Lecture Overview

• Introduction

• Label Correcting Algorithm
 – Core idea
 – Depth-first search
 – Breadth-first search
 – Dijkstra

• More efficient search
 – A*
 – Advanced initialization
Shortest Path Applications

• From Chapter 2 of “Dynamic Programming and Optimal Control” by Dimitri Bertsekas

• What is the minimum cost of getting to node 5?
Shortest Path Applications

• Road Network
Traveling Salesman Problem (TSP)

- Visit all cities with the minimum traveling cost
- Can pose it as a shortest path problem
Shortest-path Applications

- Typical search spaces for robot navigation
 - Regular grid
 - State lattice
 - PRM
- For shortest path algorithms, they are represented as graphs
 - Node/Vertex
 - Arc/Edge
- LaValle’s book
 - focus on the planning aspect
 - Node: x
 - Edge connection from node: $u \in U(x)$
 - Edge cost: $l(x, u)$
 - Child node of x: $x' = f(x, u)$
Label Correcting Algorithm

- Many discrete search algorithms belong to this
- Given:
 - Origin/start/initial node: \(s \)
 - Destination/target/goal node: \(t \)
 - Edge cost from node \(i \) to node \(j \): \(a_{ij} \) (\(\geq 0 \))
- Find:
 - The minimum cost of going from \(s \) to \(t \)
 - The path (sequence of nodes)
- Rough idea:
 - Put a label \(d_i \) on each node
 - \(d_i \): Length of the shortest path found so far from \(s \) to \(i \) ("cost-to-come")
 - Initially, \(d_i = \infty \) for all \(i \)'s, except \(d_s = 0 \)
 - Correct the label as it explores the graph
Label Correcting Algorithm

• Terminology
 – Child node: if there is an arc \((i, j)\), then \(j\) is a child of \(i\)
 – Parent node: sometimes called “back-pointer”
 – **Open list**: contains visited nodes that are still “active”
 (for further examination)

• Algorithm
 – Initialize: OPEN = \(\{s\}\)
 1. Remove a node \(i\) from OPEN
 2. For each child \(j\) of \(i\),
 – If \(d_i + a_{ij} < \min\{d_j, d_i\}\), then
 set \(d_j = d_i + a_{ij}\) and set \(i\) to be the parent of \(j\).
 Also, if \(j \neq t\), place \(j\) in OPEN
 – **Found a better way of reaching \(j\) (via \(i\))**
 3. If OPEN is empty, terminate. Otherwise, go to step 1.
Example: 4x4 TSP

Node exiting
OPEN after iteration

∞

Δt
Example: 4x4 TSP

Not all nodes are examined!
Properties

• “If there exists at least one path from the origin to the destination, the algorithm terminates with \(d_t\) equal to the shortest distance from the origin to the destination”

• The algorithm is called “complete”
 – Guaranteed to find a solution (in finite time) when there is one
 – Related terms
 • Resolution complete: if a solution exists at the resolution, it will find it. Otherwise, the algorithm could run forever
 • Probabilistically complete: probability of finding a solution converges to 1 with enough points

• The algorithm is called “optimal”
 – Guaranteed to find an optimal solution
Different Node Selection Methods

• Various strategies in step 1: Remove a node i from OPEN
• Breadth-first search (a.k.a. Bellman-Ford method)
 – First-in First out (“queue”)
 – Run time $O(|V|+|E|)$
• Depth-first search
 – Last-in First out (“stack”)
 – Requires relatively little memory
 – Run time $O(|V|+|E|)$
• Dijkstra’s algorithm (1959)
 – Fewer the nodes enter OPEN, faster the search would be
 – Choose a node with minimum value of label: $i = \arg\min_{j \text{ in OPEN}} d_j$
 • This “min” operation could get computationally expensive for large graphs
 – Property: a node will enter OPEN at most once
 – Run time $O(|V|\ln|V|+|E|)$ using Fibonacci heap
Example: Depth-first Search (LIFO)

- **Open list**
 - Initial: \{1\}
 - Remove 1, add 2 & 10: \{2, 10\}
 - Remove 2, add 3 & 6: \{10, 3, 6\}
 - Remove 3, add 4 & 5: \{10, 6, 4, 5\}
 - Remove 4: \{10, 6, 5\}
 - Remove 5: \{10, 6\}
 - Remove 6, add 7,8,9: \{10, 7,8,9\}
 - Remove 7: \{10, 8, 9\}
 - Remove 8: \{10, 9\}
 - Remove 9: \{10\}
 - Remove 10, add 11 & 12: \{11, 12\}
 - Remove 11: \{12\}
 - Remove 12, add 13 & 14: \{13, 14\}
 - Remove 13: \{14\}
 - Remove 14: \{\}
Example: Dijkstra’s algorithm

Node exiting OPEN	OPEN ID \((d_i)\)	\(d_t\)
- | 1(0) | \(\infty\)
1 | 2(5), 7(1), 10(15) | \(\infty\)
7 | 8(4), 11(21), 2(5), 10(15) | \(\infty\)
8 | 9(8), 11(21), 2(5), 10(15) | \(\infty\)
2 | 3(25), 5(9), 9(8), 11(21), 10(15) | \(\infty\)
9 | 3(25), 5(9), 11(21), 10(15) | 13
5 | 6(12), 3(25), 11(21), 10(15) | 13
6 | 3(25), 11(21), 10(15) | 13
10 | 3(25), 11(21) | 13
11 | 3(25) | 13
12 | Empty | 13
Implementation of OPEN

