ME/CS 132: Advanced Robotics: Navigation and Vision

Lecture #5: Search Algorithm 1

Yoshiaki Kuwata 4/12/2011

Lecture Overview

- Introduction
- Label Correcting Algorithm
 - Core idea
 - Depth-first search
 - Breadth-first search
 - Dijkstra
- More efficient search
 - A*
 - Advanced initialization

Shortest Path Applications

 From Chapter 2 of "Dynamic Programming and Optimal Control" by Dimitri Bertsekas

• What is the minimum cost of getting to node 5?

Shortest Path Applications

Road Network

Traveling Salesman Problem (TSP)

- Visit all cities with the minimum traveling cost
 - Can pose it as a shortest path problem Origin Node s А 15 5 AB AD AC 20 20 з з ABC ACB ACD ADB ADC ABD 20 3 3 20 4 4 ACDB ADBC ABCD ABDC ACBD ADCB 15 5 15 5 Artificial Terminal Node t **ME/CS 132**

Shortest-path Applications

- Typical search spaces for robot navigation
 - Regular grid
 - State lattice
 - PRM
- For shortest path algorithms, they are represented as graphs
 - Node/Vertex
 - Arc/Edge
- LaValle's book
 - focus on the planning aspect
 - Node: x
 - Edge connection from node: $u \in U(x)$
 - Edge cost: l(x, u)
 - Child node of x: x' = f(x, u)

Label Correcting Algorithm

- Many discrete search algorithms belong to this
- Given:
 - Origin/start/initial node: s
 - Destination/target/goal node: t
 - Edge cost from node *i* to node *j*: a_{ij} (≥ 0)
- Find:
 - The minimum cost of going from s to t
 - The path (sequence of nodes)
- Rough idea:
 - Put a **label** d_i on each node
 - *d_i*: Length of the shortest path found so far from *s* to *i* ("cost-to-come")
 - Initially, $d_i = \infty$ for all *i*'s, except $d_s = 0$
 - Correct the label as it explores the graph

Label Correcting Algorithm

- Terminology
 - Child node: if there is an arc (i, j), then j is a child of i
 - Parent node: sometimes called "back-pointer"
 - **Open list:** contains visited nodes that are still "active" (for further examination)
- Algorithm
 - Initialize: $OPEN = \{s\}$
 - 1. Remove a node *i* from OPEN
 - 2. For each child *j* of *i*,

Found a better way of reaching *j* (via *i*)

- If $d_i + a_{ii} < \min\{d_i, d_i\}$, then set $d_i = d_i + a_{ii}$ and set *i* to be the parent of *j*. Path through *j* can
 - Also, if $j \neq t$, place j in OPEN

- improve the path to t
- 3. If OPEN is empty, terminate. Otherwise, go to step 1.

Example: 4x4 TSP

OPEN after d_t iteration 1 ∞

Example: 4x4 TSP

- "If there exists at least one path from the origin to the destination, the algorithm terminates with *d_t* equal to the shortest distance from the origin to the destination"
- The algorithm is called "complete"
 - Guaranteed to find a solution (in finite time) when there is one
 - Related terms
 - **Resolution complete**: if a solution exists at the resolution, it will find it. Otherwise, the algorithm could run forever
 - **Probabilistically complete**: probability of finding a solution converges to 1 with enough points
- The algorithm is called "*optimal*"
 - Guaranteed to find an optimal solution

Different Node Selection Methods

- Various strategies in step 1: Remove a node *i* from OPEN
- Breadth-first search (a.k.a. Bellman-Ford method)
 - First-in First out ("queue")
 - Run time O(|V|+|E|)
- Depth-first search
 - Last-in First out ("stack")
 - Requires relatively little memory
 - Run time O(|V|+|E|)
- Dijkstra's algorithm (1959)
 - Fewer the nodes enter OPEN, faster the search would be
 - Choose a node with minimum value of label: $i = \operatorname{argmin} d_j$
 - This "min" operation could get computationally expensive for large graphs
 - Property: a node will enter OPEN at most once
 - Run time O(|V|In|V|+|E|) using Fibonacci heap

Example: Depth-first Search (LIFO)

- Open list
 - Initial: {1}
 - Remove 1, add 2 & 10: {2, 10}
 - Remove 2, add 3 & 6: {10, 3, 6}
 - Remove 3, add 4 & 5: {10, 6, 4, 5}
 - Remove 4: {10, 6, 5}
 - Remove 5: {10, 6}
 - Remove 6, add 7,8,9: {10, 7,8,9}
 - Remove 7: {10, 8, 9}
 - Remove 8: {10, 9}
 - Remove 9: {10}
 - Remove 10, add 11 & 12: {11, 12}
 - Remove 11: {12}
 - Remove 12, add 13 & 14: {13, 14}
 - Remove 13: {14}
 - Remove 14: {}

Example: Dijkstra's algorithm

Node exiting OPEN	OPEN ID (<i>d</i> _i)	d _t
-	1(0)	∞
1	2(5), 7(1), 10(15)	∞
7	8(4),11(21), 2(5),10(15)	∞
8	9(8),11(21), 2(5),10(15)	∞
2	3(25), 5(9), 9(8),11(21),10(15)	∞
9	3(25), 5(9), 11(21),10(15)	13
5	6(12), 3(25), 11(21),10(15)	13
6	3(25), 11(21), 10(15)	13
10	3(25), 11(21)	13
11	3(25)	13
12	Empty	13

