
ME/CS 132:
Advanced Robotics:

Navigation and Vision

Lecture #5: Search Algorithm 1

Yoshiaki Kuwata
4/12/2011

Lecture Overview

4-Jan-2011 lhm - 2ME/CS 132

• Introduction
• Label Correcting Algorithm

– Core idea

– Depth-first search

– Breadth-first search

– Dijkstra

• More efficient search
– A*

– Advanced initialization

• From Chapter 2 of “Dynamic Programming and Optimal
Control” by Dimitri Bertsekas

• What is the minimum cost of getting to node 5?

4-Jan-2011 ME/CS 132 lhm - 3

Shortest Path Applications

Shortest Path Applications

• Road Network

• Visit all cities with the minimum traveling cost

• Can pose it as a shortest path problem

4-Jan-2011 ME/CS 132 lhm - 5

Traveling Salesman Problem (TSP)

A B C D
A
B
C
D

• Typical search spaces for robot navigation
– Regular grid

– State lattice

– PRM

• For shortest path algorithms, they are represented
as graphs
– Node/Vertex

– Arc/Edge

• LaValle’s book
– focus on the planning aspect

– Node:

– Edge connection from node:

– Edge cost:

– Child node of :

Shortest-path Applications

• Many discrete search algorithms belong to this
• Given:

– Origin/start/initial node: s

– Destination/target/goal node: t

– Edge cost from node i to node j: aij (≥ 0)

• Find:
– The minimum cost of going from s to t

– The path (sequence of nodes)

• Rough idea:
– Put a label di on each node

• di : Length of the shortest path found so far from s to i
(“cost-to-come”)

• Initially, di=∞ for all i’s, except ds= 0

– Correct the label as it explores the graph
4-Jan-2011 ME/CS 132 lhm - 7

Label Correcting Algorithm

• Terminology
– Child node: if there is an arc (i , j), then j is a child of i

– Parent node: sometimes called “back-pointer”

– Open list : contains visited nodes that are still “active”
(for further examination)

• Algorithm
– Initialize: OPEN = {s}

1. Remove a node i from OPEN

2. For each child j of i,

– If di+aij < min{dj, dt}, then
set dj = di + aij and set i to be the parent of j.
� Also, if j≠t , place j in OPEN

3. If OPEN is empty, terminate. Otherwise, go to step 1.

4-Jan-2011 ME/CS 132 lhm - 8

Label Correcting Algorithm

Found a better way
of reaching j (via i)

Path through j can
improve the path to t

Example: 4x4 TSP

Node
exiting
OPEN

OPEN
after

iteration
dt

Example: 4x4 TSP

Node
exiting
OPEN

OPEN
after

iteration
dt

Not all nodes are examined!

Properties

• “If there exists at least one path from the origin to the
destination, the algorithm terminates with dt equal to the
shortest distance from the origin to the destination”

• The algorithm is called “complete”
– Guaranteed to find a solution (in finite time) when there is one

– Related terms
• Resolution complete : if a solution exists at the resolution, it will find it.

Otherwise, the algorithm could run forever
• Probabilistically complete : probability of finding a solution converges

to 1 with enough points

• The algorithm is called “optimal”
– Guaranteed to find an optimal solution

Different Node Selection Methods

• Various strategies in step 1: Remove a node i from OPEN
• Breadth-first search (a.k.a. Bellman-Ford method)

– First-in First out (“queue”)
– Run time O(|V|+|E|)

• Depth-first search
– Last-in First out (“stack”)
– Requires relatively little memory
– Run time O(|V|+|E|)

• Dijkstra’s algorithm (1959)
– Fewer the nodes enter OPEN, faster the search would be
– Choose a node with minimum value of label: i = argmin dj

• This “min” operation could get computationally expensive for large graphs
– Property: a node will enter OPEN at most once
– Run time O(|V|ln|V|+|E|) using Fibonacci heap

j in OPEN

• Open list
– Initial: {1}
– Remove 1, add 2 & 10: {2, 10}
– Remove 2, add 3 & 6: {10, 3, 6}
– Remove 3, add 4 & 5: {10, 6, 4, 5}
– Remove 4: {10, 6, 5}
– Remove 5: {10, 6}
– Remove 6, add 7,8,9: {10, 7,8,9}
– Remove 7: {10, 8, 9}
– Remove 8: {10, 9}
– Remove 9: {10}
– Remove 10, add 11 & 12: {11, 12}
– Remove 11: {12}
– Remove 12, add 13 & 14: {13, 14}
– Remove 13: {14}
– Remove 14: {}

4-Jan-2011 ME/CS 132 lhm - 13

Example: Depth-first Search (LIFO)

Example: Dijkstra’s algorithm

Node
exiting
OPEN

OPEN
ID (di)

dt

7

1

1(0)

2(5), 7(1), 10(15)

8(4),11(21),
2(5),10(15)

8 9(8),11(21),
2(5),10(15)

2 3(25), 5(9),
9(8),11(21),10(15)

9 3(25), 5(9),
11(21),10(15)

13

5
6(12), 3(25),
11(21),10(15) 13

6 3(25), 11(21),10(15) 13
10 3(25), 11(21)
11 3(25)

12 Empty

13
13

13

Implementation of OPEN

• FIFO � Queue
– “enqueue”: insert the item at the bottom
– “dequeue”: remove the item at the top

• LIFO � Stack
– “push”: insert the item at the top
– “pop”: remove the item at the top

• Dijkstra � Priority queue (denoted as Q)
– “push”: insert the item with some priority
– “pop”: remove the item with the highest priority
– Various data structures

• Linear array: O(n) for insert, O(1) for removal
• Binary heap: O(log n) for insert & removal
• Fibonacci heap: O(1) for insert, O(log n) for removal. Most efficient.