- **FIFO → Queue**
 - “enqueue”: insert the item at the bottom
 - “dequeue”: remove the item at the top

- **LIFO → Stack**
 - “push”: insert the item at the top
 - “pop”: remove the item at the top

- **Dijkstra → Priority queue (denoted as Q)**
 - “push”: insert the item with some priority
 - “pop”: remove the item with the highest priority
 - Various data structures
 - Linear array: $O(n)$ for insert, $O(1)$ for removal
 - Binary heap: $O(\log n)$ for insert & removal
 - Fibonacci heap: $O(1)$ for insert, $O(\log n)$ for removal. Most efficient.
Priority Queue as a Binary Heap

• “push” – add an element
 1. Add on the bottom level of the heap
 2. Compare the added element with its parent; if they are in the correct order, stop.
 3. If not, swap the element with its parent and go to step 2

[min heap]

1
 2
 17
 3
 19
 25
 36
 100
 7
 8
Priority Queue as a Binary Heap

- “pop” – delete a root
 1. Replace the root of the heap with the last element on the last level.
 2. Compare the new root with its children; if they are in the correct order, stop.
 3. If not, swap the element with one of its children and return to the previous step. (swap w/ its smaller child in a min-heap and its larger child in a max-heap.)
LaValle’s book

\begin{verbatim}
FORWARD_LABEL_CORRECTING(x_G)
1 Set C(x) = \infty for all x \neq x_I, and set C(x_I) = 0
2 Q.Insert(x_I)
3 while Q not empty do
4 x \leftarrow Q.GetFirst()
5 forall u \in U(x)
6 x' \leftarrow f(x, u)
7 if C(x) + l(x, u) < \min\{C(x'), C(x_G)\} then
8 C(x') \leftarrow C(x) + l(x, u)
9 if x' \neq x_G then
10 Q.Insert(x')
\end{verbatim}

- Other notations to note
 - Unvisited
 - Closed (Dead)
 - Open (Alive)
Extensions of Label Correcting Algorithm
Better Test to Add a Node to OPEN

- Step 2:
 "If $d_i + a_{ij} < \min\{d_j, d_i\}$, then set $d_j = d_i + a_{ij}$ and place j in OPEN"

- Can make this test tighter

- If **a lower bound** h_j of the true shortest distance from j to t (i.e., an underestimate of cost-to-go) is known
 - "If $d_i + a_{ij} < \min\{d_j, d_i\}$" \Rightarrow "If $d_i + a_{ij} < d_j$ and $d_i + a_{ij} + h_j < d_i$"
 - Called **A* algorithm** (1968). Very popular
 - h: is sometimes called "heuristics function"
 - Neglect the structure of the regular grid: 2-norm distance to target
 - Obstacle-free path length: Dubin’s distance
 - If $h_i = 0$ (loosest lower bound), A* reduces to Dijkstra
 - Choose a node with minimum value of estimated cost:
 $$i = \arg\min_{j \text{ in OPEN}} (d_j + h_j)$$
 - In general much fewer nodes to expand compared to Dijkstra

The path going through i and j can improve the cost of reaching t
Some Notes on A* algorithm

- Other notations
 - f_j: $g_j + h_j$
 - g_j: distance from s to j (the label d_j in the label correcting algorithm)
 - h_j: heuristic value from j to t
 - Then, use f_j in sort the nodes

- Sometimes called “informed search” as opposed to “uninformed search” in AI

- “Optimally efficient”
 - For any given heuristic function, A* expands the fewest nodes of any admissible search algorithm

- Heuristic function
 - Admissible: $h_i \leq h^*_i$ (underestimates the cost-to-go)
 - c.f. Consistent: $h_i \leq a_{ij} + h_j$ (go incrementally without going back)
 - If consistent, then admissible
A* Example: 4-connected grid

- Grid of size 3 x 4
- Start at node #1, goal at node #10
- Physical distance of each edge is 10
- **Edge cost** = distance + some terrain penalty
A* Example: 4-connected grid

- Physical distance of each edge is 10
- Different heuristics
 - Manhattan vs Euclidean distance
 → which one is better & why?
A* Example: 4-connected grid

Start

Goal

Node exiting OPEN

OPEN # (d, d+h)

d_i

Heuristic value
Other Improvements

• Advanced initialization
 – Normally labels are initialized as “\(d_i = \infty\) for all \(i\)’s, except \(d_s = 0\)”
 – If there is some good starting path (obtained heuristically), initialize the labels \(d_i\) with length of some path from \(s\) to \(i\) (so that \(d_i < \infty\)).
 – The test “\(d_i + a_{ij} < \min\{d_j, d_i\}\)” of adding nodes to OPEN becomes tighter ➜ fewer nodes would enter OPEN

• Upper bound
 – If an upper bound \(m_j\) of the cost-to-go (\(j\) to \(t\)) is known, then, reduce \(dt\) faster. When \(d_j + m_j < d_i\), then \(d_i := d_j + m_j\)

• Bidirectional planning
 – Start the search from start and the target at the same time
 – Terminate when they “meet” in the middle with some conditions

• Incremental version (next lecture)
 – Do not start from scratch when a small part of the environment changes.