Search Spaces II

ME/CS 132b Advanced Robotics: Navigation and Perception 4/07/2011

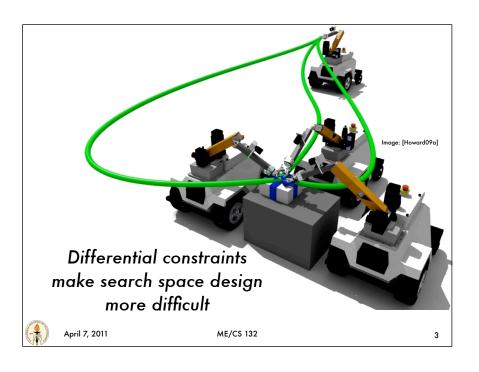
Before we get started...

Homework Set #1 due date pushed back one week

Homework Set #2 assigned today

Book chapter review and Matlab exercises

Due one week from today (4/14)



Search Space Lectures Outline

Part I

Introductory Topology

Configuration Spaces

Search Space Design

Part II

Search Space Design with Differential Constraints

Applications

Research Topics

Covers topics in Chapters 3, 4, 5, and 14 in S. LaValle's Planning Algorithms

April 7, 2011

Recap of Search Spaces I

Topology

Topological Space, Manifold

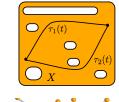
Homotopy

Geometric Transformations

2D, 3D, Quaternions

Search Spaces

Grid, Lattices, RTD, PRM



April 7, 2011

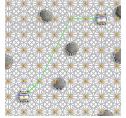
ME/CS 132

Search Space Design with Differential Constraints Concepts

Manuel of Manuel

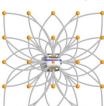
April 7, 2011

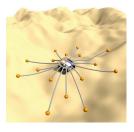
Challenges of Search Space Design with Differential Constraints



Efficiency

Expressiveness and Reachability





Feasibility

April 7, 2011

ME/CS 132

Motion Planning Problem Formulation

A world exists with a obstacle region $\mathcal O$ and configuration space ${\mathcal C}$ that maps into a state space X

The state space is a smooth manifold $\mathbf{x} \in \mathbf{X}$

An action space is defined for all states $\mathbf{u} \in \mathbf{U}\left(\mathbf{x}\right)$

Obstacles are a subset of the state space

A state transition equation is known $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

The initial state and goal region are known

April 7, 2011

Differences in Planning Terminology

Nonholonomic Planning
Planning that deals only with non-integrable kinematic constraints

Kinodynamic Planning
Planning with kinematic and dynamic constraints

Trajectory Planning
Similar to kinodynamic planning but typically
involves separating path and velocity planning

April 7, 2011

ME/CS 132

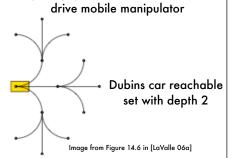
^

Planning with Differential Constraints

Edge Generation Action/Trajectory Planning

Search Space Generation Reachable Sets

Sampling-Based Techniques



Trajectory generation for a differential

April 7, 2011

ME/CS 132

Search Space Design with Differential Constraints

Edge Generation

April 7, 2011

ME/CS 132

..

Model-Predictive Trajectory Planning

One method for generating actions that satisfy general mobility constraints (many other methods exist)

Parameterize the space of inputs

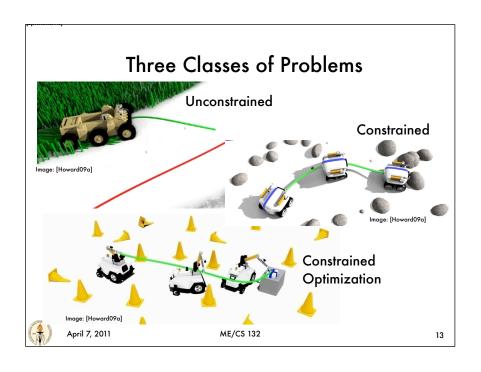
$$\mathbf{u}(\mathbf{x},t) \to \mathbf{u}(\mathbf{p},\mathbf{x},t)$$

