

| ecture Overview

e Introduction

e Label Correcting Algorithm
— Core idea
— Depth-first search
— Breadth-first search
— Dijkstra
 More efficient search
— A*
— Advanced initialization

4-Jan-2011 ME/CS 132 lhm - 2

Shortest Path Applications

 From Chapter 2 of “Dynamic Programming and Optimal
Control” by Dimitri Bertsekas

 Whatis the minimum cost of getting to node 57

Destination

4-Jan-2011 ME/CS 132 lhm -3

L
=]
]
=,
>

W ooy RY - E Wm.:f%

o BRI ERULT
Sy SR MBI N

and™

]
2
o
=
U
-]
o
2
o

EREL TR

Huntingtan Library E
ArtGallens’and o

2
[}
-
5
Sirelie,
Altadena E apadena Or s
. Eato
Canyon
Altadena £ 2 Y?*
Golf Cogse F
g‘ a0 - B =
TRy 5 = 2
5 M Work Dr § 2
= B
=]
E Washington Bhvd E Washington Blvd
=
= i T
o = T ictory B
@ z = 3
£ i i
@
E-Crange GGrova Blvd E Crange Srowve Bivd
WWest
Central il EILE
Faathill Py — = : Foothill-Fiay
E Walnit 51 Mid Central
Pasadena E Colerade Bhd
[44] w] 3
2 (i) South East
J b o = E
b = m
CTE e RRE .
2 [
2 i s g
= s2liformia: Bled =
i :
> |
&

Traveling Salesman Problem (TSP)

 Visit all cities with the minimum traveling cost A B CD

e Can pose it as a shortest path problem

A Origin Node s

AB AC AD
20 4 20 3 :ﬂ/ 3
ABC ABD ACB ACD ADB ADC
3 3 4 4 20 20
ABCD ACBD ACDB ADBC ADCB

\\\//

Artificial Terminal Node ¢
4-Jan-2011 ME/CS 132 lhm -5

Shortest-path Applications

» Typical search spaces for robot navigation
— Regular grid
— State lattice
— PRM

e For shortest path algorithms, they are represented
as graphs
— Node/Vertex
— Arc/Edge

 LaValle’s book
— focus on the planning aspect
— Node: z
— Edge connection from node: v € U(x)
— Edge cost: l(z,u)
— Child node of z: z’' = f(x,u)

4-Jan-2011

Label Correcting Algorithm

Many discrete search algorithms belong to this

Given:

— Origin/start/initial node: s

— Destination/target/goal node: t

— Edge cost from node i to node J: g; (= 0)
Find:

— The minimum cost of going from sto t

— The path (sequence of nodes)

Rough idea:

— Put a label d, on each node

« d: : Length of the shortest path found so far from
(“cost-to-come”)

« Initially, d=w for all i’'s, except d= 0
— Correct the label as it explores the graph

ME/CS 132

sto i

lhm -7

Label Correcting Algorithm

e Terminology
— Child node: if there isan arc (i, j), then j is a child of |
— Parent node: sometimes called “back-pointer”
— Open list : contains visited nodes that are still “active”
(for further examination)
e Algorithm
— Initialize: OPEN = {s}
1. Remove a node i from OPEN
2. For each child j of i, Found a better way

— Ifd+a; < min{d;, d}, then of reaching j (via i)
setd; = d; + g 3 and set i to be the parent of j. Path through | can
O Also if j#t , place j in OPEN improve the pathto t

3. If OPEN is empty, terminate. Otherwise, go to step 1.

4-Jan-2011 ME/CS 132 lhm - 8

-'DN"-'-_ﬁ»

)

2

ABC ABD
3 3
ABC ABDC

Example: 4x4 TSP

I

S o

Origin Node s

15

Node OPEN

AD

exiting after d,
OPEN iteration
_ 1 o>

ACB ACD ADB
B 4 20
ACBD ACDB ADBC

Artificial Terminal Node ¢

BN

ADC

20

ADCB

E g H_ﬁl‘r

)
Q’s_ﬂ

2/\

Example: 4x4 TSP

A Origin Node s

AC

2y>

10

AD

BN

ADB

20

3| ABC ABD ACB ACD
3 3 B 4
4 | ABCD ABDC ACED ACDB

ADEC

Artificial Terminal Node ¢

ADC

20

ADCB

Node OPEN
exiting after
OPEN iteration

] 1
1 2, 7,10
2 3,5,7 10
3 4,5,7, 10
4 5,7, 10
5 6, 7, 10
6 7, 10

7 8, 10

] 9, 10

9 10

10 Empty

Not all nodes are examined!

