Search Algorithms II

ME/CS 132b Advanced Robotics: Navigation and Perception 4/14/2011

Before we get started...

Homework Sets #1 and #2 due today

Homework Set #3 (of 3) assigned today

Due one week from today (4/21)

Lab #1 assigned one week from today (4/21)

Due three weeks from today (5/5)

Term project kickoff approximately two and a half weeks from today (5/3)

Recap of Search Algorithms I

Breadth-First Search - FIFO

Depth-First Search - LIFO

Dijkstra's Algorithm - Evaluate all nodes that enter the open list

A* Search - Heuristic search

Optimal Paths for Wheeled Vehicles

In some instances optimal paths for wheeled vehicles can be computed to provide better estimates of cost-to-go

Dubins Curves (Ackermann)

Reeds-Shepp Curves (Ackermann)

Balkcom-Mason Curves (Differential Drive)

S	ummary
Variety of search algor degrees of optimality a	ithms exist with different nd efficiency
A* search provides an admissible heuristic	optimal solution with an
WA* is fast but genera	tes a sub-optimal solution
AWA*/ARA* generate an initial sub-optimal solutio and iteratively refines the path	
D*/D*Lite/Field D* re searches to path effect	use information from previous ively in dynamic graphs
April 14, 2011	ME/CS 132

Next Lecture (4/19)

39

40

Navigation and Control

Path Following

Hierarchical Navigation

•	-	
[Hansen 07a] E.A. Hansen and R. Zhou, "Anytime Heuristic Search". Journal of Aritifical Intelligence Research 28 (2007) pages 267-297.	[Balkcom 02a] D.J. Balkcom and M. Mason, "Time Optimal Trajectories for Bounded Velocity Differential Drive Vehicles," International Journal of Robotics Research, 21(3): 199-217, 2002.	
[Likhachev 04a] Maxim Likhachev, Geoff Gordon an Sebastian Thrun, "ARA*: Anytime A* with Provable Bounds on Sub-Optimality, "Advances in Neural Information Processing Systems 16 (NIPS), MIT Press, Cambridge, MA, 2004.	d [Carsten 07a] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, "Global Path Planning On-Board the Mars Exploration Rovers." Proceedings of the 2007 IEEE Aerospace Conference. 2007.	
[Dubins 57a] L.E. Dubins. "On Curves of Minimum Length with a Constraint on Average Curvature and with Prescribed Initial and Terminal Positions and Tangents," American Journal of Mathematics, 79: (1957) pages 497-516, 1957.	[Knepper O6a] R. Knepper and A. Kelly, "High Performance State Lattice Planning Using Heuristic Look-Up Tables." Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, October, 2006, pp. 3375-3380.	
[Reeds 90a] J.A. Reeds and L.A. Shepp. "Optimal Paths for a Car that Goes Both Forwards and Backwards," Pacific Journal of Mathematics, 145(2): pages 367-393, 1990.	[Ferguson 05a] D. Ferguson and A. Stentz, "Field D*: An Interpolation-Based Path Planner and Replanner." Proceedings of the International Symposium on Robotics Research, October, 2005.	
[LaValle 06a] S. LaValle, "Planning Algorithms". Cambridge: Cambridge University Press. ISBN 0521862051.		
April 14, 2011 M	IE/CS 132	41

Document/Image References (cont.)

[Likhachev 05a] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, "Anytime Dynamic A*: The Proofs." Tech. Report CMU-RI-TR-05-19, Robotics Institute, Carnegie Mellon University, June, 2005

[Stentz 95a] A. Stentz, "The Focussed D* Algorithm for Real-Time Replanning." Proceedings of the International Joint Conference on Artificial Intelligence, August, 1995.

[Koenig 02a] S. Koenig and M. Likhachev, "D* Lite." In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 476-483, 2002.

April 14, 2011

ME/CS 132