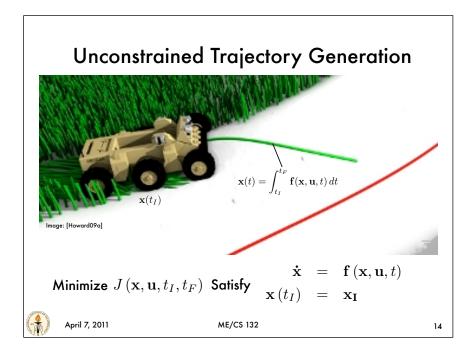
Generate parameter corrections based on gradients of simulated motion

Numerically estimate partial derivatives to achieve applicability to various motion models

April 7, 2011

ME/CS 132





Trajectory Cost

The trajectory cost is defined as a functional ${\cal J}$ consisting of a boundary state penalty $\boldsymbol{\Phi}$ and an integrated Lagrangian $\mathcal L$

$$J\left(\mathbf{x},\mathbf{u},t_{I},t_{F}\right)=\Phi\left(\mathbf{x}\left(t_{I}\right),t_{I},\mathbf{x}\left(t_{F}\right),t_{F}\right)+\int_{t_{I}}^{t_{F}}\mathcal{L}\left(\mathbf{x}\left(t\right),\mathbf{u}\left(t\right),t\right)\,dt$$

Cost functional represents a weighted combination of penalties associated with trajectory state or actions

April 7, 2011

ME/CS 132

15

Unconstrained Trajectory Generation

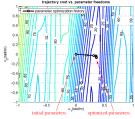
Minimize
$$J(\mathbf{x}, \mathbf{u}, t_I, t_F)$$

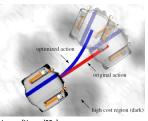
Satisfy
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

 $\mathbf{x}(t_I) = \mathbf{x_I}$

Apply Gradient-Based Optimization

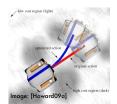
$$\mathbf{p_{i+1}} = \mathbf{p_i} - \delta \nabla J(\mathbf{x}, \mathbf{u}(\mathbf{p}), t)$$
$$i \ge 0 \qquad \delta > 0$$





Numerical Cost Jacobian Esimtation

Often the integral of the state transition equation is non-differentiable



Estimate the Jacobian numerically

$$\nabla J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)=\left[\begin{array}{ccc} \frac{\delta J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)}{\delta p_{0}} & \dots & \frac{\delta J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)}{\delta p_{n}} \end{array}\right]$$

$$\frac{\delta J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)}{\delta p_{n}}=\frac{J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p},p_{n}+\eta\right),t\right)-J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)}{\eta}$$

$$\eta \to 0$$

April 7, 2011

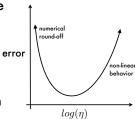
ME/CS 132

17

Issues with Numerical Estimation

This technique for estimation of the Jacobian is computationally expensive and numerically sensitive

 $\begin{array}{ll} \textbf{Cost Jacobian requires} & n+1 \\ \textbf{simulations} \end{array}$



Partial derivative accuracy varies with value of η

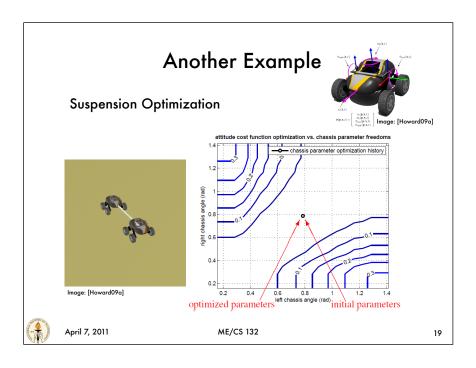
$$\frac{\delta J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)}{\delta p_{n}} = \frac{J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p},p_{n}+\eta\right),t\right) - J\left(\mathbf{x},\mathbf{u}\left(\mathbf{p}\right),t\right)}{\eta}$$

