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Before we get started...

Homework Sets #1 and #2 due today

Homework Set #3 (of 3) assigned today

    Due one week from today (4/21)

Lab #1 assigned one week from today (4/21)

    Due three weeks from today (5/5)

Term project kickoff approximately two and a half 
weeks from today (5/3)
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Search Algorithms Lectures Outline

Depth-First Search

Breadth-First Search

Dijkstra’s Algorithm

A* Search

Metrics for Feasible Lattices

Anytime Search

Search in Dynamic Graphs

Covers topics in 
Chapters 2, 12.3.2, 
and 15.3 in S. 
LaValle’s Planning 
Algorithms
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Recap of Search Algorithms I

Breadth-First Search - FIFO

Depth-First Search - LIFO 

Dijkstra’s Algorithm - Evaluate all 
nodes that enter the open list

A* Search - Heuristic search
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Metrics for Feasible Lattices

5
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Feasible Graphs

Edges are not necessarily 
simple lines

Optimality is determined 
by whether the heuristic is 
admissible

Efficiency is determined 
the accuracy of the 
heuristic

qI

qG

C = R2 × S1
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Review of Metrics

C = R2 × S1

qI

qG

qI

qG

qI

qG

L1 Metric L2 Metric L∞ Metric

1

1

1

1

1 1 1

L1 = 6 L2 =
�

42 + 22 = 4.47 L∞ = 4

Which metrics are admissible heuristics 
in these types of graphs?
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Optimal Paths for Wheeled Vehicles

In some instances optimal paths for 
wheeled vehicles can be computed to 
provide better estimates of cost-to-go

Dubins Curves (Ackermann)

Reeds-Shepp Curves (Ackermann)

Balkcom-Mason Curves (Differential Drive)
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Dubins Curves C-Space

Problem Setup

Two-Dimensional 
Configuration Space

Initial and Goal Constraints

Cost Function

C = R2 × S1

qI = (0, 0, 0) qG ∈ C

L (q̃, ũ) =

� tF

0

�
ẋ(t)2 + ẏ(t)2 dt

[Dubins 57a]

Dubins primitives
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Dubins Curves Motion Model

Motion Model Setup

Constant Forward Speed

Bounded Turning Radius

uvx|body = {1}

U = [−tan (φmax) , tan (φmax)]

ẋ =




ẋ
ẏ
θ̇



 =




cos(θ)
sin(θ)
u





φmax ∈
�
0,

π

2

�

Rate Equations

When                the solution is a straight lineφmax = 0

[Dubins 57a]
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Dubins Curves Shortest Paths

Optimal paths consists of no more 
than three motion primitives

where

therefore

(straight line)

{LRL,RLR,LSL,LSR,RSL,RSR}

S → u = 0

L → u = 1

R → u = −1

(left curve with                )

(right curve with                   )

φ = φmax

φ = −φmax

u =∈ {−1, 0, 1}

(6 base words)

[Dubins 57a]
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Dubins Curves Shortest Paths

Duration of each motion needs to 
be specified

where

{LαRβLγ , RαLβRγ , LαSdLγ , LαSdRγ , RαSdLγ , RαSdRγ}

α ∈ [0, 2π)

γ ∈ [0, 2π)

β ∈ (π, 2π)

d ≥ 0

qI

qG

RαSdLγ

α

γ
Lγ

Rα

Sd d

qI

qG

LαRβLγ

Lγ
Lα

Rβ β
α

γ

(6 base words)

[Dubins 57a]
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Dubins Curves Shortest Paths

Simpler notation

where
α ∈ [0, 2π)

γ ∈ [0, 2π)

β ∈ (π, 2π)

d ≥ 0

qI

qG

α

γ

Sd d

qI

qG

β
α

γ

C = {R,L}
{CαCβCγ , CαSdCγ} (2 base words)

not to be confused with       (configuration space)C

CαCβCγ CαSdCγ

Cα

Cα

Cγ

Cγ

Cβ

[Dubins 57a]
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Dubins Curves Words and Values

Methods for computing shortest 
Dubins curves

  Evaluate all six words and take 
the shortest path

  Precompute cell boundaries 
based on the relative pose of the 
goal configuration (see Figure 
15.5 in [LaValle 06a])

[Dubins 57a]

qI

qG

α

γ

Sd d

CαSdCγ

Cα

Cγ
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Dubins Metric

Can be used as a way to compute a more 
accurate cost-to-go in heuristic search

Consider three control set edges from 

qI

qG

qI

qG

qI

qG

cost-to-go
control set edge

qI
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Reeds-Shepp Curves C-Space

Problem Setup (similar to Dubins)

Two-Dimensional Configuration 
Space

Initial and Goal Constraints

Cost Function

C = R2 × S1

qI = (0, 0, 0) qG ∈ C

L (q̃, ũ) =

� tF

0

�
ẋ(t)2 + ẏ(t)2 dt

[Reeds 90a]

