

– The depth map from the stereo pair

• Calibration information:

– Camera-frame to robot-frame transformation

4

• A map of known landmarks:

– A reference image for each landmark

– The 2D location of each landmark

• The approximate pose for the robot at the starting position

You will need to write code for several different components of the localization system. Each of
these is described below. You may use Matlab or another programming language if you prefer.

2 EKF Localizer

A localization algorithm should produce an estimate of the pose of the robot given the map and the
sensor measurements. In this assignment, we assume that the robot’s motion is restricted within
a plane, and therefore reduce the localization problem to a 2D one. The pose of the robot can be
represented using its 2d coordinates (x, y) and its orientation θ. The estimate can be maintained
in an Extended Kalman filter with state

x̂ =

 x̂
ŷ

θ̂

 (1)

and 3× 3 covariance matrix

P =

 Pxx Pxy Pxθ
Pyx Pyy Pyθ
Pθx Pθy Pθθ

 (2)

Your system should perform the EKF prediction step each time it gets the control inputs and an
EKF update step each time it gets a new visual observation. In the dataset we supply, we have
synchronized the sensors to have the same timestep. In this case, apply the motion prediction first
and then the update step.

3 Motion Model

This module is needed for the EKF prediction. This module updates the estimate of the robot
pose according to the latest motor control inputs, u = [u1, u2]>. The uncertainty inherent in the
motion also leads to an increase in the uncertainty in the robot pose estimate.

x̂(k|k − 1) = f(x̂(k − 1|k − 1),u) (3)

P(k|k − 1) = FxP(k − 1|k − 1)F>x + FuQF
>
u (4)

In the absence of any visual observations this module should allow you to estimate the trajectory
of the robot using dead reckoning.

The control inputs come in the form of a forward and an angular velocity w.r.t. the body frame
which can then be converted into velocities in the map frame using the current robot orientation.
This gives the continuous-time motion model:

ẋ = u1 cos θ (5)

ẏ = u1 sin θ (6)

5

Figure 1: Observations of known landmarks are used to localize the robot.

θ̇ = u2 (7)

In the dataset, we will provide recorded u1 (forward body velocity) and u2 (angular body
velocity) in m/s and rad/s, respectively. You can assume the covariance matrix Q to be diagonal:

Q =

 σ2
x

σ2
y

σ2
θ

 (8)

with σx = σy = 0.5 cm and σθ = 2 deg.

4 Visual Observations

The robot is equipped with a stereo camera to make observations of visual landmarks in the
environment. These landmarks are the images that you detected on the wall in the previous lab.
The first stage is to use your code from the previous lab to determine the position of these landmarks
relative to the robot for each image in the sequence. These are your visual observations.

Use the SIFT detector to determine the pixel location of the landmark and your homography
code to find the pixel coordinates for the four corners of the landmark. Then use the stereo depth
map in the dataset to determine the coordinates of the corner points in the camera frame. The
(x, z) coordinates of the corners of each landmark in the camera frame are the observations for your
EKF system. Although the dataset gives the 3D coordinates of the corners, we have ignored the
y-component because the y-axis in the camera frame corresponds the z-axis in the map frame, and
therefore provides no useful information. Refer to the end of this section for the convention used
in converting a point in the robot’s body frame to that in the camera frame.

You will then have to produce an Observation Model. This model can predict what the obser-
vation would be given a pose for the robot and the known position of the landmark.

z(k|k − 1)︸ ︷︷ ︸
Prediction

= h(x̂(k|k − 1))︸ ︷︷ ︸
Observation Model

(9)

It is the difference between the prediction and the true observation which the EKF uses to
improve the state estimate during the EKF update.

6

x̂(k|k)︸ ︷︷ ︸
new state estimate

= x̂(k|k − 1) + Wν(k)︸ ︷︷ ︸
prediction and correction

(10)

P(k|k)︸ ︷︷ ︸
new covariance estimate

= P(k|k − 1)− WSW>︸ ︷︷ ︸
update decreases uncertainty

(11)

where
innovation︷︸︸︷

ν(k) =

measurement︷︸︸︷
z(k) −

predicted measurement︷ ︸︸ ︷
z(k|k − 1) (12)

W = P(k|k − 1)H>x S
−1︸ ︷︷ ︸

Kalman Gain

(13)

S = HxP(k|k − 1)H>x + R︸ ︷︷ ︸
Innovation Covariance

(14)

Note that the number of observations in each timestep may vary. This is no problem for
the EKF algorithm. Simply concatenate your observations and predictions into one long vector.
Do the same for the observation Jacobian matrix H ensuring that the row ordering corresponds
to the observation order you chose for the prediction and observation vectors. R is created as a
block diagonal matrix with each block corresponding to each observation. In this assignment, use
σx = 2 cm and σz = 5 cm for the x and z component (observed in the camera frame), respectively.

You will also be given the rigid body transformation (Rcb, Tcb) ∈ SE(2) required to transform
a point from the camera reference frame to the robot body frame (the subscript cb means “from
body b to camera c”). A 2D point pb =

[
pbx, p

b
y

]> in the body frame is transformed to a 2D point
pc = [pcx, p

c
z]
> in the camera frame according to: pc = Rcbp

b +Tcb. A similar transformation can be
used to transfer between the robot body frame and the map frame if needed.

5 Assignment

Create an EKF based localization system as described above. In your report:

1. [10 points] Show the equations you use for your (discrete-time) motion model and its Jacobians
w.r.t the robot pose and the control input, as they would appear in Equations (3) and (4).

2. [10 points] Show the equations you use for your observation model and its Jacobian w.r.t the
robot pose.

3. [25 points] Make a 2D plot showing the map, the dead reckoning trajectory, and the estimated
trajectory using your localization system. Include 3σ covariance ellipses for the uncertainty
in (x, y) position of the robot at several locations along this trajectory.

7