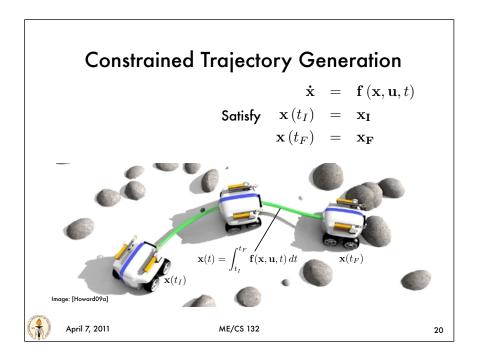
$$\eta \to 0$$

April 7, 2011

ME/CS 132

R





Constrained Trajectory Generation

Satisfy
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

 $\mathbf{x}(t_I) = \mathbf{x_I}$
 $\mathbf{x}(t_F) = \mathbf{x_F}$

Define a constraint error

$$\Delta \mathbf{x_T}(\mathbf{p}) = \mathbf{X}_F - \left(\mathbf{x_I} + \int_{t_I}^{t_F} \mathbf{f}(\mathbf{x}, \mathbf{u}(\mathbf{p}), t) dt\right)$$

Solve using root finding techniques to drive $\Delta x_{T}\left(\mathbf{p}\right)$ to zero

April 7, 2011

ME/CS 132

_.

Constraint Satisfaction

Iterative refinement of action parameters

$$\mathbf{p_{i+1}} = \mathbf{p_i} - \left[\frac{\delta \Delta \mathbf{x_T} \left(\mathbf{p}\right)}{\delta \mathbf{p}}\right]^{-1} \Delta \mathbf{x_T} \left(\mathbf{p_i}\right) \quad i \ge 0$$

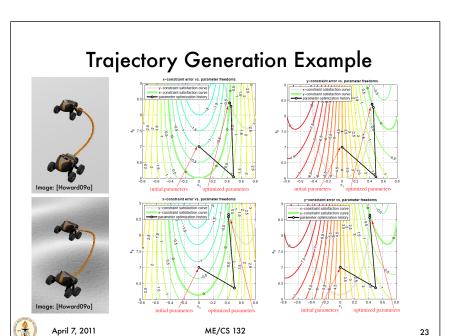
Estimate the constraint Jacobian numerically

$$\left| \frac{\delta \Delta \mathbf{x_{T}}(\mathbf{p})}{\delta \mathbf{p}} = \begin{bmatrix} \delta \Delta \mathbf{x_{T_0}}(\mathbf{p}) \\ \vdots \\ \delta \Delta \mathbf{x_{T_n}}(\mathbf{p}) \end{bmatrix} = \begin{bmatrix} \delta \Delta \mathbf{x_{T_0}}(p_0) & \delta \Delta \mathbf{x_{T_0}}(p_1) & \dots & \delta \Delta \mathbf{x_{T_0}}(p_m) \\ \delta \Delta \mathbf{x_{T_1}}(p_0) & \delta \Delta \mathbf{x_{T_1}}(p_1) & \dots & \delta \Delta \mathbf{x_{T_1}}(p_m) \\ \vdots & \ddots & \dots & \vdots \\ \delta \Delta \mathbf{x_{T_n}}(p_0) & \delta \Delta \mathbf{x_{T_n}}(p_1) & \dots & \delta \Delta \mathbf{x_{T_n}}(p_m) \end{bmatrix}$$

Constraint Jacobian requires $\,n+1\,$ simulations simulations

April 7, 2011

ME/CS 132



Action Parameterization

It is good to match the number of degrees of freedom in the action with the number of boundary state constraints in the system (square constraint Jacobian)