Reeds-Sheep 
primitives
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Reeds-Shepp Curves Motion Model

Motion Model Setup

Constant Forward or 
Backwards Speed

Bounded Turning Radius

φmax ∈
�
0,

π

2

�

Rate Equations

uvx|body ∈ {−1, 1}

uφ = [− tan (φmax) , tan (φmax)]

ẋ =




ẋ
ẏ
θ̇



 =




uvx|body cos(θ)
uvx|body sin(θ)
uvx|bodyuφ





[Reeds 90a]
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Reeds-Shepp Curves Shortest Paths

Optimal paths consists of no more 
than five motion primitives

where

(gear shift)

(48 base words)

[Reeds 90a]

{C|C|C,CC|C,CSC,CCu|CuC,C|CuCu|C,
C|Cπ/2SC,C|Cπ/2SCπ/2|C,C|CC,CSCπ/2|C}

|
C = {±L,±R}
CuCu (pair of curves with equal angles)

Cπ/2 (curve of exactly 90 degrees)
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Reeds-Shepp Curves Shortest Paths

Range of angles for each curve pair

[Reeds 90a]

Cα|Cβ |Cγ → α ∈ [0,π] ,β ∈ [0,π] , γ ∈ [0,π]

Cα|CβCγ → α ∈ [0,β] ,β ∈ [0,π/2] , γ ∈ [0,β]

CαCβ |Cγ → α ∈ [0,β] ,β ∈ [0,π/2] , γ ∈ [0,β]

CαSdCγ → α ∈ [0,π/2] , γ ∈ [0,π/2] , d ∈ (0,∞)

CαCβ |CβCγ → α ∈ [0,β] ,β ∈ [0,π/2] , γ ∈ [0,β]

Cα|CβCβ |Cγ → α ∈ [0,β] ,β ∈ [0,π/2] , γ ∈ [0,β]

Cα|Cπ/2SdCπ/2|Cγ → α ∈ [0,π/2] , γ ∈ [0,π/2] , d ∈ (0,∞)

Cα|Cπ/2SdCγ → α ∈ [0,π/2] , γ ∈ [0,π/2] , d ∈ (0,∞)

CαSdCπ/2|Cγ → α ∈ [0,π/2] , γ ∈ [0,π/2] , d ∈ (0,∞)

(see Figure 15.7 
from [LaValle 06a])
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Comparison between Dubins and Reeds-Shepp curves

20

Reeds-Shepp Curves Shortest Paths
[Reeds 90a]

qI

qG
qI

qG

(Reeds-Shepp curve)(Dubins curve)

α α
β β

γ γ

CαCβCγ → α ∈ [0, 2π) ,β ∈ (π, 2π) γ ∈ [0, 2π)

Cα|Cβ |Cγ → α ∈ [0,π] ,β ∈ [0,π] , γ ∈ [0,π]
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Reeds-Shepp Curves Shortest Paths

Methods for computing shortest Reeds-
Shepp curves

  Brute-force computation of all 48 
(actually 46) solutions

  Determine word for shortest path by 
evaluating cell boundaries (see Section 
15.3.2 in [LaValle 06a] for reference)

Shortest paths can be used to evaluate 
the Reeds-Shepp metric

[Reeds 90a]

qI

qG

(Reeds Shepp curve)

α
β

γ

expensive to evaluate

can be difficult to evaluate
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Balkcom-Mason Curves C-Space

Problem Setup

Two-Dimensional 
Configuration Space

Initial and Goal Constraints

Cost Function

C = R2 × S1

qI = (0, 0, 0) qG ∈ C

L (q̃, ũ) =

� tF

0

�
ẋ(t)2 + ẏ(t)2 + |θ̇(t)| dt

Weights the cost of a turn-in-place

vx|body

ωz|body

Differential Drive Mobile Robot

[Balkcom 02a]
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Balkcom-Mason Curves Motion Model

Motion Model Setup

Forwards or Backwards 
Motion

Unbounded Bounded 
Turning Radius

Rate Equations

U = [−1, 1]× [−1, 1]

vx|body

ωz|body

Differential Drive Mobile Robot

ẋ =




ẋ
ẏ
θ̇



 =




vx|body cos(θ)
vx|body sin(θ)

ωz|body





[Balkcom 02a]
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Balkcom-Mason Curves Shortest Paths

Optimal paths consists of no 
more than nine motion 
primitives

40 total optimal curve types

Shortest paths can be used 
to evaluate the Balkcom-
Mason metric

Figure 15.12 from [LaValle 06a]

[Balkcom 02a]
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Anytime Search
Weighted A*, Anytime Weighted A*,     

and Anytime Repairing A*

25

ME/CS 132April 14, 2011 26

Faster, Suboptimal Search

Optimal solutions can be 
slow to compute in high-
dimensional, dense, or 
long-range planning