Properties

“If there exists at least one path from the origin to the
destination, the algorithm terminates with d, equal to the
shortest distance from the origin to the destination”

The algorithm is called “complete”
— Guaranteed to find a solution (in finite time) when there is one

— Related terms

* Resolution complete : if a solution exists at the resolution, it will find it.
Otherwise, the algorithm could run forever

« Probabilistically complete : probability of finding a solution converges
to 1 with enough points

The algorithm is called “optimal”
— Guaranteed to find an optimal solution

Different Node Selection Methods

e Various strategies in step 1. Remove a node i from OPEN

e Breadth-first search (a.k.a. Bellman-Ford method)
— First-in First out (“queue”)
— Run time O(|V|+|E|)

e Depth-first search
— Last-in First out (“stack”)
— Requires relatively little memory
— Run time O(|V|+|E|)

e Dijkstra’s algorithm (1959)
— Fewer the nodes enter OPEN, faster the search would be
— Choose a node with minimum value of label: i = argmin d

* This “min” operation could get computationally expcjelrrllsoislcEeNfor large graphs

— Property: a node will enter OPEN at most once
— Run time O(|V|In|V|+|E|) using Fibonacci heap

Example: Depth-first Search (LIFO)

o Open list Origin Node s
— Initial: {1}
— Remove 1, add 2 & 10: {2, 10}
— Remove 2, add 3 & 6: {10, 3, 6}
— Remove 3, add 4 & 5: {10, 6, 4, 5}
— Remove 4: {10, 6, 5}
— Remove 5: {10, 6}
— Remove 6, add 7,8,9: {10, 7,8,9}
— Remove 7: {10, 8, 9}
— Remove 8: {10, 9}
— Remove 9: {10}
— Remove 10, add 11 & 12: {11, 12}
— Remove 11: {12}
— Remove 12, add 13 & 14: {13, 14}
— Remove 13: {14}
— Remove 14: {}

Destination Node t

4-Jan-2011 ME/CS 132 lhm - 13

Example: Dijkstra’s algorithm

Node

" OPEN
exitin d
4 A Origin Node s OPEEl ID (di) t
/ 1 15 - 1(0) o
1 2(5), 7(2), 10(15) ©C
10| AD 7 8(4),11(21), o0
EV \ 5 / \ / N 2(5),10(15)
9(8),11(21),
3| ABC D | 11 | AcB ACD ADB ADC 8 2(5)10(15) OC
3 3 4 4 20 20 2 3(25), 5(9), o0
9(8),11(21),10(15)
4 [ABCD ABDC ACBD ACDB ADBC ADCB 9 3(25), 5(9), 13
11(21),10(15)
6(12), 3(25),
\\// : > 11(21),10(15) 13
6 3(25),11(21),10(15) 13
10 3(25), 11(21) 13
11 3(25) 13

Artificial Terminal Node ¢

12 Empty 13

Implementation of OPEN

Enqueue

 FIFO - Queue
— “enqueue”: insert the item at the bottom :
— “dequeue”: remove the item at the top *IIIIIH\‘
e LIFO - Stack Dequeue

— “push” insert the item at the top
— “pop”: remove the item at the top

Push Po

» Dijkstra - Priority queue (denoted as Q)
— “push” insert the item with some priority
— “pop”: remove the item with the highest priority

— Various data structures
* Linear array: O(n) for insert, O(1) for removal
e Binary heap: O(log n) for insert & removal
« Fibonacci heap: O(1) for insert, O(log n) for removal. Most efficient.