For example,

$$\mathbf{x_I} = (\kappa_I)$$
 $\mathbf{p} = (\kappa_0, \kappa_1, \kappa_2, \kappa_3, s_F)$ $\mathbf{x_F} = (x_F, y_F, \theta_F, \kappa_F)$ for $s_I \le s \le s_F$

$$\mathbf{u}\left(\mathbf{p},\mathbf{x},t\right)=\kappa\left(\mathbf{p},\mathbf{x},t\right)=a\left(\mathbf{p},\mathbf{x},t\right)+b\left(\mathbf{p},\mathbf{x},t\right)s+c\left(\mathbf{p},\mathbf{x},t\right)s^{2}+d\left(\mathbf{p},\mathbf{x},t\right)s^{3}$$

$$a(\mathbf{p}) = \kappa 0 \qquad c(\mathbf{p}) = \frac{9}{2} \frac{-\kappa_3 + 2\kappa_0 - 5\kappa_1 + 4\kappa_2}{(s_F - s_I)^2}$$
$$b(\mathbf{p}) = -\frac{1}{2} \frac{-2\kappa_3 + 11\kappa_0 - 18\kappa_1 + 9\kappa_2}{s_F - s_I} d(\mathbf{p}) = -\frac{9}{2} \frac{-\kappa_3 + \kappa_0 - 3\kappa_1 + 3\kappa_2}{(s_F - s_I)^3}$$

April 7, 2011

ME/CS 132

Parameter Initialization

Since the technique is local optimization or root finding technique, a good initial guess of parameters is necessary

Methods:

Precomputed lookup tables

Machine learning techniques

5-dimensional lookup table in position, orientation, velocity, and curvature

April 7, 2011

ME/CS 132

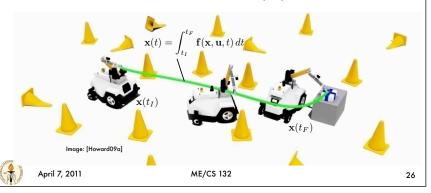
25

Constrained Optimization Trajectory Generation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

Minimize
$$J(\mathbf{x}, \mathbf{u}, t_I, t_F)$$
 Satisfy $\mathbf{x}(t_I) = \mathbf{x_I}$

$$\mathbf{x}(t_F) = \mathbf{x_F}$$



Solution Technique

Form a Hamiltonian that represents the path cost and constraint error

$$\mathcal{H}(\mathbf{x}, \mathbf{u}, t_I, t_F, \lambda) = J(\mathbf{x}, \mathbf{u}, t_I, t_f) + \lambda^T \Delta x_T(\mathbf{x}_I, \mathbf{u}(\mathbf{p}))$$

Solve the system of first-order necessary conditions for optimality numerically

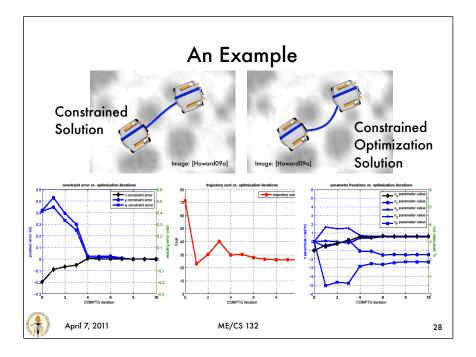
$$\frac{\mathcal{H}(\mathbf{x}, \mathbf{u}, t_I, t_F, \lambda)}{\delta \mathbf{p}} = \frac{J(\mathbf{x}, \mathbf{u}, t_I, t_f)}{\delta \mathbf{p}} + \lambda^T \frac{\Delta x_T(\mathbf{x_I}, \mathbf{u}(\mathbf{p}))}{\delta \mathbf{p}} = 0$$

$$\frac{\mathcal{H}(\mathbf{x}, \mathbf{u}, t_I, t_F, \lambda)}{\delta \lambda} = \lambda^T \Delta x_T(\mathbf{x_I}, \mathbf{u}(\mathbf{p})) = 0$$

