
Obstacles and Cost

ME/CS 132b Advanced Robotics: Navigation and Perception 4/07/2011

What are Obstacles?

Obstacles can generally be viewed as vehicle mobility hazards

Tip-Over

High-Centering

Collision

Traction Loss

Chassis interaction w/ environment

April 7, 2011

ME/CS 132

Obstacles and Cost Lecture Outline

Configuration Space Obstacles

Continuum Representations

Applications

Current and Active Research

Covers topics in Chapters 4, 5, and 7 in S. LaValle's Planning Algorithms

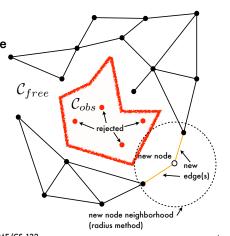
April 7, 2011

ME/CS 132

.

Configuration Space Obstacles

April 7, 2011


ME/CS 132

5

Configuration Space Obstacles

The obstacle configuration space \mathcal{C}_{obs} represents an inaccessible region of the robot configuration space

In sampling-based planners configurations or states in \mathcal{C}_{obs} are rejected

April 7, 2011

ME/CS 132

Computing \mathcal{C}_{obs}

When

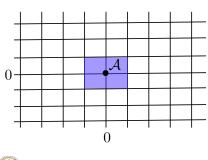
$$\mathcal{C} = \mathbb{R}^n$$
 translation only $1 \leq n \leq 3$

The obstacle region can be computed by convolution

$$X,Y\in\mathbf{R}^n$$
 vector subtraction
$$X\ominus Y=\{x-y\in\mathbb{R}|x\in X,y\in Y\}$$

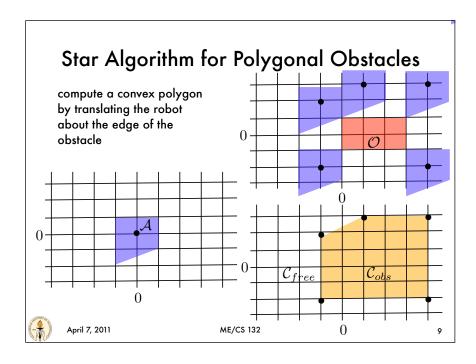
$$\mathcal{C}_{obs}=\mathcal{O}\ominus\mathcal{A}(0)$$

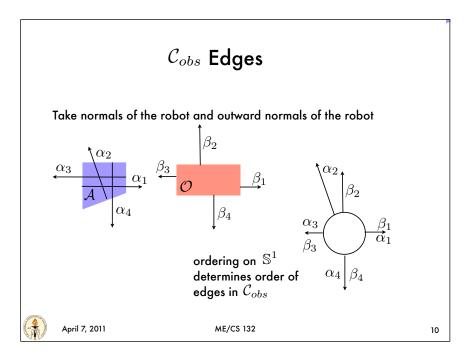
April 7, 2011

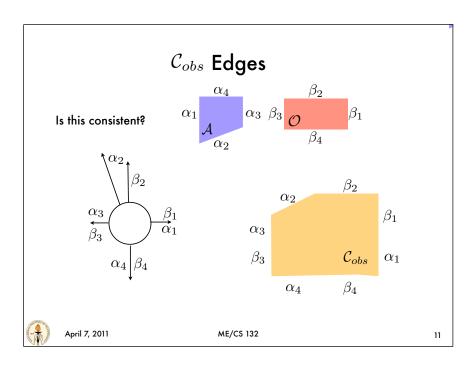

ME/CS 132

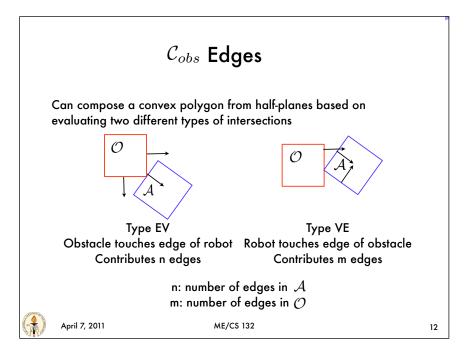
An example of computing $\,\mathcal{C}_{obs}$

$$A = ([-1,1],[-1,1])$$

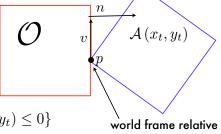

$$\mathcal{O}=\left(\left[0,3\right],\left[0,2\right]\right)$$


$$C_{obs} = ([-1, 4], [-1, 3])$$




April 7, 2011

ME/CS 132


\mathcal{C}_{obs} Edges

Use the edge and the point of intersection to compute the half-plane \boldsymbol{H}