Inflated heuristics can 
speed up graph search

Solution cost will not be 
greater than optimal cost 
by 

f(n) = g(n) + w × h(n)

w ≥ 1wherew

focus 
search

qG

qI
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Original A*

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

h(1)

h(1)

h(2)

h(2)

h(2)

h(3)

h(3) 4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

h(1)

h(1)

h(2)

h(2)

h(2)

h(3)

h(3)

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

h(1)

h(1)

h(2)

h(2)

h(2)

h(3)

h(3) 4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

h(1)

h(1)

h(2)

h(2)

h(2)

h(3)

h(3)

step 7

step 1 step 2

step 3

(w = 1)

CLOSED

OPEN
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Weighted A*

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

h(3) h(3)

h(3)h(3)

h(3)

h(3)

h(3)

h(3)
h(6) h(6)

h(6)h(6)

h(6) h(6)

h(6)

h(6)

h(6) h(6)

h(9)

h(9)

h(9)

h(9) h(9)

h(9)

h(9)

h(9)

h(6)

h(6)

step 4

step 1 step 2

step 3

(w = 3)

OPEN

CLOSED
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Comparison of Solutions

4

7

1

2

3

8

5

4

qG

qI

4

5

1

1

h(1)

h(1)

h(2)

h(2)

h(2)

h(3)

h(3) 4

7

1

2

3

8

5

4

qI

4

5

1

1

h(3)

h(3)
h(6)

h(6)

h(9)

h(9)

h(6)

Optimal A* Search
Iterations: 7

Cost: 10

Weighted A* Search (          )
Iterations: 4

Cost: 13
not more than 3x 

difference

w = 3

qG
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Anytime Weighted A* Search

Search with a weighted 
heuristic to determine an 
upper bound of optimality

Can expand the same node 
multiple times (inadmissible 
heuristic)

[Hansen 07a]

qG

qI

Continue searching while 
pruning the tree of any nodes 
where g is greater than the 
best solutions found (so far)

g = 14

(suboptimal)

qG

qI

(improved)
g = 12

g > 14

g > 14
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Anytime Repairing A* Search

Also uses a weighted 
heuristic to determine an 
upper bound of optimality

[Likhachev 04a]

Reduces the heuristic inflation 
factor over multiple cycles

Reuses previous search by 
initializing OPEN with inconsistent 
states from previous search

(first iteration)

(second iteration)

CLOSED OPEN

OBSTACLE w = w1

w = w2, w2 < w1

f1

f2, f2 ≤ f1

qG

qI

qG

qI
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Search in Dynamic Graphs
D*, D* Lite, Field D*, and AD*

32
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Search in Dynamic Graphs

Thus far all graph are 
assumed to be static

Search in dynamic graphs 
deals with methods for 
efficient replanning when 
there are changes in edge 
transition costs and the 
starting state/configuration 
changes

very important to the 
navigation problem

plan 1 plan 2

plan 3

plan 4
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D* Variants

(Focussed) D* [Stentz 95a] / D* Lite [Koenig 02a]
  Efficiency derived from not
resorting the OPEN list, planning
from goal to start

Field D* [Ferguson 05a]
  Shortest path found by 
interpolating edges of neighbors

Anytime D* [Likhachev 05a]
  Combines D* replanning with 
weighted heuristics

start

goal

Figure 12.19b from [LaValle 06a]
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Applications
Global Path Planning for Autonomous 

Planetary Rovers

35
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Field D* on MER
[Carsten 07a]

Figure 12d from [Carsten 07a]

Field D* Cost MapLocal Goodness MapView of Test Environment

Robot Field D* Plan

Goal
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Current Topics
Precomputed Heuristics for Differentially 

Constrained Mobile Robots

37

ME/CS 132April 14, 2011 38

Heuristic Look-up Tables

An alternative to online 
evaluation of Dubins, Reeds-
Shepp, or other heurisitc 
metrics is to compute it offline
 
  Requires regular distribution 
of configurations/states

  Extensible to higher 
dimensional state lattices

[Knepper 06a]

Figure 1 from [Knepper 06a]

Figure 5 from [Knepper 06a]

cross-section of a 4D 
heuristic lookup table

difficult planning 
problem for a 
differentially 

constrained vehicle
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Summary

Variety of search algorithms exist with different 
degrees of optimality and efficiency

A* search provides an optimal solution with an 
admissible heuristic

WA* is fast but generates a sub-optimal solution

AWA*/ARA* generate an initial sub-optimal solution 
and iteratively refines the path

D*/D*Lite/Field D* reuse information from previous 
searches to path effectively in dynamic graphs

39
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Next Lecture (4/19)

Navigation and Control

    Path Following

    Hierarchical Navigation

40
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