Hamiltonian Hessian requires $n^2 + 1$ simulations

April 7, 2011

ME/CS 132



Search Space Design with Differential Constraints

Graph Generation

April 7, 2011

ME/CS 132

20

Reachable Sets

Must search densely in state space (a function of the sampling of action space)

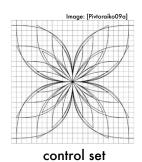


Image: [Pivtoraiko09a]

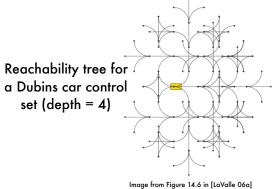
first 1400 expansions of a state lattice

April 7, 2011

ME/CS 132

Dubins Car Reachable Set

Dubins Car Mobility: A car that only moves forward or at the maximum steering angle in either direction



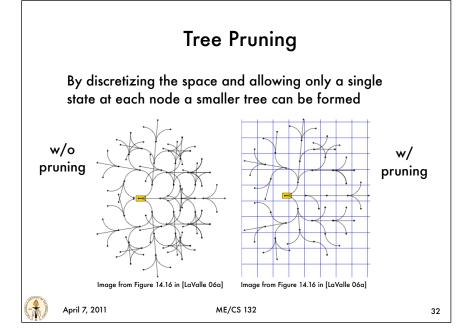
THE CONTROL OF

April 7, 2011

ME/CS 132

31

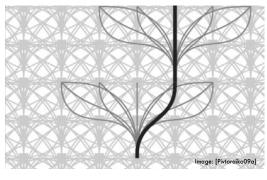
[Dubins57a]



Recombinant State Lattices

By defining a repeatable control set for each state in a discretized graph a feasible search that recombines can be generated

discretized and continuous in x,y,0



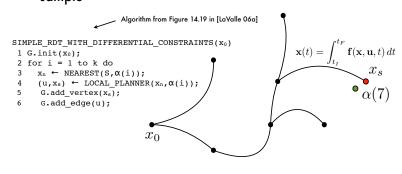
April 7, 2011

ME/CS 132

33

Rapidly Exploring Dense Trees [LaValle99a]

The same general technique applies but requires a local planner to determine an action that drives towards the sample



April 7, 2011

ME/CS 132

ApplicationsLocal/Global Navigation

April 7, 2011

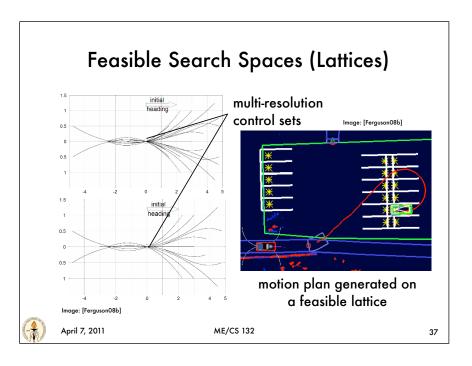
April 7, 2011

7, 2011 ME/CS 132

Feasible Search Spaces (Depth 1)

Image: [Howard09a]