R
m

Priority Queue as a Binary Heap

 “push”— add an element
1. Add on the bottom level of the heap

2. Compare the added element with
Its parent; if they are in the
correct order, stop.

3. If not, swap the element with
Its parent and go to step 2

min heap

[wikipedia]

Priority Queue as a Binary Heap

o “pop” — delete a root

1. Replace the root of the heap with
the last element on the last level.

2. Compare the new root with its children;
If they are in the correct order, stop.

3. If not, swap the element with one of its
children and return to the previous step.
(swap w/ its smaller child in a min-heap
and its larger child in a max-heap.)

min heap

LaValle’'s book

FORWARD LABEL CORRECTING(zg)
1 Set C(x) = o0 for all x # zr, and set C(xr) =0

2 Q.Insert(x)

3 while @) not empty do

4 v — Q.GetFlirst()

5 forall u € U(x)

6 @ — pla,)

7 if C(z) +l(z,u) < min{C(z2'),C(z¢)} then
8 C(z') « Clz) + l(z,u)

9 if ."I.'f 7é ra then

10 Q.Insert(x’)

o Other notations to note
— Unvisited
— Closed (Dead)
— Open (Alive)

4-Jan-2011 ME/CS 132 lhm - 18

Extensions of
Label Correcting Algorithm

Better Test to Add a Node to OPEN

o Step 2:
“If di+a;; < min{d;, d;}, then set d; =d; + a; and place j in OPEN”
e Can make this test tighter

 Ifalower bound h; of the true shortest distance fromj to t
(l.e., an underestimate of cost-to-go) is known

— “If di+a;; <min{d;, d;}" = "If d;+4a;<d; and d, + a;; + h; <d/
— Called A* algorithm (1968). Very popular The path going

— h: is sometimes called “heuristics function” through 1 and |

« Neglect the structure of the regular grid: can Irr]lcproveh_the CtOSt
2-norm distance to target of reaching

* Obstacle-free path length: Dubin’s distance
e If h,= 0 (loosest lower bound), A* reduces to Dijkstra

— Choose a node with minimum value of estimated cost:

| = argmin (d;+h;)
j in OPEN
— In general much fewer nodes to expand compared to Dijkstra

Some Notes on A* algorithm

Other notations

- fig+h

— @;: distance from s to j (the label d; in the label correcting algorithm)
— h;: heuristic value from jto t

— Then, use f; in sort the ndoes

Sometimes called “informed search” as opposed to
“uninformed search” in Al

“Optimally efficient”
— For any given heuristic function, A* expands the fewest nodes of
any admissible search algorithm
Heuristic function
— Admissible: h, = h* (underestimates the cost-to-go)
— c.f. Consistent: h; = a; + h; (go incrementally without going back)
— If consistent, then admissible

A* Example: 4-connected grid

o Grid of size 3 x4

o Start at node #1, goal at node #10

* Physical distance of each edge is 10
 Edge cost = distance + some terrain penalty

Start Goal
o0
C:D 15 @ @ 10 @
12 10 10 10

oL 62620
10 10 10 10
N\ A (o) 6
D5 O 5O ©

4-Jan-2011 ME/CS 132 lhm - 22

A* Example: 4-connected grid

* Physical distance of each edge is 10

e Different heuristics

— Manhattan vs Euclidean distance
—> which one is better & why?

Goal Goal
O\)\ M\ Y
O Q5 O 0505 —0o
Y)\ O\ 'a \ 7\ N\ Va
O OO Oy Osi55 Onzs Cur Qo
N\)\) 'd N\ N)\ 'd
(’50 ~40 ~30 ‘)20 C’36.06 2828 2236 \)20

Manhattan distance Euclidean distance

4-Jan-2011 ME/CS 132 lhm - 23

Goal
00
0 O)
12 10 10 10
CZ\ 10 <5) 25 G) 15 @D
10 10 10 10
)\ A (o) G
D15 © 5 © 5 ©
O O O ’)G
“30 20 N0 N0
C\)\ e f)
10 30 20 10
Y O)\ C
C’50 ~240 ~30 ‘)20

Heuristic value

4-Jan-2011

ME/CS 132

Node
exiting
OPEN

A* Example: 4-connected grid

OPEN
#(d, d+h)

lhm - 24

Other Improvements

e Advanced initialization
— Normally labels are initialized as “d;=oo for all I's, except d= 0”

— If there is some good starting path (obtained heuristically), initialize the
labels d; with length of some path from s to i (so that d; <o0).

— The test “d; + a; < min{d;, d}" of adding nodes to OPEN becomes tighter
=>» fewer nodes would enter OPEN

e Upper bound
— Ifan upper bound m; of the cost-to-go (j to t) is known, then,
reduce dt faster. When d, + m; < d,, then d, := d; + m,

« Bidirectional planning
— Start the search from start and the target at the same time

— Terminate when they “meet” in the middle with some conditions

* Incremental version (next lecture)
— Do not start from scratch when a small part of the environment changes.