Implementation of OPEN

- FIFO \rightarrow Queue
 - "enqueue": insert the item at the bottom
 - "dequeue": remove the item at the top
- LIFO → Stack
 - "push": insert the item at the top
 - "pop": remove the item at the top
- Dijkstra \rightarrow Priority queue (denoted as Q)
 - "push": insert the item with some priority
 - "pop": remove the item with the highest priority
 - Various data structures
 - Linear array: O(n) for insert, O(1) for removal
 - Binary heap: O(log n) for insert & removal
 - Fibonacci heap: O(1) for insert, O(log n) for removal. Most efficient.

Priority Queue as a Binary Heap

- "push" add an element
 - 1. Add on the bottom level of the heap
 - 2. Compare the added element with its parent; if they are in the correct order, stop.
 - 3. If not, swap the element with its parent and go to step 2

Priority Queue as a Binary Heap

- "pop" delete a root
 - 1. Replace the root of the heap with the last element on the last level.
 - 2. Compare the new root with its children; if they are in the correct order, stop.
 - If not, swap the element with one of its children and return to the previous step. (swap w/ its smaller child in a min-heap and its larger child in a max-heap.)

LaValle's book

FORWARD_LABEL_CORRECTING (x_G) Set $C(x) = \infty$ for all $x \neq x_I$, and set $C(x_I) = 0$ 1 2 $Q.Insert(x_I)$ 3 while Q not empty do $x \leftarrow Q.GetFirst()$ 4 forall $u \in U(x)$ 5 $x' \leftarrow f(x, u)$ 6 7 if $C(x) + l(x, u) < \min\{C(x'), C(x_G)\}$ then $C(x') \leftarrow C(x) + l(x, u)$ 8 if $x' \neq x_G$ then 9 Q.Insert(x')10

- Other notations to note
 - Unvisited
 - Closed (Dead)
 - Open (Alive)

Extensions of Label Correcting Algorithm

• Step 2:

"If $d_i + a_{ij} < \min\{d_j, d_i\}$, then set $d_j = d_i + a_{ij}$ and place j in OPEN"

- Can make this test tighter
- If a lower bound h_j of the true shortest distance from j to t (i.e., an underestimate of cost-to-go) is known
 - "If $d_i + a_{ij} < \min\{d_j, d_t\}$ " \rightarrow "If $d_i + a_{ij} < d_j$ and $\underline{d_i + a_{ij} + h_j < d_t}$ "
 - Called A* algorithm (1968). Very popular
 - h: is sometimes called "heuristics function"
 - Neglect the structure of the regular grid: 2-norm distance to target

The path going through *i* and *j* can improve the cost of reaching *t*

- Obstacle-free path length: Dubin's distance
- If $h_i = 0$ (loosest lower bound), A* reduces to Dijkstra
- Choose a node with minimum value of estimated cost:
 - $i = \underset{j \text{ in OPEN}}{\operatorname{argmin}} (d_j + h_j)$

- In general much fewer nodes to expand compared to Dijkstra

Some Notes on A* algorithm

- Other notations
 - $f_j: g_j + h_j$
 - $-g_j$: distance from s to j (the label d_j in the label correcting algorithm)
 - $-h_j$: heuristic value from *j* to *t*
 - Then, use f_j in sort the ndoes
- Sometimes called "informed search" as opposed to "uninformed search" in AI
- "Optimally efficient"
 - For any given heuristic function, A* expands the fewest nodes of any admissible search algorithm
- Heuristic function
 - Admissible: $h_i \le h_i^*$ (underestimates the cost-to-go)
 - c.f. Consistent: $h_i \le a_{ij} + h_j$ (go incrementally without going back)
 - If consistent, then admissible

A* Example: 4-connected grid

- Grid of size 3 x 4
- Start at node #1, goal at node #10
- Physical distance of each edge is 10
- **Edge cost** = distance + some terrain penalty

A* Example: 4-connected grid

- Physical distance of each edge is 10
- Different heuristics
 - Manhattan vs Euclidean distance
 - \rightarrow which one is better & why?

Manhattan distance

A* Example: 4-connected grid

Node exiting OPEN	OPEN # (d, d+h)	d_t
-------------------------	--------------------	-------

Other Improvements

- Advanced initialization
 - Normally labels are initialized as " $d_i = \infty$ for all *i*'s, except $d_s = 0$ "
 - If there is some good starting path (obtained heuristically), initialize the labels d_i with length of some path from *s* to *i* (so that $d_i < \infty$).
 - The test "d_i + a_{ij} < min{d_j, d_i}" of adding nodes to OPEN becomes tighter
 → fewer nodes would enter OPEN
- Upper bound
 - If an upper bound m_j of the cost-to-go (*j* to *t*) is known, then, reduce dt faster. When $d_j + m_j < d_t$, then $d_t := d_j + m_j$
- Bidirectional planning
 - Start the search from start and the target at the same time
 - Terminate when they "meet" in the middle with some conditions
- Incremental version (next lecture)
 - Do not start from scratch when a small part of the environment changes.