feasible graphs

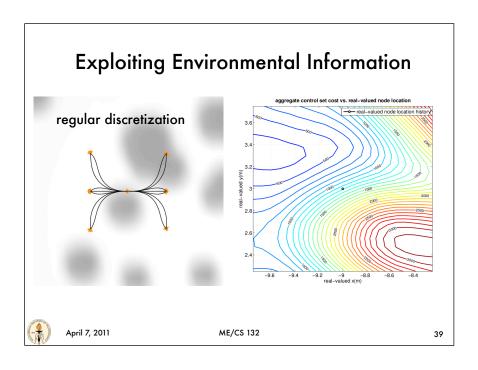


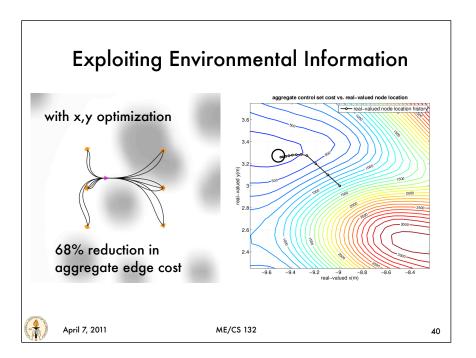
Research Topics

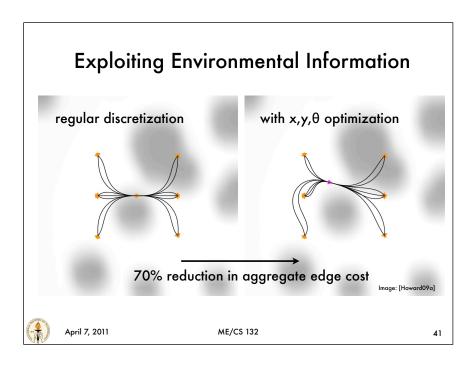
Graph Adaptation

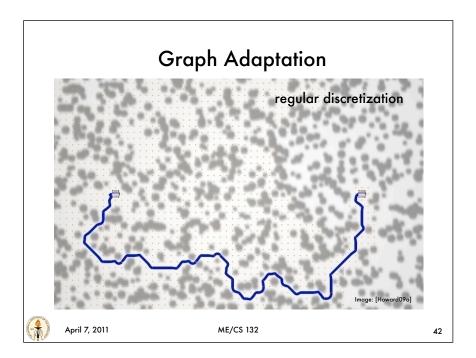
April 7, 2011

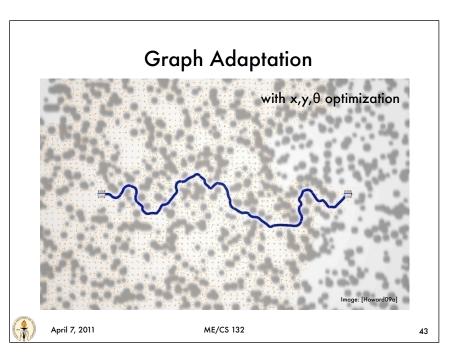
ME/CS 132











Summary

Edge generation requires solving for actions to satisfy boundary state constraints subject to a variety of kinematic and dynamic constraints

Extensions of existing configuration space sampling techniques can be extended to planning with differential constraints by integrating a local motion planner or trajectory generator

Planning with differential constraints is more computationally expensive that without but it sometimes necessary to guarantee safety

April 7, 2011

Next Lecture (4/7)

Obstacles and Cost

C-Space Expansion

Continuous Valued Obstacle Representation

April 7, 2011

ME/CS 132

45

Document/Image References

[Howard 09a] T.M. Howard, "Adaptive Model-Predictive Motion Planning for Navigation in Complex Environments". Ph.D. Thesis, Carnegie Mellon University, August 2009

[LaValle99a] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceedings IEEE International Conference on Robotics and Automation, pages 473–479, 1999.

[Ferguson08b] David Ferguson, Thomas Howard, and Maxim Likhachev, "Motion Planning in Urban Environments: Part II," Proceedings of the IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems, September, 2008.

[Pivtoraiko09a] M. Pivtoraiko, R. Knepper, and A. Kelly, "Differentially constrained mobile robot motion planning in state lattices," *Journal of Field Robotics*, Vol. 26, No. 3, March, pages 308-333, 2009

[LaValle 06a] S. LaValle, "Planning Algorithms". Cambridge: Cambridge University Press. ISBN 0521862051.

[Dubins57a] L. E. Dubins. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79, pages 497– 514, 1057.

April 7, 2011

ME/CS 132