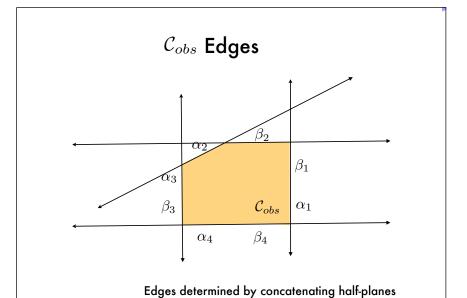
$$p\left(x_{t}, y_{t}\right) = \left(p_{x} + x_{t}, p_{y} + y_{t}\right)$$

$$n \cdot v = 0$$

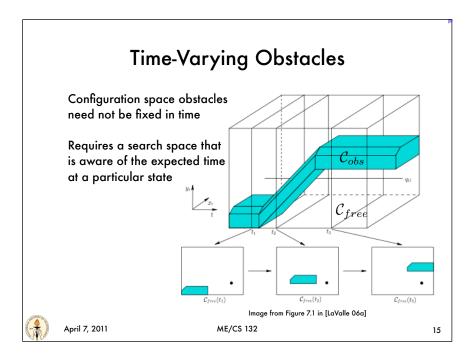
$$f\left(x_{t}, y_{t}\right) = n \cdot v\left(x_{t}, y_{t}\right)$$

$$H = \{(x_t, y_t) \in \mathcal{C} | f(x_t, y_t) \le 0\}$$

to ${\cal A}$



April 7, 2011


April 7, 2011

ME/CS 132

13

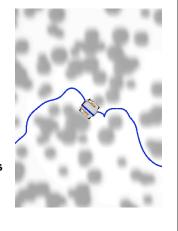
ME/CS 132

Continuous Representations

April 7, 2011

ME/CS 132

Continuous Cost Representations


Obstacles are not always binary

Associated cost values with proximity to hazards

Terrain Features Tip-Over Loss of Traction

Important in off-road environments

Cost functional used in trajectory planning

April 7, 2011

ME/CS 132

17

max |slope| $\theta = 45^{\circ}, 225^{\circ}$

Continuous Cost Representations

Obstacles are not always polygonal

min |slope| $\theta = 135^{\circ}, 315^{\circ}$

Sample trajectory cost

Approximate shape

Orientation dependent cost functions

Vehicle dependent

Sample in 3D and store worst case in extra dimension to get back to 2D

3

elevation map

April 7, 2011

ME/CS 132

Applications

Autonomous Navigation

April 7, 2011

ME/CS 132

10

April 7, 2011 Autonomous Navigation ME/CS 132 April 7, 2011 Autonomous Navigation Maxingation Maxingati

Research Topics

Learning Cost from Demonstration

April 7, 2011

ME/CS 132

21

Learning Cost from Demonstration

[Silver10a] demonstrates learning the mapping between terrain features and mobility cost by training the system with expert paths

Image from Figure 5 in [Silver 10a]

expert path path planned -

April 7, 2011

ME/CS 132

Summary

Obstacle representation and costing is often the medium between planning and perception

Methods exist for explicitly computing configuration spaces for polygonal robots and obstacles

Binary (obstacle/free) representations of space disallow configuration or state in those regions

Continuous representations of obstacle associate risk with configuration or state space that is weighted with mobility costs

April 7, 2011

ME/CS 132

23

Next Lecture (4/12)

Search Algorithms I

Breadth First Search

Depth First Search

Dijkstra

Α*

April 7, 2011

ME/CS 132

Document/Image References

[Silver 10a] D. Silver, D. Bagnell, and A. Stentz,
"Learning from Demonstration for Autonomous
Navigation in Complex Unstructured Terrain,"
International Journal of Robotics Research, Vol. 29,
No. 12, October, 2010, pp. 1565 - 1592.

[LaValle 06a] S. LaValle, "Planning Algorithms". Cambridge: Cambridge University Press. ISBN 0521862051.

April 7, 2011 ME/CS 132 2