Priority Queue as a Binary Heap

• “push” – add an element
1. Add on the bottom level of the heap

2. Compare the added element with
its parent; if they are in the
correct order, stop.

3. If not, swap the element with
its parent and go to step 2

min heap

[wikipedia]

1

2 3

717 19

10025

36

8

Priority Queue as a Binary Heap

• “pop” – delete a root
1. Replace the root of the heap with

the last element on the last level.

2. Compare the new root with its children;
if they are in the correct order, stop.

3. If not, swap the element with one of its
children and return to the previous step.
(swap w/ its smaller child in a min-heap
and its larger child in a max-heap.)

min heap

1

2 3

717 19

25

36

100

• Other notations to note
– Unvisited

– Closed (Dead)

– Open (Alive)

4-Jan-2011 ME/CS 132 lhm - 18

LaValle’s book

Extensions of
Label Correcting Algorithm

Better Test to Add a Node to OPEN

• Step 2:
“If di+aij < min{ dj, dt}, then set dj = di + aij and place j in OPEN”

• Can make this test tighter
• If a lower bound hj of the true shortest distance from j to t

(i.e., an underestimate of cost-to-go) is known
– “If di+aij < min{ dj, dt}” � “If di + aij < dj and di + aij + hj < dt”
– Called A* algorithm (1968). Very popular

– h: is sometimes called “heuristics function”
• Neglect the structure of the regular grid:

2-norm distance to target
• Obstacle-free path length: Dubin’s distance
• If hi = 0 (loosest lower bound), A* reduces to Dijkstra

– Choose a node with minimum value of estimated cost:
i = argmin (dj+hj)

– In general much fewer nodes to expand compared to Dijkstra

The path going
through i and j

can improve the cost
of reaching t

j in OPEN

Some Notes on A* algorithm

• Other notations
– fj: gj + hj

– gj: distance from s to j (the label dj in the label correcting algorithm)
– hj: heuristic value from j to t
– Then, use fj in sort the ndoes

• Sometimes called “informed search” as opposed to
“uninformed search” in AI

• “Optimally efficient”
– For any given heuristic function, A* expands the fewest nodes of

any admissible search algorithm

• Heuristic function
– Admissible: hi ≤ hi* (underestimates the cost-to-go)
– c.f. Consistent: hi ≤ aij + hj (go incrementally without going back)
– If consistent, then admissible

• Grid of size 3 x 4
• Start at node #1, goal at node #10
• Physical distance of each edge is 10
• Edge cost = distance + some terrain penalty

4-Jan-2011 ME/CS 132 lhm - 22

A* Example: 4-connected grid

GoalStart
1

12

11

10

9

5

4 7

82

3 6

∞15

12

10

10

10
25

10

10

10 15
1010

10

10

10

20

• Physical distance of each edge is 10
• Different heuristics

– Manhattan vs Euclidean distance
� which one is better & why?

4-Jan-2011 ME/CS 132 lhm - 23

A* Example: 4-connected grid

Goal

Manhattan distance

Goal

Euclidean distance

0

20

20 10

1020

3040

40

30

30

50

0

20

20 10

10

30

14.14

22.36

22.36

28.2836.06

31.62

4-Jan-2011 ME/CS 132 lhm - 24

A* Example: 4-connected grid

GoalStart
1

12

11

10

9

5

4 7

82

3 6

∞15

12

10

10

10
25

10

10

10 15
1010

10

10

10

20

G

Heuristic value

0

20

20 10

1020

3040

40

30

30

50

OPEN
(d, d+h) dt

Node
exiting
OPEN

1 (0,30)

2 (12,52), 4 (15,35)

--

1

2 (12,52), 5 (25, 55)4

5 (22, 55), 3 (22, 72)2

3 (22, 72), 6 (32, 72),
8 (47, 67)

5

3 (22, 72), 6 (32, 72),
7 (57, 67), 9 (57, 87),
11 (62, 72)

8

3 (22, 72), 6 (32, 72),
9 (57, 87), 11 (62, 72)

7

∞
∞
∞
∞
∞

∞

67

Other Improvements

• Advanced initialization
– Normally labels are initialized as “di=∞ for all i’s, except ds= 0”
– If there is some good starting path (obtained heuristically), initialize the

labels di with length of some path from s to i (so that di <∞).
– The test “di + aij < min{dj, dt} ” of adding nodes to OPEN becomes tighter
� fewer nodes would enter OPEN

• Upper bound
– If an upper bound mj of the cost-to-go (j to t) is known, then,

reduce dt faster. When dj + mj < dt, then dt := dj + mj

• Bidirectional planning
– Start the search from start and the target at the same time
– Terminate when they “meet” in the middle with some conditions

• Incremental version (next lecture)
– Do not start from scratch when a small part of the environment changes.

